










































The Centroid

• The centroid is a point that locates the geometric center of 
an object. 

• The position of the centroid depends only on the object’s 
geometry (or its physical shape) and is independent of 
density, mass, weight, and other such properties. 

• The average position along different coordinate axes locates 
the centroid of an arbitrary object. 
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The Centroid

• We can divide the object into a number of very small 
finite elements A1, A2, … An. 

• In this particular case, each small square grid represents 
one finite area. 

• Let the coordinates of these areas be (x1, y1), (x2, y2), …, 
(xn, yn). 

• The coordinates x1 and y1 extend to the center of the 
finite area. 

• Now, the centroid is given by
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The Centroid

• The calculations will result in the location of 
centroid C. 

• Because point C is at the center of the 
rectangle, the results intuitively make sense. 

• Consider the moment due to the finite areas 
(instead of the forces) about two lines (AA and 
BB) parallel to the x- and y-axes passing 
through the centroid. 

• Because the rectangle is symmetric about 
these two lines, the net moment will be zero. 
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The Centroid

• Centroid always lies on the line 
of symmetry. 

• For a doubly symmetric section 
(where there are two lines of 
symmetry), the centroid lies at 
the intersection of the lines of 
symmetry. 
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Functional Symmetry

•The area is symmetric 
about line BB, its 
centroid must lie on 
this line. 

•The area is not 
symmetric about line 
AA.
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Functional Symmetry

• The four holes are equidistant from line AA, 
and the moments from the two holes on 
the top of line AA counteract that of the 
two bottom holes. 

• Even though the area is not physically 
symmetric about line AA, functionally line 
AA can be viewed as the line of symmetry. 

• Therefore, the centroid lies on the 
intersection of the two lines.
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The Centroid

•The calculation of the centroid for a composite 
section requires the following three steps:
• Divide the composite geometry into simple geometries 

for which the positions of the centroid are known or can 
be determined easily.

• Determine the centroid and area of individual 
components.

• Apply the equation to determine the centroid location.
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Example 1

•Determine the centroid 
of the composite 
section.
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Example 1

• Step 1: Divide the 
composite section into 
simple geometries
• The composite geometry can 

be divided into three parts: 

• two positive areas 

• one negative area (circular 
cutout). 
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Example 1

• Step II: Determine the centroid and the area of individual 
component

Part Dimensions Area (sq. in) x y

Area 1 2×4 8 3 5

Area 2 10×6 60 9 5

Area 3 2 radius − 4 10 5
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Example 1

•Step III: Determine the centroid location
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Part Dimensio
ns

Area 
(sq. in)

x y (in3) (in3)

Area 1 2×4 8 3 5 24 40

Area 2 10×6 60 9 5 540 300

Area 3 2 radius − 4 10 5 − 40 − 20



Example 1
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Determining the location of the centroid using 
a Differential Element

• If x and y are the coordinates of a differential element dA, the 
centroid of a two-dimensional surface is given by 
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Determining the location of the centroid using 
a Differential Element

• The equation can be generalized to a three-dimensional surface as

• The same concepts can be used for determining the centroid of a line. 

• To determine the centroid of a volume, the equation takes the form of
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Example 2

•Determine the centroid 
of the quarter circle.
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Example 2

• The key step in solving this type 
of problems is to establish and 
define an appropriate differential 
element.

• Let us consider a vertical 
differential element with 
thickness dx and height h.
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Example 2

• Because the section is symmetric
about a line that is at 450 to the
x- and y-axes, the centroid lies on
this line.
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Example 3

• Locate the centroid of 
the line whose 
equation is  

with x ranging from 0 
to 1 
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Example 3
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Example 3
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The Center of Mass

•The center of mass is a point that locates the 
average position of the mass of an object. 

•For an object with uniform density, it coincides with 
the centroid. 

• It is often called the center of gravity because the 
gravitational pull on an object can be represented 
as a concentrated force acting at this point. 
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The Center of Mass

• The equation for finding the center of mass of a volume takes the form of

• For a three-dimensional surface of uniform thickness and density, the center of 
mass coincides with the centroid of the surface.

• The same concepts can be used to determine the center of mass of a line. The 
equation takes the form of
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The Moment of Inertia
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The moment of inertia is sometimes expressed in terms of the 
radius of gyration.  The radius of gyration determines how the area 
is distributed around the centroid. 



Example 4

•Determine the 
moments of inertia 
about the x- and y-axes. 
Also, determine the 
polar moment of 
inertia. 
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Example 4
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Parallel Axis Theorem 
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Example 5

•Determine the 
moments of inertia 
about the x- and y-
axes about the 
centroid. 

•Also, determine the 
polar moment of 
inertia.
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Example 5
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Example 5
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Part
Dimen
-sions

Area
(sq. 
in)

x y (in3) (in3) Ix Iy dx dy

Area 
1

2×4 8 3 5 24 40 10.67 2.67 4.91 0 192.86 0

Area 
2

10×6 60 9 5 540 300 180 500 1.09 0 71.286 0

Area 
3

2
radius

− 4 10 5 − 40 − 20 -0.785 -0.785 2.09 0 -54.89 0

Summation 55.43 438.34 189.89 501.89 209.26
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Example 5
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