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Abgam isa structu.ral member whose longitudinal dimension is large compared to the transverse
dimension. The beam is supported along its |

ength and is acted b tem of loads at right
to its axis. Due to external loads gth upon by a system of loads at righ

. ds and couples, shear force and bending moment develop at
any section of the beams. For the design of beams, information about the shear force and bending

moment is desired. Accordingly, it is appropriate to learn about the variation of shear force and
bending moment along the length of the beam.

11.1. SHEAR FORCE AND BENDING MOMENT

Consider a simply supported beam acted upon by different point loads as shown in Fig. 11.1.
30 kN 20 kN 10 kN

AT.1m-j< 2m j« 2m ’i“ 2m -‘B

Re | Ry
Fig. 111
The loads are transferred to supports and for equilibrium conditions
R,+R,=W, + W2+W3=30+20+29=60kN
Also % M, (moments about support A) = 0. That gives
be7=10x5+20x3+30x1=140

Ry= 222 = 20 kN and R, = 60~ 20 = 40 KN




beam cut at an arbitrary section xx at distance x = 4 m from the
m?nw‘h::ryhh:;ywmdwmom(ﬁs-112)- A ang ’
.cmqmmﬁmdmmeﬂmmdhmwmmlm.w i
forces are:
Fipp =30+ 20~-40=10kN (dowﬂwnd)
FW-IO-ZO--IOKN (uPWl(d) 1
It is to be noted that forces on the left and 10KN  10kN
right sides of the section xx are equal in " |
magnitude but opposite in direction. :
Obviously, section xx is subjected to a force 30 kN 20 kN "'7 t *2
of 10 kN which is trying to shear the beam. The ! l —dm —f
force of 10 kN is called as shcar force at section A ¥ 4 X% g..i,m
xx. DOPENENECRY ) " _._.“
“Shear force at a section in a beam is the force
that is trying to shear off the section. It is obtained as o = 40 KN 103N
algebraic sum of all the forces acting normal to the Fig. 1.2
axis of beam ; either to the left or to the right of the
section.”
« Considering equilibrium of moments on each portion of the beam, :
M =40 % 4-30 x 3-20 x 1 = 50 kNm (clockwise) |
Mﬂw-ZOu:!-lel-sOkNm (anti-clockwise)

It is to be noted thltmomu\bonﬂ\cleftnndrlghlsiduolthcucﬂonxxmcquﬂinmagnlmde
but opposite in direction. Obviously section xx is acted upon by a moment of 50 kNm. Since this
moment is trying to bend the beam, it is called bending moment

“Bending moment at a section in a beam is the moment that tends to bend the beam and is obtained as

dgdmu‘cmmq’mtddlanarcuabomHntxﬁtm.xﬂnga‘thﬂtolheleﬂortothzrlghlaﬂhc
section.”

Sign Conversion: The follow sign conventions are T
nmm?lyadop&dhrhdurbt:e‘smd@berdh\gmt. ’:'T yeen.
(/) Shear force is taken positive if it tends to move the l 3 ”l

Idtportionupwudwid\mpecuomedghtpo«ﬁon.
ti1) Bending moment is taken positive if it tends to sag ety Fla. 11.3 =T
(concave upward) the beam, and it is taken negative s

if it tends to hog (concave down) the beam.

dhgrm.thenbsdunh\dicahau\cpodamofsecﬁon
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sheal P at an of the beam d d
™ “wﬂdbemmdmmoﬂoadsuung Y cross-section epen

. Fixed beam (Fis-;tl:b): A beam having both of its ends fixed or built-in.

2 Simplz'd'“m uﬂ:”i‘_}(‘z ig. 11.?: made to freely rest on supports which may be
knife WS::O o < u:"m freely supported’ implies that these supports exert only
:ﬁg ments on beamThehoﬁzonhldistancebetween&\ewppombmlled

o the form of cantilever beyond the support/
« Continuous beam (Fig. 11.5¢): A beam rovid =
S ol Hotliaees P : ed with more than two supports. Further
g B 3 E
Fixed Fixed
End : End End

(a) (b

—
- —
U

(@
(@

(e)
Fig. 11.5

The different types of loads acting on a beam are:
* Concentrated load:The load acts at a point on the beam. This point load is applied through
a knife edge.
i The load is evenly distributed over a part or the entire length
; yf':tl\?b":a';\d’lﬁ:g ?S'&ﬂ:ﬁ’: xamm.uned to act at the centre of gravity of the load. The ud] is
expressed as N/m length of beam.
* Uniformly varying load:The load whose intensity varies linearly along the length of beam
over w! it is applied.
* A beam may be loaded by a couple whose magnitude is expressed as Nm.
.h‘:’hmmymmymofmaboveload systems or combination of two or more loads at

YYPES OF BEAMS AND LOADS



Point load S (V"v*“c load
l mmw?gv\ | B e

Fig. 11.6

11.3. RELATION BETWEEN LOAD INTENSITY, SF AND BM

Consider a beam subjected to any type of transverse load of the general form shown in g
Isolate from the beam an clcmemy of length dx at a distance x from left end and draw its f::% bl(::
diagram as shown in Fig. 11.7. Since the element is of extremely small length, the loading oy, *:
beam can be considered to be uniform and equal to w kN/m. The element is subject to she,, o
F on its left hand side and shear force (F + dF) on its right hand side. Further, the bending mg,

M acts on the left side of the element and it changes to (M + dM) on the right side.

w kN/m
'y "
|
F 'F + dF
v
Die—gx =C /
——x —{dx |o— T M M+ dM
Re Ry
Fig. 11.7
Taking moments about point C on the right side,
IM, =0: M—(M+4M)+dex-(wxdx)xd;-0
The udl is considered to be acting at its CG
2
dM = F dy - 220

2
The last term consists of the product of two differentials and can be neglected.

dM
dM=Fdxor F= ==
- or -

mmmmmumwnnnamammtmmmwm
Applying the condition £ F = 0 for equilibrium, we obtain
F-wdx-(F+dF)=0
- dF
or w 2

mthu\emqo{b.dmgucq\nlbnnddnnpddwmww\mpedoox-
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Draw the shear force and bending moment diagrams for the beam loaded and supported as spoy, in |

Fig. 11.12.

Solution: The line of action of the reaction will be at 10 kN 10 kN
right angles to the roller base at end A. The reaction at ] } . v
a hinge can have two components acting in the A(H)—> e > i B

horizontal and the vertical directions. Since there is
no horizontal external force acting on the beam, the
reaction at the hinged end B will be only in the vertical
direction.
Due to symmetry of loading,
Ry 10+ 10 =10 kN

Shear force
SFat A=10kN
SF just on left of C = 10 kN
SFjustonrightof C=10-10=0
SF juston leftof D =0
SFjustonrightof D =0~ 10 = -~ 10 kN
SF just on left of B = - 10 kN
SFjustonrightof B=—-10+10=0

Fig. 11.12

Bending moment. Taking a section at distance x from end A and considering forces on left side.

Portion AC:
M=R, xx=10x (linear variation)
Atx= 0 : M, =0
Atx= 1.5m A M_=10 % 1.5=15 kNm
Portion CD:

M =R, x x-10 (x-1.5)

= 10x = 10x + 15 = 15 kNm +10kN %
The bending moment remains constant at 15 kNm - ve C D B
withintheportionCD. SFD 1
Portion DB: nny [
M =R, x x-10 (x - 1.5) -~ 10 (x - 3.5) - 10 kN
=10x-10x+15-10x + 35 15 kN
=~ 10x + 50 (linear variation) -
At x=35m: Lo oA
M, = ~10 % 3.5 4+ 50 = 15 kNm A B
C D
Atx=5m: BMD
M, =~-10x5+50=0 Fig. 11.13

’I‘bevan‘aﬁonofshearforcemdbendhgmomentford’teenﬁrelengthofﬂ\ebeamhuw

depicted in Fig. 11.13.

. i e = e



and bpendin momen o3 2
1 . ,‘“mf"'htmmmmwumin
n’ SkN 4 kN

} ! T f

D
c == -
i ——— —ete1 m et
' Fig. 11,14
setwtion: For shear force calculations, consider any section at distance x from the free end A
At x=0 : SF =-S5kN
mmmisbdnghlu\-vebeaunitm\dsb with
ghan ; move the left portion downward
At x=1m
just left of B : SF = — 5 kN just right of B: SF =~ 5 - 4 = -9 kN
At x=3m

just left of C : SF = — 9 kN

just right of C: SF = =9 -3 = -~ 12 kN
Bending moment

Portion AB: lu\ngintlncﬁmbetw«!\A-\dB.lndddbhnc!xfmmendA.ﬂm
M _=-5x (linear variation)

x

Atx=0 : M, =0

Atx=1m My, =~5x1=-5kNm

Portion BC: Consider the section to be between B and C, and at distance x from end A. Then
M, =-5x~-4(x~-1) (linear variation)
At xe1m

i My =-5x1-(1-1)=-5kNm as calculated above
Atxw3m : M =-5x3-4(3-1)=-23kNm

A

D

B C
5 kN g




Portion CD: Consider the section to be between C and D, and at distance x from eng A
M, =~5x-4(x~-1)-3(x-3) (linear variation) The,

At x=3m : M _=-5x3-4(3-1)-3(3-3)=-23kNm

At x=4m : M, =-5x4-4(4-1)-3(4-3)=~-35kNm o

The shear force and the bending moment for the entire beam are shown in Fig. 11 15,

EXAMPLE 11,2

- ‘\\\
Construct the shear force and bending moment diagrams for the cantilever beam loaded as gy, in
Fig. 11.16.

