Syllabus for Faculty Recruitment (Assistant Professor) Electronics and Communications Engineering Department

Section 1: Networks, Signals and Systems

Circuit analysis: Node and mesh analysis, superposition, Thevenin's theorem, Norton's theorem, reciprocity. Sinusoidal steady state analysis: phasors, complex power, maximum power transfer. Time and frequency domain analysis of linear circuits: RL, RC and RLC circuits, solution of network equations using Laplace transform.

Linear 2-port network parameters, wye-delta transformation.

Continuous-time signals: Fourier series and Fourier transform, sampling theorem and applications.

Discrete-time signals: DTFT, DFT, z-transform, discrete-time processing of continuous-time signals. LTI systems: definition and properties, causality, stability, impulse response, convolution, poles and zeroes, frequency response, group delay, phase delay.

Design of FIR Digital filters: Window method, Park-McClellan's method.

Design of IIR Digital Filters: Butterworth, Chebyshev and Elliptic Approximations; Lowpass, Bandpass, Band stop and High pass filters. Effect of finite register length in FIR filter design, Parametric and non-parametric spectral estimation, Introduction to multirate signal processing.

Section 2: Electronic Devices

Energy bands in intrinsic and extrinsic semiconductors, equilibrium carrier concentration, direct and indirect band-gap semiconductors, physics of nanoscale devices.

Carrier transport: diffusion current, drift current, mobility and resistivity, generation and recombination of carriers, Poisson and continuity equations.

P-N junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photo diode and solar cell.

Section 3: Analog Circuits

Diode circuits: clipping, clamping and rectifiers.

BJT and MOSFET amplifiers: biasing, ac coupling, small signal analysis, frequency response. Current mirrors and differential amplifiers.

Op-amp circuits: Amplifiers, summers, differentiators, integrators, active filters, Schmitt triggers and oscillators.

Section 4: Digital Circuits

Number representations: binary, integer and floating-point- numbers. Combinatorial circuits: Boolean algebra, minimization of functions using Boolean identities and Karnaugh map, logic gates and their static CMOS implementations, arithmetic circuits, code converters, multiplexers, decoders.

Sequential circuits: latches and flip-flops, counters, shift-registers, finite state machines, propagation delay, setup and hold time, critical path delay.

Data converters: sample and hold circuits, ADCs and DACs.

Semiconductor memories: ROM, SRAM, DRAM

Computer organization: Machine instructions and addressing modes, ALU, data-path and control unit, instruction pipelining.

Section 5: Embedded Systems:

The concept of embedded systems design, Embedded microcontroller cores, embedded memories. Examples of embedded systems, Technological aspects of embedded systems: interfacing between analog and digital blocks, signal conditioning, digital signal processing. sub-system interfacing, interfacing with external systems, user interfacing. Design tradeoffs due to process compatibility, thermal considerations, etc, Software aspects of embedded systems: real time programming languages and operating systems for embedded systems.

Section 6: IoT Introduction and Fundamentals:

Evolution of the IoT concept, Basic Characteristics of IoT, IoT Architecture, IoT components: Digital Signal Processing, Data transmission, Choice of channel (wired/wireless), back-end data analysis. Understanding packaging and power constraints for IoT implementation.

Signals, Sensors, Actuators, Interfaces : Introduction to sensors & transducers, Introduction to electrodes & biosensors, Static and dynamic characteristics of sensors, Different types of sensors, Selection criteria's for sensors / transducers, Signal conditioning modules of IoT system, Energy and power considerations, Introduction to actuators, Different types of actuators, Interfacing challenges, Modules of data acquisition system, Wireless sensor node structure, positioning topologies for IoT infrastructure.

Communication and Networking in IoT: Review of Communication Networks, Challenges in Networking of IoT Nodes, range, bandwidth Machine-to-Machine (M2M) and IoT Technology Fundamentals, Medium Access Control (MAC) Protocols for M2M Communications Standards for the IoT Basics of 5G Cellular Networks and 5G IoT Communications, Low-Power Wide Area networks (LPWAN).

Wireless communication for IoT: channel models, Communication Protocols, power budgets, data rates.

