
BCS-29
Advanced Computer Architecture

Parallel Computing

Programming Environments

Issues in Parallel Computing

• Design of parallel computers

• Design of efficient parallel algorithms

• Parallel programming models

• Parallel computer language

• Methods for evaluating parallel algorithms

• Parallel programming tools

• Portable parallel programs

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-2

Programming Environments

• Programmability depends on the programming environment provided to
the users.

• Conventional computers are used in a sequential programming
environment with tools developed for a uniprocessor computer.

• Parallel computers need parallel tools that allow specification or easy
detection of parallelism and operating systems that can perform parallel
scheduling of concurrent events, shared memory allocation, and shared
peripheral and communication links.

• Implicit Parallelism:

• Explicit Parallelism

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-3

Programming Environments

• Implicit Parallelism:
• Use a conventional language (like C, Fortran, Lisp, or Pascal) to write the

program.

• Use a parallelizing compiler to translate the source code into parallel code.

• The compiler must detect parallelism and assign target machine resources.

• Success relies heavily on the quality of the compiler.

• Explicit Parallelism
• Programmer write explicit parallel code using parallel dialects of common

languages.

• Compiler has reduced need to detect parallelism, but must still preserve
existing parallelism and assign target machine resources.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-4

Important Issues in Parallel Programming

Important Issues:

• Partitioning of data

• Mapping of data onto the processors

• Reproducibility of results

• Synchronization

• Scalability and Predictability of performance

• Success depends on the combination of
• Architecture, Compiler, Choice of Right Algorithm, Programming

Language
• Design of software, Principles of Design of algorithm, Portability,

Maintainability, Performance analysis measures, and Efficient
implementation

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-5

Exploitation of PARALLELISM

Attributes of parallelism
• Computational granularity,

• Time and space complexities,

• Communication latencies,

• Scheduling policies,

• Load balancing, etc.

Types of Parallelism
• Data parallelism

• Task parallelism

• Combination of Data and Task parallelism

• Stream parallelism

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-6

Data Parallelism

• Identical operations being applied concurrently on
different data items is called data parallelism.

• It applies the SAME OPERATION in parallel on
different elements of a data set.

• It uses a simpler model and reduce the
programmer’s work.

• Responsibility of programmer is to specify the
distribution of data for various processing elements.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-7

Task Parallelism

• Many tasks are executed concurrently is called task
parallelism.

• This can be done (visualized) by a task graph. In this graph, the
node represent a task to be executed. Edges represent the
dependencies between the tasks.

• Sometimes, a task in the task graph can be executed as long
as all preceding tasks have been completed.

• Let the programmer define different types of processes.
These processes communicate and synchronize with each
other through MPI or other mechanisms.

• Programmer’s responsibility is to deal explicitly with process
creation, communication and synchronization.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-8

Data and Task Parallelism

Integration of Task and Data Parallelism

• Two Approaches

• Add task parallel constructs to data parallel constructs.

• Add data parallel constructs to task parallel construct

• Approach to Integration

• Language based approaches.

• Library based approaches.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-9

Stream Parallelism

• Stream parallelism refers to the simultaneous execution of different
programs on a data stream. It is also referred to as pipelining.

• The computation is parallelized by executing a different program at
each processor and sending intermediate results to the next
processor.

• The result is a pipeline of data flow between processors.

• Many problems exhibit a combination of data, task and stream
parallelism.

• The amount of stream parallelism available in a problem is usually
independent of the size of the problem.

• The amount of data and task parallelism in a problem usually
increases with the size of the problem.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-10

Conditions of Parallelism

• The exploitation of parallelism in computing requires
understanding the basic theory associated with it.
Progress is needed in several areas:

• computation models for parallel computing

• Inter-processor communication in parallel architectures

• integration of parallel systems into general environments

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-11

Data and Resource Dependencies

• Program segments cannot be executed in parallel
unless they are independent.

• Independence comes in several forms:

• Data dependence: data modified by one segement must
not be modified by another parallel segment.