Solution: For shear force calculations for portion AB, take 10 kN 20 kN 10 kN
section at distance x from end A. I I g =g
SF =—10 ~ 10x (linear variation) 2 eIl el o,y
At x =0; SF = —10 kN Ay g =
At x =1 m (just to left of point B) ; = IR -
SF =-10~10 = =20 kN Fig. 11.16
For portion BC, again we consider a section at distance
x from the end A,
SF=-10-20-10x (linear variation)
At x =1 m (just to left of point B); A B c
SF =-10~-20~10 = ~ 40 kN 1
10kN - |
At x = 3 m (fixed end) ; '
SF =—10-20~ 10 x 3 = - 60 kN P
The shear force diagram indicating the values of shear 40 kN ‘\_‘l
force at salient points is as shown in Fig. 11,17, 60 kN
(i) For bending moment for portion AB, take section at Fig. 1117
distance x from the free end A.
BM --le-lex-;- (parabolic variation)
The wdl Is taken to be acting at its CG
At x=0; BM =0
At x =1m;BM =-10x1-10x 1 x ; =—15 kNm
ForportionBC,againweconﬂdorauecﬁonatdhtancexfmmtheondA
BM =-10x-20 (x~1)~10x x )
At x =1m; BM=-10-20(1-1)-10x 1 ) =—15KkNm
At x = 3 m (fixed end) : A B C
m--loxa-zoa-:)-;o.a,% 15 kNm

.—w-w-ﬁ-- 115 kNm
The bending moment diagram indicating the value of 115 kNm
bending moment at salient points is as shown in Fig. 11.18. Fig. 11.18



i 2
the reactions and construct the sheay bendi :
pee™ -i:‘p . 11.19. Also find the point of comrf:f;:and ing moment diagrams for the beam loaded as

oo : 2kN/m :‘(‘)’:i\;fa”y. 2 kN
D am@'m’ﬁ cl B le
e=Zm 5 9 4m b= 4m }l‘lm o
. Fig. 11.19 Ry

jution: A point of contraflexture is a point where = :
::; equilibrium (EV = 0 and IM = 0), we have bending moment is zero. From conditions of

R, +R,=2x24+10+2 =16
~2x2%x 10+ R, x9-10x5+R, x 1 =0;9R, + R, =90
The ud! is considered to be concentrated at its CG.

From expression (i) and (i) : R, = 9.25 kN and R, = 675 kN
Shear Force:

A
(i)

AD=0
Justleftof A=—2x2=—4kN ; Justrightof A= -4 +9.25=525kN

Just left of B =—4.75 kKN ; Justrightof B=—-475 4 6,75 =2 kN
Just left of E = 2 kN ; Justrightof E=2-2~0kN
Bending moment

Mg =0
At distance x from D (within portion DA)

Just left of C = 5.25 kN ; Just right of C = 5.25 — 10 = ~ 4.75 kN

MIS—Z_X;( ; -—xz
M(atx-lm):lm\dM(at:=2m)--4
M, = -4 kNm
Mc=-2x2x5+9.25><4--—20+37=17kNm
Apparently there is a point of contraflexture between A and C as bending moment changes
between A and C.
Bending moment at x between A and C with x measured from D
. M, =—4(x-1)+925(x-2) =525x—145
s 525x—14.5 = 0 for point of contraflexture

That gives x = “;: =276 m
M .5; 2 x1=~2kNm (considering the segment EB from right hand side)
B

b ls'ubending moment at C is + ve and at B is — ve, there is also a point of contraflexture
it tance owards left
Bending moment at dis £ measured from end E t X
M, =-2x+675(x-1)= 4.75x - 6.75
4.75x — 6.75 = 0 for point of contraflexture.
6

That - '75- R
gives x 4.7% 1.42 m



Bt

The shear force and bending moment diagrams for the entire beam are shown Fig
along with position of points of contraflexture. 1y

5.25 5.25
2 2
E
D \ A C B
SEp N4
? 117 :
| | |
: | ;
le—2.76 m +—] i le1.42 m+]

Y

Fig. 11.20



:ﬂumﬂv-;ppor-fd beam with 8 m span is loaded as shown in the figure groen btlou:\

12 kN
9 kKN/m { 6 kN/m

Fig. 11.30
antiwdmrfomndbmliugmmdhgum.ﬁlwdctemimthemagnimdcmm-,h
of maximum bending moment on the beam.
Solution : Considering equilibrium of beam
U-'y-O: R,+R,=(9%x3)+12+(6x3)=57kN
IM =0: Taking moments about end point A (clockwise moments +ve)
27x15+12x4+18x65-R, x8=0
The udl is considered to be concentrated at CG.

Biw 27x15+12x4+18x65

d 8
- 40.S+:8+ll7 = 25.69 kN
and R, =57-2569 =3131 kN
Shear Force:
Portion AB : CmsidennysecﬁonatdistanoexhvomendsupportA

SF= 3131 - 9% (linear variation)
At point A, ¥= 0 and SF=31.31kN

At point B, ¥=3m and SF=3131-9x3=431kN



G gl 'cp:mmt'mmgmmuunm
P gntofCD;  SF=431-12=769kN between B and just left of C.

s : stant t
ﬂ""rwﬁzamdermvsxﬁm:tb:mm;w b
porti sr:3131-9,(3-12-(,:;ff:mxmmd”mﬂA'
= 2231 - 6x

upoi"o- x=35m
and SFe 2231 -6x5=-760kN

Mpﬂdtdpomw.x:sm
and SF=231-6x8=-2569kN

At point £, SF=2569-2569=0

m_\domtﬂt:
Portion AB : Consider any section between AB at distance x from the end support A
BM =3131x-9 i (parabolic variation)

2
MWA‘ x=0 and BM=0
ann I.3m

and BM-3131::3-252i-53.43kNm
Portion BCD :
AtpointC, BM=R,x4-(9x2)x(15+1)
»3131 x4-675
=5774 kN m

At point D, m.x‘xs-(oxs)an.sn)
=3131 x5-M5-12

w3005 kN m
ow DE : Consider any section within DE at distance
BM-31.31:-(9:3)x(x-l.S)-le(x--t)-cx(,_
831.31x-27x(x-1.5)-12(:-4)-3(:-5)1

¥ from the end support A.

5),5;5

2

m“D“X-s)

-31.31x5—27(5-1.5)-12(5—4)-3(5_5):

=5005kKNm
N“E(ﬁl’-m

Sree =3131x8-27(8~-1

'b,,."'“"""hhupnmwz.wvwam

M“‘ ion in shear force and bending moment

5)-12(8-4)-3(B-57 =0
in bending moment is parabolic.

for the entire beam are as shown in



3131 kN
431 kN
A B c D
7.69 kN
57.74 KNm

25.69 kN

™

A B C D
Fig. 11.31
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A horizontal beam 10 m long carries a uniformly distributed load of 8 kN/m together wzm
loads of 40 kN at the left end and 60 kN at the right end. The beam is supported at fwo points 6 m, s gy,
that reaction is the same at the each support. Determine the position of props and show the variation Wu;
force and bending moment over the entire length of the beam.

Solution: Refer Fig. 11.34 for the beam loaded and supported as per the statement. Let the prop
be at distance a from end A.

40 kN 60 kN

£070"aT0%e e 0l0%a o700 e T To o s TaTelo 0 e TeToToTaToTaToToToTo o ToToToToToTolTeR
A rC D B
(4-a)

R.=90kN R;=90 kN
Fig. 11.34
Then the prop D is at distance (4 - a) from end B.
Total load on the beam = 40 + 60 + (10 x 8) = 180 kN. Since reaction is the same at each supp**
180

RC=R‘=—2—=%kN

Taking moments aboutend A,

60 x 10 + (8 x 10) x 120 =9 xa+90 (6 +a)
or 600+ 400 =90z + 540 + 904
(600 + 400) - 540
= 180 )

& il 255m




87 "mhzwmmAMﬂ\cr@le«-m-l.cmfm&
|
o A== OMN
gpmu,“dc--w-s-zss--w.wm

gﬂm@gd&dC--w.lo4m-29mm
ywmu‘mdo'”m'sl6."8.wm

gwmg"mﬁdedot-l&40+ﬂ)-n,wm
gpmutﬂ&d"n.w-sx 145 =60 kKN
Q”mmi&daiw-wxo

mmdmmmummu\dAmdlyhgbemnCDcmbewahd
hom the qua

~40+9%0-8x =0; x-% =625m

moment :
BMatA =0

BMatC = - 40 x 2.55 - (8 x 2.55) x 2';5 = =128 kNm

BMatD = - 40 x B.55 - (8 x 8.55) x 8.255 +90x6
=~ 342 - 292.4 + 540 = - 94.4 KNm

716 kN
60 kN
29.60 kN *ve
\
A = WEN.D B
e 1840 KN
kN
6040 kN
A - ' 3 B
/_;M
944 kNm



Waadmdwn\hﬂm& 3
=~ 40 x 6.25 - (B x 625) x '2 +90 x (6.25 -2 35)

EXAMPLE 11.12
A horizontal beam AB of span 10 m carries a uniformly distributed load g.-m,,.,,-,m

lr.milq({()ONnrthelt,fh-ndA.'l'helumnissuppomvnh_upmm(;whfdnzs1,..;,,,,,,A_mwauh;,b
Wrigmmfofmbmm.Utkwbﬂdmlrnﬂmymsﬂtl!mrdpmnfq‘mugm'dm el
a;mmnuommmaofmmm.pmmdwdmmdwjmmwugmm‘:
for the arrangement. 3
jon: 400N
Solution: waiifin

R e R T ot al 741 )]

A [ e 8

~»l 1 m fe— ! - — I ——o

5m - 5m -

10m -

Fig. 11.36

The bending moment is zero at the point of contraflexture. Therefore

M, =0=-400x5-160x5% > +R,x4 (left half of beam)
The wudl is taken to be acting at its CG,
or 4R, = 2000 + 2000; R = 1000 N
Applying the condition IF, = 0 for equilibrium of beam, we have
R, + R, =400 + 160 x 10 = 2000
R, = 2000 - R, = 2000 - 1000 = 1000 N
Again taking moments about the point of contraflexture E,

5
M, =0=-R;x(5-2)+ 160 x5x , . (right half of beam)
1000 % (5~2) =2000;2=3m
Thus the support D is at a distance of 3 m from end B.