Networking and communication aspects: IPv6, 6LoWPAN, COAP, MQTT, Operating Systems need and requirements for IoT.

Modern networking: Cloud computing: Introduction to the Cloud Computing, History of cloud computing, Cloud service options, Cloud Deployment models, Business concerns in the cloud, Hypervisors, Comparison of Cloud providers, Cloud and Fog Ecosystem for IoT Review of architecture

Section 7: Communications

Random processes: auto correlation and power spectral density, properties of white noise, filtering of random signals through LTI systems.

Analog communications: amplitude modulation and demodulation, angle modulation and demodulation, spectra of AM and FM, super heterodyne receivers.

Information theory: Entropy, mutual information and channel capacity theorem.

Digital communications: PCM, DPCM, digital modulation schemes (ASK, PSK, FSK, QAM), bandwidth, inter-symbol interference, MAP, ML detection, matched filter receiver, SNR and BER, Channel encoder-decoder, equalizer, MIMO Channel, MIMO Antennas.

Section 8: Electromagnetics

Maxwell's equations: differential and integral forms and their interpretation, boundary conditions, wave equation, Poynting vector.

Plane waves and properties: reflection and refraction, polarization, phase and group velocity, propagation through various media, skin depth.

Transmission lines: equations, characteristic impedance, impedance matching, impedance transformation, S-parameters, Smith chart.

Rectangular and circular waveguides, light propagation in optical fibers, dipole and monopole antennas, linear antenna arrays.

Syllabus for Faculty Recruitment (Assistant Professor) <u>Chemical Engineering Department</u>

Process Calculations and Thermodynamics

Steady and unsteady state mass and energy balances including multiphase, multi-component, reacting and non-reacting systems. Use of tie components; recycle, bypass and purge calculations; Gibb's phase rule and degree of freedom analysis.

First and Second laws of thermodynamics. Applications of first law to close and open systems. Second law and Entropy. Thermodynamic properties of pure substances: Equation of State and residual properties, properties of mixtures: partial molar properties, fugacity, excess properties and activity coefficients; phase equilibria: predicting VLE of systems; chemical reaction equilibrium.

Fluid Mechanics and Mechanical Operations

Fluid statics, surface tension, Newtonian and non-Newtonian fluids, transport properties, shellbalances including differential form of Bernoulli equation and energy balance, equation of continuity, equation of motion, equation of mechanical energy, Macroscopic friction factors, dimensional analysis and similitude, flow through pipeline systems, velocity profiles, flow meters, pumps and compressors, elementary boundary layer theory, flow past immersed bodies including packed and fluidized beds, Turbulent flow: fluctuating velocity, universal velocity profile and pressure drop.

Particle size and shape, particle size distribution, size reduction and classification of solid particles; free and hindered settling; centrifuge and cyclones; thickening and classification, filtration, agitation and mixing; conveying of solids.

Heat Transfer

Equation of energy, steady and unsteady heat conduction, convection and radiation, thermal boundary layer and heat transfer coefficients, boiling, condensation and evaporation; types of heat exchangers and evaporators and their process calculations; design of double pipe, shell and tube heat exchangers, and single and multiple effect evaporators.

Mass Transfer

Fick's laws, molecular diffusion in fluids, mass transfer coefficients, film, penetration and surface renewal theories; momentum, heat and mass transfer analogies; stage-wise and continuous contacting and stage efficiencies; HTU & NTU concepts; design and operation of equipment for distillation, absorption, leaching, liquid-liquid extraction, drying,

humidification, dehumidification and adsorption, membrane separations (micro-filtration, ultra-filtration, nano-filtration and reverse osmosis).

Chemical Reaction Engineering

Theories of reaction rates; kinetics of homogeneous reactions, interpretation of kinetic data, single and multiple reactions in ideal reactors, kinetics of enzyme reactions (Michaelis-Menten and Monod models), non-ideal reactors; residence time distribution, single parameter model; non-isothermal reactors; kinetics of heterogeneous catalytic reactions; diffusion effects in catalysis; rate and performance equations for catalyst deactivation

Instrumentation and Process Control

Measurement of process variables; sensors and transducers; P&ID equipment symbols; process modeling and linearization, transfer functions and dynamic responses of various systems, systems with inverse response, process reaction curve, controller modes (P, PI, and PID); control valves; transducer dynamics; analysis of closed loop systems including stability, frequency response, controller tuning, cascade and feed forward control.