• Control dependence: if the control flow of segments
cannot be identified before run time, then the data
dependence between the segments is variable.

• Resource dependence: even if several segments are
independent in other ways, they cannot be executed in
parallel if there aren’t sufficient processing resources (e.g.
functional units).

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-12

Data Dependence
• Flow dependence: S1 precedes S2, and at least one output of S1 is input

to S2.

• Anti-dependence: S1 precedes S2, and the output of S2 overlaps the input
to S1.

• Output dependence: S1 and S2 write to the same output variable.

• I/O dependence: two I/O statements (read/write) reference the same
variable, and/or the same file.

• Unknown dependence: Dependence relationships cannot be
determined in the following situations:

• Indirect addressing
• The subscript of a variable is itself subscripted.
• The subscript does not contain the loop index variable.
• A variable appears more than once with subscripts having different

coefficients of the loop variable (that is, different functions of the loop
variable).

• The subscript is nonlinear in the loop index variable.

• Parallel execution of program segments which do not have total
data independence can produce non-deterministic results.
Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-13

Example

S1: Load R1, A /R1  Memory(A)/

S2: Add R2, R1 /R2  (R1) + (R2)/

S3: Move R1,R3 /R1  (R3)/

S4: Store B, R1 /Memory(B)  (R1)/

S2 is flow dependent on S1 because the variable R1

S3 is anti-dependent on S1 because of register R1.

S3 is output-dependent on S1 because of register R1and more …..

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-14

Program Transformation and Code scheduling

S1: A = 1

S2: B = A + 1

S3: C = B + 1

S4: D = A + 1

S5: E = D + B

S1

S1 S1

S1 S1

S1: A = 1

cobegin

S2: B = A + 1

post (e)

S3: C = B + 1

II

S4: D = A + 1

wait (e)

S5: E = D + B

coend

Control Dependence

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-16

• It is the situation, when the order of the execution cannot be determined
before run time.

• Different paths taken after a conditional branch may introduce or eliminate
data dependence among instructions.

• Dependence may also exist between operations performed in successive
iterations of a looping procedure.

• Control-independent example:
for (i=0;i<n;i++) {

a[i] = c[i];

if (a[i] < 0) a[i] = 1;

}

• Control-dependent example:
for (i=1;i<n;i++) {

if (a[i-1] < 0) a[i] = 1;

}

• Compiler techniques are needed to get around control dependence limitations.

Control Dependences

S : if A ≠ 0 then

T : C=C+1

U : D = C/A

else

V : D = C

end if

W : X = C + D

S: b = [A ≠ 0]

T: C = C+ 1 when b

U: D = C/A when b

V: D = C when not b

W: X = C + D

Resource Dependence

• Data and control dependencies are based on the
independence of the work to be done.

• Resource independence is concerned with conflicts
in using shared resources, such as registers, integer
and floating point ALUs, etc.

• ALU conflicts are called ALU dependence.

• Memory (storage) conflicts are called storage
dependence.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-18

Bernstein’s Conditions

• Bernstein’s conditions are a set of conditions which must exist
if two processes can execute in parallel.

• Notation
• Ii is the set of all input variables for a process Pi .

• Oi is the set of all output variables for a process Pi .

• If P1 and P2 can execute in parallel (which is written as P1 ||
P2), then:

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-19

1 2

2 1

1 2

I O

I O

O O

 =

 =

 =

Bernstein’s Conditions

• In terms of data dependencies, Bernstein’s conditions imply

that two processes can execute in parallel if they are flow-

independent, anti-independent, and output-independent.

• The parallelism relation || is commutative (Pi || Pj implies Pj

|| Pi), but not transitive (Pi || Pj and Pj || Pk does not imply Pi

|| Pk) . Therefore, || is not an equivalence relation.