Shear Force
Portion AC:
AtA : SF=-400N
Justleftof C : SF=-400-160x1=-50N
Justright of C :  SF=-560+1000= + 440N
Justleftof D : SF=440-160%6=-520N
Justright of D :  SF =—3520 4+ 1000 = 480 N
At point B : SFw480-160x3=0, »

20
The shear force changes sign between the section CD. The location oﬂl*l’d’d
stress can be obtained from the relations: =



; _160x+1000=0; x=375m
r -:“mmnym-:hnxtmcwu
L AC
e

“',-mx-lwx! ; =~ 400 x - 802
wl: =0
""':.2:'»«,--400-00--@&
”_,cdD
M, = - 400z - 160x x J + R, (x~1)
= - 400x - 80x* + 1000 (x - 1).
whenx = 1m: M, =~400 x 1 - 80 x 12 4 1000 (1 - 1) = - 480 Nm

r=375m:M =400 x 3.75 - 80 x 3.752 + 1000 (3.75 - 1) = 125 Nm
x -Sn:M,--mxS-m-SZHM(S-l)-O
xm7m:M =-400 x7-80 x 72 4+ 1000 (7 - 1) = - 720 N
Between D and B:
u,.-cnox-w:’nm-(x-l)uomu-?)
Atx =7m:M, == 400 % 7~ 80 x 72 + 1000 x (7~ 1) + 1000 (7 - 7) = - 720 Nn
X =10m : M, =~ 400 x 10 - 80 x 10? + 1000 (10 ~ 1) + 1000 (10 - 7)
= = 4000 ~ 8000 + 9000 + 3000 = 0.
mmfuumdha\dh;mhhmﬁubammduwninﬁgnﬂ.

wN m‘N
A \\ i \'
C H 1 1 D ’
- | s l :
40N \ ; ; ; \\ :
560 N :mﬂ

A7 m

- —— T ———
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A gmier—la mb:lg rests on two supp;fs- with equal owrhnngs'on either side gy
distributed load of 20 kN/m over the entire length. Calculate the overhangs if the Wm:"ks “i
positive or negative, is to be as small as possible. Mmdmmmmw""m\
diagrams for the arrangement. h’”&,\
Solution: Refer to Fig. 11.38 for the space diagram of the loaded W'movem.,%

has been indicated as a. N e
0 EN/m

Tl [al el lelels o)

ARSI N elafa a0 T N
A (OO L "‘m’ QRIS B

[ 10m -

Fig. 11.38

mmsmlmwwwwmmmmnumm
the two supports. W’h“

20x1
R,-n,-—;-—°-wom

The maximum positive moment would occur at the mid span (point E) and the maximum ey,
would occur at the supports. Since these moments are stated tobeequalinmagm'ma,"h"

mxa)xgnwo(s-.)-(zoxsn ;
Simplification gives : #? + 10a-25 =0

=10+ J10% - 4 % 1%(~25)
2 =

207 m
Shear force:
SFatAw0 €
SF just on left of C = - 2,07 x 20 = - 41. 40 kN
SF just on right of C = - 41.40 + 100 = + 58,60 KN
SF at mid span (point E) = 58.60 - 20 (5 - 2.07) = 0
wﬂ;::idelns mmgnt;'rlhns a section at distance x from end A and considering forces on b

Portion AC:
Ms-(Z)xx)xi-n-]oxz (parabolic variation)

Atx =0 P M, =0
Atx =207m: M,=-10x (207)2 = - 42.84 KNm

Portion CD:

M -—(ZDx:)x;-o-R‘(x-a)

==~10x% + 100 (x - 2.07) (parabolic variation)
Atx =207 m : M‘--IOx(ZM)zolmaW-um--mkNm
Atx =5m  : M, =-10x5 4100 (5-207) = 43 kNm



B

T~
X
Fig. 11. 9

The sight variation in the magnitude of bending moment at the support (point B) and at the
e (poind £) i due to rounding off.
for Jecating the position of the point of contrafiexture, we have
=102 + 100 (x - 207) = 0
o F-10x+207=0

maJuT’-c 2.7
R = 3 - =297 mand 707 m
.:u:hdhh“mmuhmlpmoﬂhwmm

hhsﬂﬂhhr@dhﬂhhmmmdm.
DAPLE 11,14

;_::hcdhﬁgmq_ﬁmmmw-mmmﬁgm

SO EN/m
20 kN
i J
B C D E
1-—.‘-—2- —+—l-—0{~—ln—’

Fig. 11.40
ht"b-mmqurmmmmdhmqmiﬁ*
h‘%duﬁqﬁma&-o-ﬂzusmwm

&¢R‘g(-;-1$2xﬁ]+m =80 .
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Taking moment about A,
or p,,u-mxs--;-xzxwx(n;xz) =0
or «,-laonco-m
240
l‘ - T .mm

and R, =80-60 =« 20kN
Shear borce:
SFatA =R, =20kN
Since there is no load in the segment AB, shear force remains constant at 29
portion of the beam. "”"\
Partion BC: Consider any section within portion BC and at distance x from end 4,

meuqnuum-i;—'xw

5F = N-%(:-l)!{!—;-! xwl

=20-15(x~1) (parabolic variation)
Atpoint B:x=1mand 5F=20-151-1F =20kN
Atpoint C:x=3mand SF =20~ 153~ 1) = - 40 kN
The location of zero shear force can be worked out from the relation.
20-15(x-1F =0

or I—I-E-l.ﬂ Sxe2154m

Since there is no foad in portion CD of the beam, the shear force from point C to just lefid
potnt D will remain constant at - 40 kN (the shear force at point C).

SF just an right side of D = < 40 + 60 = 20 kN

This value of shear force remains constant within portion DE (because of no loading) ind#
point E, it takes the values

20-20 = 0kN
Bending Moment
Portion AB
BM at point A =0
BMatpoint B=R, x1=20x1=20kNm
Portion BC: Consider any section within portion BC and at distance x from end A.

wmuum=5;—'xso=so(x-1)

BM = 20x- [:}(x-l)xm(x-l)]x%:!

x=1

3

is the distance of CC of triangular load from the section.
BM =20x-5(x-1) (cubic variation)



p:x=1mand BM =20 x1-5(1 - 1) = 20 kNm

nF’uC,,.SmmdﬂM-mx3—5(3-1)’.mmm
N%wtwmumhmnwmwmmmhm,u,n
™

ST ding moment
I it =20 x 2.154 - 5(2.154 - 1)° = 3540 KNm

i 7 BM at point C = 20 kNm (calculated above)

BM at point D = w!ﬂ-[%x!xﬂ)}x(lo-‘;xz]

=80 - 100 = - 20 kNm
ghear forces remains constant due to no load in this section, the bending moment will
mﬁmmmmm(npomqw-mmm(a:mm

gince the bending moment changes sign in the portion CD, there is a point of contraflexure in
and its location with respect to point A can be worked out from the relation

mx;-(%xbtﬁo][x—h%) =0

3 20x-60x+180~-40 =0
~ 180 + 40
That gives = ~40 =35m
Thus the point of contraflexure is located at 3.5 m from the end A.
Potim DE
BM at point D = - 20 kKNm (calculated above)
2N 2N
. .
B C ‘D E

354 kKNm

_i&&



- the shear force and bending m \
Y. Determine the reactions and W'd “"‘,'hown in Fig. 11.51. Also d.'mmn,""‘f\rhv.., .

bending moment. Powy '

magnitude of maximum Ing - VN 10KN u,,,\

JE—— R (5]
Al A
._.._—-gm-—-—--';oi; 3-5.@; ’lclm"l.sm:l

Fig- 11.81

"“mn = 120.25 kNm May
m

I‘“ 1
0. For a symmetrically Joaded overhang beam shown In Fig. 11.52, make calcy), "
value of Joad wmmnummmmmumcmmwﬂ,hhzm

w SkN/m w

L__fmz&mmmml.,- 4
dAzn

jo— I m —of———— g %"= I m -
Fig. 11.82
'“'a“\.

11. Draw the shear force and bending moment diagrams for the beam loaded“.um.
shown in Fig. 11.53.

f—2m 2m —+te— 2m 2m—=

_ Fig. 11.53 ,
12. Draw the shear force and bending moment diagram for the beam loaded as shown inFig 118

4 .;.'N Em&"mz:wmz 2;3 b2

1o+ 1 m~efe fo— 1 m—=f=—1m-~

Fig. 11.54

13. Draw the shear force and bending moment diagrams for a cantilever beam loaded as shev®®
Fig. 11.55 given below
3N

2N
1 £V R . n.l— ‘_._ -gf
o 1 i im - im —

m.n.u'
Locate the position for maximum bending moment and determine its value.



The Centroid

* The centroid is a point that locates the geometric center of
an object.

* The position of the centroid depends only on the object’s
geometry (or its physical shape) and is independent of
density, mass, weight, and other such properties.

* The average position along different coordinate axes locates
the centroid of an arbitrary object.



The Centroid

We can divide the object into a number of very small
finite elements A, A,, ... A,.

In this particular case, each small square grid represents
one finite area.

Let the coordinates of these areas be (x4, y,), (X,, Y5), -,
(an yn)'

The coordinates x, and y, extend to the center of the
finite area.

Now, the centroid is given by

) ZXiAi - Zyi Ai
X:ﬁ y—?

Page 2 . . .
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The Centroid

* The calculations will result in the location of
centroid C.

* Because point Cis at the center of the
rectangle, the results intuitively make sense.

* Consider the moment due to the finite areas
(instead of the forces) about two lines (AA and
BB) parallel to the x- and y-axes passing
through the centroid.

* Because the rectangle is symmetric about
these two lines, the net moment will be zero.

Page 3 . . .
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The Centroid

* Centroid always lies on the line
of symmetry.

* For a doubly symmetric section
(where there are two lines of
symmetry), the centroid lies at
the intersection of the lines of
symmetry.

Page 4 . . .
Engineering Statics
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Functional Symmetry

* The area is symmetric

about line BB, its B
centroid must lie on !
this line.

*The area is not
symmetric about line
AA.

Page 5 . . .
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Functional Symmetry

* The four holes are equidistant from line AA,
and the moments from the two holes on
the top of line AA counteract that of the
two bottom holes.

* Even though the area is not physically
symmetric about line AA, functionally line
AA can be viewed as the line of symmetry.

* Therefore, the centroid lies on the
intersection of the two lines.