Syllabus for Faculty Recruitment (Assistant Professor) <u>CHEMISTRY</u>

Inorganic Chemistry

- 1. Chemical periodicity
- 2. Structure and bonding in homo- and heteronuclear molecules, including shapes of molecules (VSEPR Theory).
- 3. Concepts of acids and bases, Hard-Soft acid base concept, Non-aqueous solvents.
- 4. Main group elements and their compounds: Allotropy, synthesis, structure and bonding, industrial importance of the compounds.
- 5. Transition elements and coordination compounds: structure, bonding theories, spectral and magnetic properties, reaction mechanisms.
- 6. Inner transition elements: spectral and magnetic properties, redox chemistry, analytical applications.
- 7. Organometallic compounds: synthesis, bonding and structure, and reactivity. Organometallics in homogeneous catalysis.
- 8. Cages and metal clusters.
- 9. Analytical chemistry- separation, spectroscopic, electro- and thermoanalytical methods.
- 10. Bioinorganic chemistry: photosystems, porphyrins, metalloenzymes, oxygen transport, electron- transfer reactions; nitrogen fixation, metal complexes in medicine.
- 11. Characterisation of inorganic compounds by IR, Raman, NMR, EPR, Mössbauer, UV-vis, NQR, MS, electron spectroscopy and microscopic techniques.
- 12. Nuclear chemistry: nuclear reactions, fission and fusion, radio-analytical techniques and activation analysis.

Physical Chemistry:

- 1. Basic principles of quantum mechanics: Postulates; operator algebra; exactlysolvable systems: particle-in-a-box, harmonic oscillator and the hydrogen atom, including shapes of atomic orbitals; orbital and spin angular momenta; tunneling.
- 2. Approximate methods of quantum mechanics: Variational principle; perturbation theory up to second order in energy; applications.
- 3. Atomic structure and spectroscopy; term symbols; many-electron systems and antisymmetry principle.
- 4. Chemical bonding in diatomics; elementary concepts of MO and VB theories; Huckel theory for conjugated π -electron systems.
- 5. Chemical applications of group theory; symmetry elements; point groups; character tables; selection rules.

- 6. Molecular spectroscopy: Rotational and vibrational spectra of diatomic molecules; electronic spectra; IR and Raman activities selection rules; basic principles of magnetic resonance.
- 7. Chemical thermodynamics: Laws, state and path functions and their applications; thermodynamic description of various types of processes; Maxwell's relations; spontaneity and equilibria; temperature and pressure dependence of thermodynamic quantities; Le Chatelier principle; elementary description of phase transitions; phase equilibria and phase rule; thermodynamics of ideal and non-ideal gases, and solutions.
- 8. Statistical thermodynamics: Boltzmann distribution; kinetic theory of gases; partition functions and their relation to thermodynamic quantities calculations for model systems.
- 9. Electrochemistry: Nernst equation, redox systems, electrochemical cells; Debye-Huckel theory; electrolytic conductance – Kohlrausch's law and its applications; ionic equilibria; conductometric and potentiometric titrations.
- 10. Chemical kinetics: Empirical rate laws and temperature dependence; complex reactions; steady state approximation; determination of reaction mechanisms; collision and transition state theories of rate constants; unimolecular reactions; enzyme kinetics; salt effects; homogeneous catalysis; photochemical reactions.
- 11. Colloids and surfaces: Stability and properties of colloids; isotherms and surface area; heterogeneous catalysis.
- 12. Solid state: Crystal structures; Bragg's law and applications; band structure of solids.
- 13. Polymer chemistry: Molar masses; kinetics of polymerization.
- 14. Data analysis: Mean and standard deviation; absolute and relative errors; linear regression; covariance and correlation coefficient.