• Intersection of the input sets is allowed.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-20

Detection of Parallelism

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-21

• Example

P1: C = D x E

P2: M = G + C

P3: A = B + C

P4: C = L + M

P5: F = G / E

x

+1

/

+2

+3

P1

P2

P3

P4

P5

Dependence Graph

Execution (Data-flow)

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-22

+

X

+

+

/

E

D

G

B

L

E

G

F

C

M

C

A

P1

P2

P3

P4

P5

X P1

+ + / P5P2 P3

+

L

FA

C

EG

DE

G B

M

C

P4

Hardware Parallelism & Software Parallelism

Hardware parallelism
• Hardware parallelism is defined by machine architecture and hardware

multiplicity.

• It can be characterized by the number of instructions that can be issued per
machine cycle. If a processor issues k instructions per machine cycle, it is
called a k-issue processor. Conventional processors are one-issue machines.

• Examples. Intel i960CA is a three-issue processor (arithmetic, memory access,
branch). IBM RS-6000 is a four-issue processor (arithmetic, floating-point,
memory access, branch).

• A machine with n k-issue processors should be able to handle a maximum of
nk threads simultaneously.

Software Parallelism

• Software parallelism is defined by the control and data dependence of

programs, and is revealed in the program’s flow graph.

• It is a function of algorithm, programming style, and compiler optimization.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-23

Mismatch between software and hardware
parallelism

Example:
A = (P X Q) + (R X S)

B = (P X Q) - (R X S)

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-24

Code Sequence
L1 Load P
L2 Load Q
L3 Load R
L4 Load S
X1 Mul P, Q
X2 Mul R, S
+ Add X1, X2

- Sub X1, X2

L1 L2 L3 L4

X1 X2

+ -

A B

Cycle 1

Cycle 2

Cycle 3

Maximum software parallelism: No limitation
of functional units (L=load, X/+/- = arithmetic).

Mismatch between software and hardware
parallelism

Example:
A = (P X Q) + (R X S)

B = (P X Q) - (R X S)

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-25

Code Sequence
L1 Load P
L2 Load Q
L3 Load R
L4 Load S
X1 Mul P, Q
X2 Mul R, S
+ Add X1, X2

- Sub X1, X2

Execution Using Single Functional Unit for
Load, Mul and Add/Sub

L1

L2

L4

L3X1

X2

+

-

A

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

B

Mismatch between software and hardware
parallelism

Example:
A = (P X Q) + (R X S)

B = (P X Q) - (R X S)

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-26

Code Sequence
L1 Load P
L2 Load Q
L3 Load R
L4 Load S
X1 Mul P, Q
X2 Mul R, S
+ Add X1, X2

- Sub X1, X2

Execution Using Two Functional Units for
each of Load, Mul and Add/Sub operations

L1

L2

S1

X1

+

L5

L3

L4

S2

X2

-

L6

BA

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

= inserted for
synchronization

Program Partitioning & Scheduling

• Program Partitioning
• The transformation of sequentially coded program into a

parallel executable form can be done manually by the
programmer using explicit parallelism or by a compiler
detecting implicit parallelism automatically.

• Program partitioning determines whether the given
program can be partitioned or split into pieces that can be
executed in parallel or follow a certain pre-specified order
of execution.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-27

Program Partitioning & Scheduling
• Grain size or Granularity

• It is the size of the parts or pieces of a program that can be considered for
parallel execution.

• Grain size is the simplest measure to count the number of instructions in
a program segment chosen for parallel Execution.

• Grain sizes are usually described as fine, medium or coarse, depending on
the level of parallelism involved

• Latency

Latency is the time required for communication between different subsystems in
a computer.

• Memory latency, for example, is the time required by a processor to
access memory.

• Synchronization latency is the time required for two processes to
synchronize their execution.

• Computational granularity and communication latency are closely related.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-28

Levels of Parallelism

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-29

Jobs or programs

Instructions

or statements

Non-recursive loops

or unfolded iterations

Procedures, subroutines,

tasks, or coroutines

Subprograms, job steps or

related parts of a program

}
}

Coarse grain

Medium grain

} Fine grain

Increasing

communication

demand and

scheduling

overhead

Higher degree of

parallelism