Page 6 . . .
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The Centroid

* The calculation of the centroid for a composite
section requires the following three steps:

* Divide the composite geometry into simple geometries
for which the positions of the centroid are known or can
be determined easily.

e Determine the centroid and area of individual
components.

* Apply the equation to determine the centroid location.



Example 8.1 :
: . o arc ean radius, r.
Derive an expression for the centroid of a thin semicircular of m ;

Solution
Figure 8.1 Centroid calculation of a semicircular arc
From Fig. 8.1,
dL=rd0 and L=nr
x=r cosf andy=rsin0
From Eq. 8.2,

O S—

rsing- rd@

Condoc

nr Page 8



Condoor

r% .
';!auadﬂ

-L -~ _f 2’
“[ 0080! —;(I-}l)-;

Figure 8.2 Centroid of semicirculor and quarter ares

s i 2 very important result which one must remember as a formula. Note that y-coordinate of the
artold of 8 guarter circle would also lie at the same level (7-%]dwwsymmu'yinleﬂmd

cgctalves (Fig, 8.2). One can verify this result by substituting '7’ for L and integrating between 0
d%.lul’lct.bod: I and ¥ would come out to be the same due to symmetry,

tample 8.2
Desve an expression for the centroid of 4 thin arc of mean radius  and included angle 2, selecting
Sesmumetrical radial line as x-axis.

Sastion

Figure 8.3 Cenivoid colculation of an arc of rodius # and induded angle 20

Page 9



From Fig. 8.3,

dL = rdf
L=2ro
x:rcoso
y=rsin0

From Eq. 8.2,
_ jde
o
a
| 7 cos6 d6
=—a
2ra
r
=—[sin6
2a[sm ta
_rsina
Qa

. = 2r
One can verify that X reduces to = for a = 32{ » @s expected for a semicircular arc.



Condoor

By similar triangles,

!
i
{
;
s
{

From Eq. 8.3,

|
N
I

|
—
~|E
¥
D S i O N Se—
e -
s &

)ALO
=2
<
&

]
>0
=

[
%

= ‘
o
o[,

-
¥
w |

msammmmmmummmﬂ.m&&n

Calculation of ¥ by dircct integration in this example s possible bat ot conyei M,,,;

h would be to use the concept of centroid of RPN
approac il (oot dividen the °°‘l:v‘::hemncmuwﬂm

e
s %

ratio of 1:2). This s discuss®

Page 11
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cent!

4 .
mnwimdz disk of radius r
d‘

W‘.M porizontal strip)
| grip 1S MOre convenient than a vertical strip (Fig. 8.8).

b
ywrsm@ dve=rcosfdd
dA = 1 dv = 2reosBdy = 2r” cos” 0 d6

dy

-

Figure 8.8 Cu*ﬁdmlubﬁcndomiobrdblmh\gohoﬁnﬂdaip

From centroad formula.
FA=IyM=iyl¢
3

= [(r sin@) (2 cos* 8 48) = 2r Imom’odo
0

o‘—nlh

h"‘hiwumduww limits of & correspond to y = 0 and y = r, respectively.

Let cosf=u :.-sinedﬁ-du

2P G2
2 FA:-ZI’I" dll=-2r’—3"=-Tm OE " —
o
272 . 3

5= snd ¥ =0 (By symmeuy)
3x

Page 12



T
Example 8.5

Locate the centroid of a circular sector of radius  and included angle 2¢, selecting the SYMmetr,
radial line as the x-axis.

Solution _ : :
Though all the four methods described in Ex. 8.4 can be used, the method involving a triangular sy,

would be the most convenient. From Fig. 8.13,

Figure 8.13 Cenfroid calculation of a circular sector



Condoor

V7 i

FA=[xdd
T(2r \ S ;
ffza" L(?mo) [Ergdclz-?[ahﬂf. :—2”;““
_  drsng _
L= .Mygo (Bysymmm)

“gimw ;’1‘ fora-%.uaqnaod for a semicircular disk,

—

2 8.6

o’

W“moidoﬁbembomdedby lines x = a, y =0 and curve x = i

Selution

reaand I-F

3

wjurpee ]

H
"'%" (1)
ol
1l [
I;‘:L"I—L—‘
dummonidwh&“

Figure 8.14 Centoid

. when solved together, give (a, b) as the point of insersection (Fig. &.14).

Page 14



4 3 34%h
_3ab b} 3 _3ba a
xTz_zj dx=-— 7
0 3
a’ Ta
/2o da
7

yA= f L a4 ( y-coordinate of the area element is %J

2 [ i8]
4y _f1(px P _ b |3 | 3ab’
j'-3ab=Iy dx = -]-_b_£ dx = 5 =
4 92

= 3 10

Condoor Engineering Statics Page 15



Example 1

e Determine the centroid
of the composite
section.

Page 16
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Scale: I unit =1 in
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Example 1

* Step 1: Divide the
composite section into
simple geometries

* The composite geometry can Area | Area) — Area3
be divided into three parts: ' -

* two positive areas

e

* one negative area (circular X Scale: 1 unit =1 in

cutout).

Page 17 . . .
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Example 1

* Step II: Determine the centroid and the area of individual
component

Part Dimensions | Area(sg.in) X
Areal 2"'x4" 8 3
Area 2 10"x6" 60 9
Area3 2" radius —4n 10

Page 18
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Example 1

* Step Ill: Determine the centroid location

Part | Dimensio | Area X y (in3 (in3)
ns (sq. in) XA, A
Areal 2"'x4" 8 3 5 24 40
Area 2 10" x6" 60 9 5 540 300
Area3 | 2" radius — 4 10 5 — 40t | — 20%
ZAi = ZXiAi = ZYi i =
55.434 438.34 277.17

Engineering Statics

Page 19
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Determining the location of the centroid using
a Differential Element

* If x and y are the coordinates of a differential element dA, the
centroid of a two-dimensional surface is given by

>
X
o
p=




Determining the location of the centroid using
a Differential Element

* The equation can be generalized to a three-dimensional surface as

J-di IydA Isz
X = A y —A 7 = A
IdA IdA jdA
A A A
* The same concepts can be used for determining the centroid of a line.
jde jydL _[Zdl‘
X = L y: L 7= L
IdL jdl_ IdL
L L 1
* To determine the centroid of a volume, the equation takes the form of
jxdv Jydv zdv
-V
X =V y=V Z=
jdv jdv IdV
\Y
\% \%



Example 2

* Determine the centroid
of the quarter circle.

Radiusr

Page 23 . . .
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Example 2

* The key step in solving this type
of problems is to establish and
define an appropriate differential
element.

e Let us consider a vertical
differential element with
thickness dx and height h.

dA =h-dx

h=+r?%—x?




Example 2

* Because the section is symmetric
about a line that is at 45° to the
x- and y-axes, the centroid lies on

this line.




Example 3

e Locate the centroid of
the line whose
equation is

R o S
with x ranging from O
to1l

Page 26
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Example 3

dL =+/1+ 4x° dx

Page 27 . . .
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Example 3

y

ydL
I dL
L

(1—x2) 1+4x? dx

m C—

y:

O ey

1
J. 1+ 4x2 dx
0

y =0.2861




,—-— %
A uniform rod is bent into the shape as shown in Fig. 8.29. Determine the coordinates of its centroid.

Figure 8.29 Figure for Ex. 8.17

The length of the straight part and the coordinates of its centroid are 16 cm and (8, 0, 0) cm, respec-
lve .
Y. These are 87 cm and 0,8, l’g c¢m for the circular part. For convenience, this problem would

be :
*lved in the tabular form given below.



Condoor

o —\

o 5, % K % A B

— - 0 128 0 g
16

Circular & 0 ' x il

Total 41,13 - 201'“\'\2“:

Equation 8.5 can now be used for finding out the coordinates of the centroid:

Example 8.18
mbmnogamwinAacDisbuunﬂminFi; 8.30. I is attached to a hi

_ ' .30, nge at C. Dererns
the length / for which portion BCD of the wire remains horizontal, All dimensions are in mm

Figure 8.30 ngn&&a.lr

ABwAC? + BCY = (50T 4 507

For cquilibrivm o be possible in the position shown, the comtroid of the bent wise gust e o8 ™

80
Centroids of both AB and %0
of BC lie 3= (= 40 man) towards left of AC, and that of CD is at + ¥**°
right. We choose C as the origin and CD ag the 1. qxis. 2

Page 30
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===

Part L % L,
AB 100 B
e . 40 -3200
: 2
ol o £ nm
2
’1
¢ Bi% 7 ~7200
L 180 +/

2
For ¥ to be zero, %—=7zoo

s =120 mm

Amhbe:.:zacmdloopA-B-C-D-E-AuMinFi@ 8.31. Portion AB is a circular arc
dnﬁnSnDaermimmeocntmdofmem

,,.._un_qc
¥
sm
A "IL"
0m
Rl %,
E D

1
Figure 8.31 Figure for Ex. 8.19

WHon 2r
of =~ from
,;.qmu.mmwmuamw P

r&*umumwﬂoﬂ
(see Fig. 8.2).
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Part I, X; ¥i L; x; L y;
ap 7 s 10 104 4270 103540
2 T n
BC 5 7.5 15 37.5 75
CD 15 10 75 150 112.5
DE 10 5 0 50 0
EA 10 0 5 0 50
Total 47.854 251.77 341.04
- 2 L% _ 25177 P
L  47.854
o 2Ly _341.04 S
L 47854

Engineering Statics

Page 32
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N
8.21 v Yo
V'b :4 of the composite area shown in Fig. 8.33.

L
x gt G Sem 2.5
Fr
Seom
Et
Sem
. ! »x
| C 12.5 em |'D
Figure 8.33 Figure for Ex 8.2)
Solution

. ar
millme(hemludmtthcomoidofasmicimuhrdiscofndiusrlimatadmmmeof ?;- fromitsbase
iweFig 8.12), and that of a triangle of altitude A lies g above its base (sec Fig. 8.7).

Part A x; ¥i A4 % A ¥
s 2
Semicircular  x2.5% 55 8X23 55 4127 24544
sector ABC 2 x
Rectangle ACDE 50 7.5 25 375 125
s
Triangle EFG 12.5 10 S+§ 125 8331
Total 72317 514.127 232877
TAE_S14127
™ L LA, XY
e I T TT Rt

E 4 Y _ 232.877 =122

Mg v e R T YT - s

|



Figure 8.34 Figure for Ex. 8.22

Solution
Rachis of the curcle -;-‘.5’

Altitude (BD) of the mangle = V0D - 08° = J4.5° —(6-4.5) =4243cm

Part A X i) A X, A ¥
‘ v 48 x4
Semcrodwdac 22 43 DU g4 e
Gx4.243 1) 424
Traagie ABD - 24 -3 4 3 _soois -1som

_Ixd24) ) 42
Trangle BCD —'-—2 603 _" 44582 -9

Youl 12718 7671 33748

Condoor
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Omm |

. L‘_| 'l%'wm

Figure 8.35 Figue for £x, 8,23

Sehton
Ths problems can be sofved by considering three rectangles of arcas 100 x 10, 40 x 10 and again 40
110(ofer combinations are also possible). The other way is to consider the outer rectangle of area

0 53, and the inner rectangle of negative ares 80 x 40. We will adopt the second approach since
fwoeld isvolve fewer calculations.

Part 4 R B AR AR —
Owterrectangle 5000 25 50 125000 250000
Inmer rectangle 3200 50-20 50 96000 -160000
Total 1800 29000 90000

N‘hﬁmmmchahowhiehmuﬁvﬂhemmmntunm
28w can uge the symmetry argument to conclde that ¥ is 50 .

\
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|

ETS .
ﬁ:’: " uiroid of the area shown in Fig. 7.10 with
___ . The composite area has been divided into ¥
cpbution ts namely a triangle, a rectangle and 5 :
M","_m.masmdmeco-ordmmolmtmu
.d""’d' with respect to the given axes are:
r segment:

of
"‘.nsﬂ"

5" Exaxl -6m’

1 4
n" 5"3"‘3 =6m; y»=—-=13m
fecungular segment: @ =5x4=20m?

5 4
Zz=i =25m ; V= 5.2m

1
emi-circular segment: “§=3 xnAx2? = 628 m?

4
¥y = i «2m
The negative with co-ordinate x, stems from the fact that this co-ordinate lies on the left of y-
s
Then:  § = X1 t2% +a3x; _ 6x6420x25 + 628(-0.549) a

8y 40y +ay 6+20+628 St
wd Tty Hagyy  6x133+Wx24628x2 2
4 Gy +a; +ay = 6+20+628 AeTm
EXAMPLE 7.7

A iramgular plate in the form of an isosceles triangle ABC has base BC = 10 om and altitude = 12 om.
From his piate, a portion in the shape of an isosceles trisngle OBC is removed. If O is the mid-point of the
Aitude of triangle ABC, then determine the distance of CG of the remainder section from the base.

Salution ; Refer Fig 7.11

Fora i
mmmtffhigmh,lhzccham&euhuadm

For triangle ABC,
Ares 4, = 2 X10X12 =60 cm?

' ¥y =12/3 » 4 am from base BC
For triangle OBC,
Ay = 3x10x6 =M am?
¥; = 6/3 « 2 cm from base BC.

l“?hhdhmdccaummmmmmx.
A!!l *ﬂi!] B0x4+(=30)x2

AtA, | 60+(-30) o

Y=

Page 36



The Center of Mass

* The center of mass is a point that locates the
average position of the mass of an object.

* For an object with uniform density, it coincides with
the centroid.

* |t is often called the center of gravity because the
gravitational pull on an object can be represented
as a concentrated force acting at this point.



The Center of Mass

e The equation for finding the center of mass of a volume takes the form of
fxdm jydm jzdm

X:m"-dm y:r}dm z:nj.dm

* For a three-difiensional surfacé"of uniform thicknes$ and density, the center of
mass coincides with the centroid of the surface.

J-di IydA Isz
Y_A o — A
= — y_ 2:A
IdA IdA jdA
A A 5

* The same concepts can be used to determine the center of mass of a line. The
equation takesjthe form of j j
xdL ydL zdL

L T=L 7=L

IdL d IdL IdL
L L

X




It may be recalled that the moment of force about a point is the product of force (F) and the

perpendicular distance (x) between the point and the line of action of force.
Moment of force = Fx

If this moment F x is further multiplied by the distance x, then a quantity F x? is obtained which

is referred to as the moment of moment or the second moment of force
Moment of moment = Fx x x = Fx?

If the term force F in the above identity is replaced by area or mass of the body, the resulting
parameter is called the moment of inertia (MOI). Thus

Moment of inertia of a plane area = A x?

Mass moment of inertia of a body = m x?

where A and m respectively denote the area and mass of the body.

Inertia refers to the property of a body by virtue of which the body resists any change in ifs
state of rest or of uniform motion. Area moment of inertia is considered only for plane figures for

which the mass is assumed to be negligible. It is essentially a measure of resistance to bending,
is applied while dealing with the deflection or deformation of members in bending.

The mass moment of inertia pertains only to solid bodies having mass. It gives a measure of thé
resistance that body offers to change in angular velocity and accordingly is used in conjunchof
with rotation of rigid bodies.

8.1. MOMENT OF INERTIA AND RADIUS OF GYRATION o
Moment of inertia (MOI) of any lamina is the second moment of all elemental areas dA comp
the lamina. With refence to Fig. 8.1. : |

I, = moment of inertia about x-axis = ¥, (ydA)y




Condoor

1 g BT |
wﬂmmomntofuauabomx-ma\d dA) y is the moment of first }
‘;:glﬁl:emﬂ moment) of area dA about r-axis. et l

I,=LyldA y
ul.t""‘: Iy = moment of inertia about y-axis g * Area dA .
[ = z Xz dA
us.vmmgofmerﬁaohsec&onaboutmaxis T
w";d Gy the cummulative product of area and square !
,yl"“‘mm from that axis. ' 4 p

gm’dim of moment of MOI are the fourth power of

';:'Wamemmememsminmm,Mo;h“mm [ Lamina of area A l 5

Fig. 8.1

Joo'
ga, Paratiel a8 |

Tre moment of inertia of a plane lamina about any axis is equal to the sum of its MOJ about
”,,ud axis through its centre of gravity G and the product of its area (mass) and the square of
ge Gstance between the two axes. With reference to Fig. 8.2.

o

Pre — e g -
L o

g = I + ARE (83)
where I is MOI of the lamina about an axis x-x p v
jrg through its CG and 1, is the MOI about any axis ' H;

JAwhich is parallel to 1-x and at & distance ) from it,
Pyoof : The lamina consists of an infinite number of
sull elemental components parallel to the x-axis. Let |
me sech elemontal component of area dA be located at
dstance y from the x-axis. Obviously then its distance
frem the axis AA will be (fr + v).
Moment of inertia of the elemental component about . 3

=3 AA will be
= dA (h+y) !
Then moment of inertia of the entire lamina about axis AA ".’
= 2‘6[h+y)2 !

= T dAN + T dAY" + 5 dA(2hy)
w W'Y dA+ S dAy' + 213 dAy
Now, M3 dA = a2 (v LdA=4)
L dAy? = moment of inertia of the lamina about the axis x-x.

L dAy = 0 because x - x is centroidal axis. ,
Bives ; L= I, + AR : (8.4) : Page 40
‘” < '” . Af ..-‘8-5) : !
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L.l

VO s oy -

rpendicular axis theorem
ttz‘i’h?mnmt of inertia of a phne_ hmin-l. u.labouwt a.‘en ::'i:‘
kulanouuplaneohhchmmneq

the two
 With reference to Fig. 8.3, ox and oy are
ml’mol. ¥ ""mlmtntheph_neofhmwo,(aﬂr:
uinhuxisnomalwthehmmnndpusmgduough

0z
wdAPR adA (P + V)
Moment of inertia of the elemental component about axis oz
ly=SdA(P+)=TdA+ TdAY
But, za:’-mmamdmehmmmumq.,”
T dA * = moment of inertia of the lamina about the axisox=1_
e g Il r
8.1.3. Radius of gyration y y
If the entire area (or mass) of a : I 1
lamina is considered to be concentrated : . !
at a point such that there is no change i : .
in the moment of inertia about a given ' : h
axis, then distance of that point from ~ = 1= = 4G == 19 =% ¥-lq---qg=- |1~
the given axis is called the radius of ’ : ‘
mfﬁh?l ' 3 l
relation between radius of : I 1
gyration k and moment of inertia [ can o9 ——ef -——-—-;r“'
be put in the form h——.-—“‘l
) L] .
"MJS *IE Fb'“ M
Pparen z "
iw:.mm:l.i:”“m“ﬂmdamuuuqmmdnmdw
Themnm&imaaofmmnm :
: DR rd sections are presented below:
(r)himhnguhtlmhonmﬁlbreldﬂ\bmm‘m&&‘,).
L=t , o
127 W
For
8w Angular section (Fig. 8.4 b)
'.-!z;zbi; DB’-‘b’
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mms- 85)
o Fof e b hl

ly= =

=" 36
bh?

las= 12
Im.d,mmaecﬁonofdiameterd(mg. 8.6a)
"
I"- ]”: a-“
“Bmubpupcndkuhr to lamina and passing through CG, then

= L+ 1y = ;244
y
X~ x
l—— § —
v
fa)
Fig. 8.6

Fora hollow circular section with outer diameter 4, and inner diameter d,

L.=l_ = '(43-4,.‘)
Hzzis the axis perpendicular to the plane of lamina and passing through CG then

fop = Ly # by = o (48 =)

-
- =
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(1) For a semi-circle (Fig. 8.7 a)
I, =011rand

xr!
I” =3
For a quarter circle (Fig, 8.7b)
[y = 1,y = 0035 r

(1) For an ellipse (Fig 8.5),

rab’ ﬁ

lyw —

T TN g
B8.2. MOMENT OF INERTIA OF LAMINAE OF DIFFERENT SHAPES

8.2.1. Rectangular lamina y
Consider a rectangular lamina ABCD of width band depth D !

d. Let xx and yy be the axis which pass through the centroid

of the area and are parallel to the sides of the lamina. The

centroid lies at the mid point of the width as well as the

depth,

y
Consider a small strip of thickness dy located at a distance x- - + - , S5 !
v from the axis xx,

Area of the elemental strip = b dy
wmdm&udhwwwh e b/2 o
nn

g 'M*f-bdyxy’-byldy [.—b-"“
Moment of inertia of the entire lamina about the axis xy, :

- Fig 89
ap
2

4
'l'l‘= }byzdy =b
4

@ Pl oy Y
- — el —
4 x4 12
1 4y
we 3 /
e
Let [, be the moment of inertia ; 4 froc
of parallel axis of the lamina about its bottom face AB. Thee i
3 3 b’
'”3 "+Ah2- b—‘-*b‘(i): = !_‘_'.b_‘: .T
12 2 12 -+
Siilarly the moment of inertia of the lamina about the face AD would b® ¥4
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perpendicular axis, the polar moment of inertia |, of the lamina is
pa®  ap
- —12—‘?
Wmndumuwm.mhm
which passes through the centroid of the lamina

w it
rectangular lamina (B x D) with a rectangular hole x- - |
'.am:d!“"‘"‘uy (Fig. 8.10) the moment of inertia about any

R
. i = MOI of bigger rectangle
~ MO of smaller rectangle

Jb
]
s am !-g—‘-% M) ke ’ '

(R 10 T

™
i B0 B2
gt

122 Tranguler lamina
Let ABC be the triangle of base width b and height ¥
1 Consider an elementary strip of width |, thickness dy
wd located at distance v from the base of the triangle.
Foe this elemental strip,
area = | dy
woment of inertia of this strip about base BC
= Y dA = 3l dy
Mmﬂrhn%uﬁc;‘nhbhda\'udmmpmwy
imits 0 to &, it is necessary to ex I'in
"'dy-FOmehnwhlouMngmﬁm Ho—» ——iI€
from the similarity of triangles ADE and ABC, ok

l-h-y; l.%l‘!]
b h h
“ Moment of inertia of the triangle about the base

- Lt

4 AT LS
- bq,z-%]dy .bE-ﬁ[ -b[?-—‘-] - —12— ..{8.12)

&n'w'hwmddml,unadimdy,-h/!!lmmmebuu.‘mmhmh
“Nfdhlms:lh.-lnoAy,‘,whlve
e (1 A L L L
e et = (3] - T 0
lllu'_“.hmh
@mamamramam.mmamnmﬁm
area about the diametrical axis x:x,
Condoor -fM-(’lh.)’"“""’m:.“" Page 44



D R —— T

. Moment of inertia of the entire circular lamina

2

L}
e [=mdr .z,\i‘.\' -t Fig. 212
x 8 4

1f d is the dlameter of the circular lamina, then ’

‘
Iy® %[‘;) -id‘ (% 14)

- }:;-[ it dr
3

Likewise = —d*
o4

1f 22 is the axis through the centroid and normal to the plane
of the lamina, then

R n
Iwl sl =" dbs " g
i T

-
= —d! A8.1%)

Fig. a1
R
The axis 22 is called the polar axis and I Is referred to as the polar moment of inerhi.

Polar moment of inertia has application in problems relating to torsion of cyéndrial sé
and rotation of slabs.

For a circular lamina of dlameter D with a central circular hole of diameter @ (Fig. A10%
moment of inertia about any centroidal axis is

o Ly = (D= d% ¥
The corresponding polar moment of inertia is P
[ m l’- ;(D‘-¢0)

8.2.4. Semi-circular lamina .,g’
mmcdmu.mmmammdmuw
a .‘.
& v
For the serni-circular lamina with AB as its base, the moment of inertia abo!
1 (= T
Lg= =x| =gt | =gt
1 btobuimdbann 2‘(6‘ ] m‘ taken o8
t can first principles if the Uit of integration is
to 2x in the derivation of moment of inertia of a circular lamina about its

Condoor

J
ov':"
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Rx
II""I\‘O“" -!R‘. R d‘ (K VW)
'y 8 128
WofmmuuluhnollhenmmrdehaniubonABb
as 4R 2
he =
I 3

™

1(n rd?

o= -~ —‘:)l——

Atea of semicire z[n 5
mpnndaxhthmm

2 i ‘

ol 3T 3") 18n
e ™ Lo entRY (819) 8
e Il A Vi Fig. 8.14 :

mwd-cwb
soference Fig, 815, LAB is the quadrant of a circular lamina of diameter d. The moment of
pertis of 2 quadrant equals 1/4th of the moment of inertia of the circular lamina.

1 (x =
S laas —x —“]-—d‘
o (64 256 : -
» an be cbtained from first principles if the limit of 7
wgration s taken as 0 to x/2 instead of O to 2minthe | l KN P
demvation of moment of inertia of a circulas lamina about 4 o (45 /3m) |
& dumetral axis, That is

LS b

n

X
L= ]}r’m‘em N

oe
«Xpty, &g (820}

The 16 256
R distance of the centrold of the quadrant LAB from

® 2
= 3n "

Area of quadrant = —:-x(-:-l']-
From parallel axis theorem,
I~ 1:’”"

2
nd* xd® (24 4
or — ey 4—16 X[S’] - ln+—““

ra
16

‘
Condoor & I = 1 -'i‘— » 0.00343d* « 0.055R «(8.21)
n

i
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The Moment of Inertia

Moment of inertia 5
about x-axis: = jy dA

A
Moment of inertia | :J'deA il
about y-axis: y J
Polar moment of .2 Y
inertia: Jo = jr dA T f

\ 4

Product of inertia: Iy = jxydA

A

The moment of inertia is sometimes expressed in terms of the
radius of gyration. The radius of gyration determines how the area
is distributed around the centroid.




Example 4

e Determine the
moments of inertia
about the x- and y-axes.

Also, determine the
polar moment of
Inertia.
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Example 4

_ Cbd o o
JO_IX_I_Iy JO_E(b +d)
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Parallel Axis Theorem

| =[y?da
A

I, = .(y’+dy)2 dA
A < - N T =

_ [y2da+2 j y'd, dA + j d, 2dA
A A A

=1, +2d, [ydA+d,[dA
A A

In the second term, is equal to zero as the x-axis
passes through the centroid.

_ 2 2
ly=1¢+Ad,” 1 ,=1,+Ad,

y
Jo=Jc +Ad?

Page 50 . . . Condoor
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Example 5

* Determine the
moments of inertia
about the x’- and y'-
axes about the
centroid.

* Also, determine the
polar moment of
Inertia.

Page 51
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X

Scale: 1 unit=1in




Example 5

Areal Area 2 Area 3
j 4
Ya
xI
. . -
C, C
¥
i
R Scale: T unit=1in
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Example 5

Dimen SAIEE
N3 N3
Part _S§ions (so; X (in%) (in%) . ly, d, d, Ad,? Ady2
N
XA Vi
Arlea 24 g8 | 3 24 40 1067 | 267 | 491 | o |19286| O
Arzea 10'x6" | 60 | 9 540 300 180 | 500 | 100 | 0 |71286| O
Area | 2 _4n | 10 _40n | —20n | -0785|-0785| 200 | o |-s48| o
3 radius
Summation | 55.43 43834 | 277.17 | 189,89 | 501.89 209.26

Page 53
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Example 5

I =1, +Ad, l,=1,+Ad,
|, =189.89in" |, =711.15in"

Jo =901.04in"



-EWLE 8.1 ) ﬂ
S : on beam about X-x and y-y axes passing th,
?;0 moln;nwl / and l:oa{: 106 ’;‘:r?:::cl::ﬂy Calculate the size of the mtéo: 2k the
»

Solution : Let b and d denote the breadth and depth respectively of the rectangula, \ i

& bd® N
bd” ' s () :
’n‘—E‘ 250 x 108 7 (i :
dv’ L i
and = =3 ¢ 40"'10‘ o fi) |
Dlvldmgexpmdon(ﬂbyupndm(‘ﬂ
11 or 1-25
525= b b X
Substituting d = 2.5 b in expression (i), we get
:2(2.5!?)’- 250 x 10°
280 «10° x12
& ——— =192 x 10¢
or bt 23y x
That gives: b= 1177 mm and d4=25x117.7 =294.25 mm |
Therefore required size of the section is: !
= 117.3 mm (breadth) x 294.25 mm (depth)
EXAMPLE 8.2

Find the moment of inertia of a rolled steel joist girder of symmetrical I section shouwm in Fig. 814,
Solution : The areas of the three rectangles comprising the I-section are:
upper flange A, » 64 x 0 = 6%

mbA:88l1¢=8¢1 _Lk——h"d ]
lower flange A, = 6a x 4 = 6a? P F’J |
MOI of upper flange about x-axis (using parallel axis theorem) T
: saxa® a2 : !
- =5 +6a x(“’i) i‘
JeT I |
4 ‘ e e ot A
= %+21;a = 1224 % - a 1
(8a¥ 128q* ' f
MOI of « SXO8 T8
web about x-axis T 3 bi...]

MOI of lower flange about x-axis (using parallel axis theorem)
o Saxg ﬂc’[‘n-;-]:

12

Condoor d‘ w.‘
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§ the given I-section about x-axis
4

:.T‘”’Mo,o 1284
=124+ T 1244

860 ¢ e izl L s
=T BRI ' ;
| B | H
of the given I-section could also be 8% S T; !
ﬁfwwwwﬁg.&ﬂ. 254! {254 | - §
Iy* Iy=la > , 04 ! i Ul; - |
6ax(10a)" S5ax(Ba) ' { l
2 12 l li-..-“-_-_. @
o m"_ %“ = ssm“ : L
Fig. 8.17
SUNPLE 83

the moment of inertia of the T-section shown in Fig, 7.13 about an axis passing through the
eivid amd paraliel to top most fibre of the section, Proceed to determine the moment of inertia about
s syrmetry and hemce find out the radii of gyration,

ddstion - From the calculations made in Example 7.10 the CG of the given T-section lies on the
puis and at distance 43.71 mm from the top face of its flange

=0 and § =4371mm

Relering to this centroidal axis, the centroid of u, is (0.0, 38.71 mm) and that of ais
0, 41.29 mam),

Moment of inertia of the section about centroid axis is
I, = MOI of area a, about centroidal axis
+ MO of area a, about centroidal axis

160 % 109
"1™ 12

3
+|wox(3an)’] . [“’ "112” . 1wou(41.n)1]

= 7780672 mm*

10x160°  150x10° &
Sindarly hy= —g3—+ 7 — = 42533 mm
The

'““““mumugimbyk-g

oo kn = " 3100 = 50.1 mm

= M.24 mm

k” * 3100

Moment of inertia of the area shown shaded In Fig. 6.18 about axis xx which
the base edge AB.
mmmmmmmAKmemmc

o certia of rectangle ABCD about AB

l'a ,Q‘Alhlz

Hi

e S s P
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)
- !f_;.i. 0(2!13)"-29

1
- 2504 + 7,812 = 10416 cm*
Mamtdlfurﬂldmnldnblmu
lyw g+ AN

1 4r .
« 011 ¢ =nrt I(Z.S'—)
2 In

The parameter A i the distance of centrold of semi-

circle from DC.

2
& Im0axy? .%--m’ -(2.3-3-'-1

3n
w011 + 676 = 687 e

@ |

x

{
| ['
O SOOI |

A fam

201! L 3
Fig 518

& Moment of inertia of shaded area bout AB = 10.416 - 6.87 = 3.546 cm*

EXAMPLE 8.5

Determine the polar moment of inertia of the [-section shown in F

radius of gyration with respect to x-axis and y-axis,
Solution : The I-section Is symmetrical about
y-axis and accordingly its CG lies at point G on
the y-axis, Le., x = 0. Further, the bottom fibre of
lower flange has been chosen as reference axis
to locate the centroid 7.

The areas and co-ordinates of centroids of the
three rectangles comprising the given section are:

Lower flange: #=10x1=10cm?
1
= -2-.0,5@\
Web: 2w 12 x 1= 12 cm?

y,-!«v%-?m

Upper flange: g, = 8 x 18 em?
y,-l+124-;-13,5m

Then: 9 a :l!l ‘li!‘ ’.!!I
.l "a "’

_wxo.uuxuaxns 5+84+108

&xes, the centroid of the lower flange, web and VPP

1041248

i With reference to the centroidal
are (o, 5-”’1 (o. l-m lﬂd (0: 7.”) Wy'
[ Moment of inertia of the I-section

Condoor

Il &, about centroidal axis.

ig. 8.19. Also make caleulatioes iy

p——tan—

?

R2an

)
i“ﬂ:——

i Jou

¥
8
-1 cm

o w-ojddiarew o= i

L

Pl ==
(

about centroidal o

Fig. 8.19 (8)

¥
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+A{z’) * am‘ A;"’)

o I
n‘f"z)“m

1x12° F . lem
F/nbxo-(im’]‘[ 12 'u'“"”!] F : = Xf
" 3
*[s:; +ax(7.93)1] s
4 257.05) + (144 + 24.54) = (0.67 + 505.08) =
:mﬂtﬂ‘ 12em 24
1x10"12x1‘*1x8’ | RpTianem
” W2 T n G T
. «8333+1+4264 =127 cm*
| wm.udmnﬁnlnu,,-m.lhm fy =507 cm 557 em
| = 1057.17 em* 1) li
; )| 1w

mmmo‘gynﬁonhglwmby: k= J}
ERH

tu" g = 5967 em

ky = J’Tg = 2057 cm

EIAMPLE 8.5

Fig. 8.19 (b)

Salution ; The section is divided into three rectangles with
vers

A =10x1.5=15cm?
Ayw (40-15-15)x1=37cm?
Ay=10x15=15cm?
LAmA + A+ A
= 15+37+15= 67 cm?

i e Biven section fs symmetrical about the horlzontel  40cm

v
O

P —

Deiermine the momsent of inertia about centroidal axes x-x and y-y of the channel section shoton in Fig. 8.20.

e

iy

Passing through the centroid of rectangle A,. 1

The distance of the centrold of the section with
lh""'bml-lh

EAr (5x8)+(37x 1)+ (15x5)
ﬁ.‘ ( 672 =251em

Nm:‘a':@bmmmwnammdw-h
rectangles are:

(5< 0 15
‘ 2”"‘(?'?]] or (249, 19.25) for rectangle A,

Page 58
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[(251-—) oo] o (201, 0.0) for rectangle A;
[(5-151).[923—-’;)] or (249, 19.25) for rectangle A;

moment of inertia of areas 4
x,ﬂmimrokhgpuallellxisthmmvu“ . L 1 A,.NA“\
- 3 1 [1x372] [10x15}
I, = [l‘l"l—;ﬁ-nsxw.zs’d - “n | + 1 *‘5'19:5:]
= (2812 + 5558.437) + (4221.083) + {2.812 + 558.437) = |$m“w
. l ¢ - - - -
' 1.5x10° 2] [ ], 15100
b= |—5— X s15x2.49 [+ =5 i3 ,.u,,]

= (125 +93.00) + 3.08 + (125 +93,00) = 439.08 cm*

EXAMPLE 8.7 :
Determine I and | ojlkmma/amumbamshmmhg 821
Solution : The MOT of the given sections can be worked out by looking it a8 a rectngie sy

Moumi-drcho. y
ofa r part {
I, = I, of rectangle - I, rcular pa ——
be?_wrt
T
12x18* x5
L 3
= 33.75 - 490.87 " %
= 288413 em'
m:l”a! dmwe
-l of semi-circular parts
15
I” O‘Mt‘l‘k = :212’ = 21w m‘
For the semi-circular part ACB;
‘
MO sbout its diameter, 1,,,..;-,..‘_5_2“‘3“‘
Distance of its CG from the diameter,

1
Areadw S xri= ; % x 5% = 39.27 cm?

From the correlation, [,z = .. + Ak? the
centroidal axis A8 " GG moment of inertia of semi-circuld’

putsb?”

loc ™ 245.43 - 39.27 « (2.12)? = 68.94 cm*
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-~

axis theorem,

the
Whetwmunmdc-uxbas 212 =388 ¢cm
aerth o Ly = 6894 439.27 x 3882 = 660.13 cm*
Wmmowpim

9‘“ m,.,..mmwpamsz * 660.13 = 1320.26 cm*
e section = 2160 = 132026 = §39.74 em*
lﬂlﬁ

aﬂ"‘ moments of inertia about the x and y centroidal axis of a beam whose cross-sectional ares is as
w“‘ 522, Audmmamnm

m given section has been divided into three

ﬂmﬂﬂ“zma 10'
gh= I, + A = Ig, + 4 (F -3’ ‘T’"’"‘ :
..l‘zuoxaoh(soxlo)(as-w)* 40 GB
= 1425 x 10° cm* J_ 10 """’, ______ ‘f 2y
Uglp= IQ+A2'%’IG:+A7(F-’2)1 ' @ @lﬂ
gluxm’xeoﬂeoxw)xo l
= 005 x 10° em*

o 50— Wi
Uy = g, + Ahd =g 4 Ay(T -¥3)? o S

= énwxao’ +(30%10)(35 - 15)% = 1.425 x 10° cm*

Ly = 1425 % 10° + 0.05 x 10° + 1.425 x 10° = 2.90 x 10° cm*
Uy = 'G."‘1"13"'t:,*"‘t(f'-'x)z

- -llzxmx‘los-f(wxlﬂ)l(”'ﬂ: =19 x 10° e
Uyl = lo, + Ak} = i+ Ay (E-x;7

= %xeo’xloqaono)xo =18 x 10° em*
R G

1

= 5 rax1 +(30%10) %(30 -5

=19x 10° cm* Page 60
W= 19%10%4 1.8 x 105 + 1.9 x 10° = 5,6 x 10° em*
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EAAMFLE 8.9 N
Eind the moment of inertia about the centroid horizonta. m
section comsists a;{rlmgk ABC, semi-circle on BC as diameler, Ajle— ¢ " Fig Q?
Mnchtuhrhnleofdhmtalmwﬂhiﬁmlﬂmbc.
Solution:mutudcdmanbemnddemdnauhngle
(1), semicircle (2) and a circular hole (3)

Location of Centroid : For the triangular element,

¥, (distance of centroid from BC)

For the semi-circular element,

o= -l-naxB-Zlan’
2
- g :Zcm

4= l:r’-n ;::43-25.12&!3
2
ax4

yz(dismdoumwd&mbos—”-- =-17cm

3n 3n
The negative sign stems from the fact that it lies below BC.
For the circular hole

ay= mr¥=x x 22 = 1256 cm? (this area is removed)
vy = 0 (centroid lies on BC)
~ Distance of the centroid of the shaded area from BC

JIsy ayemyp-ay;  20x242512x(-17)-1256x0 o0

La @y +4a, —iy 244 2512-1256

Moment of Inertia

I; = moment of inertia of triangle ABC about base BC
= Lon e Lusxed =10t emt
12 12
I, = moment of inertia of semi-circle about BC
. rdte ! enxBt = 10048 cm?
128 128
Iy = moment of inertia of circular hole about BC

»2dte® it a1256m?
o4 64

- Moment of inertia of the shaded area about BC

= 144 + 10048 - 12.56 = 231 92 cm*
Area of the shaded portion = 24 + 25,12 - 12.56 = 36,5 cm
Invoking parallel axis theorem,
Moment of inertia of shaded arva about centroidal axis

Ig= Inc= AR =23192 - 36,36 x 0,145 = 23115 e’
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134
%

o lc;'mmt of inertia of the lamina ABCDEFG shown in Fig. 8.26.
G’J fo-3em efe—— 6 cm ——ofe- 3cm |

r’ I ple figures:
"“MADM-M
& ,3,6-9(!!\’ 6cm
pn? _ 3x6* " l
'c‘-_i.- % = 18¢cm
’ umlduunafromlimAD)-g=2cm
,'A e BCLM Az-6x6=’3\6m2
' [ o il S
Gy 12

A 6
”m,awdhnmefmmhneAD)- 3 =3em

1 1
}AWCDL’ AQI"D’I! B x3%x6=9cm?

b 3x6?

'ol-_:

y,rmddlldhtmlromlimdm- 3 w2cm

=18 cmt

42
|, Asemiccircle GFE to be subtractod: A, = % S

Ig, =011 =011 x 4! =2816cm!

ar 4x4

¥ Icentroidal distance from line AD) = a9 = 1.698 cm

= 25,12 co? (- ve)

For the composite section

TAY (9x%2)+4(36x3)+(9%2)~(25.12x 1.698)
ye'sa " 9+36+9-2512

2 18 + 108 + 18 - 42,65 SN

2888
=[18+9x(351 - 2)%] + [108 + 36 x (3.51 - 3%

+[18 + 9 x (3.51 - 2)%] - [28.16 + 25.12 (3.51 - 1.698)%]

mwnhuonmmwﬂmuy;pplmﬂ\epmwuhﬂmm
l -I OAF
le=38524 ume + 3352 110.64 = 83.76 cm*
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5.3, MASS MOMENT OF INERTIA

The mass moment of inertia of a body about a particular axis is defi ” the
mass and the square of the distance between the ma}s)s centre of the l:zdje:::ieg:: :;titslf’e. R
The mass moment of inertia is an important term for the
study of the rotational motion of a rigid body. It gives a measure
of the resistance that the body offers to change in angular velocity.

The body can be considered to be split up into small masses. G
Let
my, m,..m, ::ethe masses of the various elements of |« ;|
body
e [y ]

and ry Ty - T, be the distances of the above mentioned ’
elements from the axis about which mass 3 '
moment of inertia is to be determined. Fig. 8.30

The mass moment of inertia of the body can be written as
I= myd+myrd +..m,r? .
= I mr?

The summation of a large number of terms in the above expression can
be replaced by integration. Consider a small mass dm rotating about and at
distance r from the axis of rotation, then

I= Irzdm
ﬂ\eradiusofgyrationkofﬁtebodywithmespecttothepvescribedaxis

is defined by the relation :
I !
I=kM; k=J§ Aods

where M is the mass of the body. Fig. 8.31



gASS
W i untform rod
“l- 8-33 ghows 2 thin uniform rod of lenglh I
g ‘Mmullmgﬂ\dxloawdaldbw\oe
“Ma]ax’sy-ymmnlwd\erod.

MOMENT OF INERTIA FOR SPECIFIED CASES

Y ¥

S 71

- =1-

—

past

— Y2 e Y2 —er

moment of inertia of the element about axis .

Y
= dma? = ma? dx
mmmﬂofkmﬁaofﬂumﬂxemdabout

!
gy can be worked out by integrating the above expression between the limits 2P

where
Mass

4]

@

Fig. 8.33

1
‘Z-.Thal

where M » mi is the mass of the whole rod.
Fitis required to determine the mass moment of inertia of the rod about axis YY at the left end
o the rod, we can use the parallel axis theorem
Iy=1 + Mi
uhsu&mm&mnm the centroidal axis yy.

#42. Rectangular plate
8.34, shows a pl.(eo!widthb.
:&Mmmmm:. 1f p is the density of the
Material, then mass of the plate
M « density x volume
Consiter SR located
an elemental of depth at
‘h"!ﬁmﬂuwmn g
Mdﬂ\celammipdm-pmy
a8 moment of inertial of the strip about axis xx
= dm =pht
‘.."‘Mofmyf:xuumy:’rmdphb
%448 xx can be warked out by Integrating the above

I ‘Hhmulhmu -% oo;.'l'tuth




‘ i \<
l,= pbt Ifgyz“y = P '13_{1
F 1

P ‘!] d?
= — iy — 3(0“‘)""'
w[zc‘zc 12
- L Mt (823 1)
2
Mummamduwmahﬂhmm“
Wi
I --!-Mi’ :
w 12 ._'_;-‘3"
From perpendicular axis theorem, the moment of inertia about axs 2z is '
In”n”’

= Voaare Va2 = 1 M@ 40
12 12 12

8.4.3, Triangular plate 4
Figure 8.35 shows a triangular plate of base width b,
height i and uniform thickness 1, If p is the density of the
plate material, then
mass of the plate,
M = density x volume
= density x (area x thickness)

1
- -ont
pxzbh

Consider an elemental strip (assumed rectangle) of

width | and depth dy located at distance y from the base 3 i
line. b b - C
mass of the elemental strip dm = pt dy ; Fig. 825
mass moment of inertia of the strip about base
- lmy’-pllyzly

Since the integration is to be done with respect to y within the limits 0 to h, it is necesT ¥

express | in terms of y. For that we have the following correlation from the similarity of
ADE and ABC,

l. k-" '.bh-y
bk k
* mass moment of inertia of the triangular plate about base line

L

M
« B [(h-y)yay



pbt i

12

P ﬂ"-'}*i pht( K¢ it
B13 4l %37
pbht K2

- Tx? = E“"z _.(8.25)
uo.o""“"'wm
mwmmmmdmnmmmwnuwvd

’#nﬂoﬂhtphhM- dﬂui!yxvolum
= density  (area x thickness) = p xR21

=

Xooashabdecaodnaa b b Lo ... -<-J_---x

Fig. .36
Consider an elementary ring of radius r and width dr.
mass of elemental ring dm = p [x(r + dr)? - x 2}
=p(2xrdr)t = 2xtprdr
Mass moment of inertia of this elementary ring about the polar axis zz
= dmr® w 2xtpridr
Mass moment of inertia of the circular plate about polar axis zx

R ot
= htp[r’& = 2nip P
L

R
- ptR’tx—i- - me . (8.26)

where M = px R? ¢ is the mass of the circular lamina

Invoking the theorem of perpendicular axis, the mass moment of inertia of a dircular lamina
aout xx or yy axis is

| R
In-l,,s-z“';m -(8.27)
845, Solid sphere
Figure 8.37 shows a solid sphere of radius R with O as centre. If p is the density of the material
o the sphere, then
mass of the sphere = density x volume

4
= I—IR’
P 3




Let attention be focussed on a thin disc A8 of A ;
thickness dr and at radius x from the centre. :

radius of the disc y = JR? = 2
mass of the disc dm
= pxzyds
= pr (R? - x%) dx
Mass moment of inertia of this elementary disc
about the polar axis =2
dm? = pr (R? - ) dx x (R* - %)
= pr (R? - ¥*Ydx
w pr (RY 4 Xt - 2R3r%) dx
The mass moment of inertia of the whole sphere
can be worked out by integrating the above expression
between the limits - R to R.
m.'.Mmmofmdhsp!mmnpolu
z=

R
I, = o= [ (R« x* - 2R%)dx
“R

o x |
ln'mlk‘xo—s--ZR’-s-[‘-—Ts-—-;MR’ A2

where M = -;O:R’ is the mass of the solid sphere

Invoking the theorem of perpendicular axis, the mass moment of inertia of a solid sphese
about xx or yy axis is,

I
lnal --'l.!m’
w 2 5 y

8.4.6. Solid cylinder

Figure 838 shows a solid cylinder of radius R and
height h. If p is the density of the material of the cylinder,
then

mass of the cylinder = density x volume
M= px nR%
Consider a thin disc of thickness dy located at
distance y from the centroidal axis xx, L "; A

mass of the elemental disc, dm = p x xR?dy $
It may be recalled that mass moment of inertia of a ¥

’

circular lamina about its diametral axis is given by /.

. mass moment of inertia of the elemental disc about :
its diameteral axis Is i

R Fig. 6.39
18] 4



! Invoking paraticl axis "“"’“'"‘ the M mament of inertia of elemental disc about axis xx is
"

+ (don

E .'i.mkhu...,,z
- LmRr2ayr? L
= JUMRTART +(pr R dy)y

LI
= :DIR dy +prR? ¥ dy

The mass moment of inertia of the entire solid cylinder can be worked out by integrating the

kGl
avave expression between the limits 3 105 Thus,

_*u'

L

A

p=R* ] dyopnk
A
2

NO'

= -puk‘h e mn’h’

2 2
ouk"i{': :’2] M[§+%) . TIEM"” o i)

4
where M = pr R*h is the mass of the cylinder.

Similarly
i 1,2
ly 12M(3R +h%)
! 2442
and le = In+1”-;M(3R +h*)

Note : For a thin cylinder, R = 0. That gives:
1 1
=l.s M= MR
fa =y 12 12
For a thin disc, h = 0. That gives :
1 2 'l 2
Iu.[”BIMR and 'B zMR

847, Right circular cone

L (8.29 )

(3.29

e

o ST 2 solid cone of height h and radius R 16 p s the density o the mateial of the cone,

mass of the cone M = density x volume
1
- —ﬂm
933

Consider an element of thickness dy and radius 7 at distance y from the apex A
Mda\emmnp,mwxr‘dy
Mass moment of inertia of the elemental strip about axis yy
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Since the integration is to
the limits 0 to &, it is necessary to : I
we have the following correlation from the similani
ADE and ABC

la¥ sar?
R & k
~. mass moment of inertia of the cone about axis yy

Iy = I%W(R%rdy

_ R
- o

4 2
o PRRE  pRRTh 3 p2 3 pp?  (s31)
10 3. 10 10

be done with respect to y within
express 7 in terms of y. For that
ty of triangles

where M = al-apRZh is the mass of the right circular cone.

EXAMPLE 8.15
Would you imagine that the moment of inertia of the earth around its own axis is negligible fraction o'

moment of inertia about the axis of rotation around the sun? Take mean radius of the earth as 6,371 msd
the mean radius of rotation around the sun as 149.7 x 10° km.
Solution ; (b)) Moment of inertia of the earth about its axis,

2 2
h= §m2 = 31‘4(6371)2 =1623 x 10° M

Moment of inertia of the earth about the axis of rotation around the sun,
L=1+M#=1623 x 10°M + M x (149.7 x 10°9
= 1623 x 105M + 22410.09 x 102 M
= 22410.09002 x 102 M
Iy . 16.23x 10°
— 2241009002 x 108 = 724 X107 -
can be

Since the ratio is negligible, the moment of inertia of the earth around its own axis
to be a negligible fraction of its moment of inertia about the axis of rotation around the $4™ -