Organic Chemistry

- 1. IUPAC nomenclature of organic molecules including regio- and stereoisomers.
- 2. Principles of stereochemistry: Configurational and conformational isomerism in acyclic and cyclic compounds; stereogenicity, stereoselectivity, enantioselectivity, diastereoselectivity and asymmetric induction.
- 3. Aromaticity: Benzenoid and non-benzenoid compounds generation and reactions.
- 4. Organic reactive intermediates: Generation, stability and reactivity of carbocations, carbanions, free radicals, carbenes, benzynes and nitrenes.

- 5. Organic reaction mechanisms involving addition, elimination and substitution reactions with electrophilic, nucleophilic or radical species. Determination of reaction pathways.
- 6. Common named reactions and rearrangements applications in organic synthesis.
- 7. Organic transformations and reagents: Functional group interconversion including oxidations and reductions; common catalysts and reagents (organic, inorganic, organometallic and enzymatic). Chemo, regio and stereoselective transformations.
- 8. Concepts in organic synthesis: Retrosynthesis, disconnection, synthons, linear and convergent synthesis, umpolung of reactivity and protecting groups.
- 9. Asymmetric synthesis: Chiral auxiliaries, methods of asymmetric induction substrate, reagent and catalyst controlled reactions; determination of enantiomeric and diastereomeric excess; enantio-discrimination. Resolution optical and kinetic.
- 10. Pericyclic reactions electrocyclisation, cycloaddition, sigmatropic rearrangements and other related concerted reactions. Principles and applications of photochemical reactions in organic chemistry.
- 11. Synthesis and reactivity of common heterocyclic compounds containing one or two heteroatoms (O, N, S).
- 12. Chemistry of natural products: Carbohydrates, proteins and peptides, fatty acids, nucleic acids, terpenes, steroids and alkaloids. Biogenesis of terpenoids and alkaloids.
- 13. Structure determination of organic compounds by IR, UV-Vis, ¹H & ¹³C NMR and Mass spectroscopic techniques.

Syllabus for Faculty Recruitment (Assistant Professor) Humanities & Social Science Department (English)

UNIT	CONTENTS
Unit –One	Non-Fictional Prose
Unit –Two	Fiction, Short story
Unit –Three	Poetry
Unit –Four	Drama
Unit-Five	Language: Basic concepts, theories, and pedagogy. English in Use.
Unit-Six	English in India: history, evolution, and futures; English Studies in India
Unit-Seven	ELT, ESL & SLT, Language Teaching & Testing
Unit Eight	Research Methods and Materials in English
Unit-Nine	Literary Theory
Unit –Ten	Literary Criticism
Unit –Eleven	Communication Skills
Unit –Twelve	Soft Skills
Unit –Thirteen	Cultural Studies
Unit –Fourteen	American Studies
NOTE: The first four units may also be tested through comprehension passages to assess	
critical reading, critical thinking and writing skills. These four units will cover all literatures	
in English viz. American British, Canadian, African American Literature etc	

Syllabus for Faculty Recruitment (Assistant Professor) Information Technology and Computer Application Department

Section 1: Engineering Mathematics

Discrete Mathematics: Propositional and first order logic. Sets, relations, functions, partial orders and lattices. Monoids, Groups. Graphs: connectivity, matching, coloring. Combinatorics: counting, recurrence relations, generating functions.

Linear Algebra: Matrices, determinants, system of linear equations, eigenvalues and eigenvectors, LU decomposition. Calculus: Limits, continuity and differentiability. Maxima and minima. Mean value theorem. Integration.

Probability and Statistics: Random variables. Uniform, normal, exponential, poisson and binomial distributions. Mean, median, mode and standard deviation. Conditional probability and Bayes theorem.

Information Technology

Section 2: Digital Logic Boolean algebra. Combinational and sequential circuits. Minimization. Number representations and computer arithmetic (fixed and floating point).

Section 3: Computer Organization and Architecture Machine instructions and addressing modes. ALU, data-path and control unit. Instruction pipelining, pipeline hazards. Memory hierarchy: cache, main memory and secondary storage; I/O interface (interrupt and DMA mode).

Section 4: Programming and Data Structures Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary search trees, binary heaps, graphs.

Section 5: Algorithms Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design techniques: greedy, dynamic programming and divide-and-conquer. Graph traversals, minimum spanning trees, shortest paths

Section 6: Theory of Computation Regular expressions and finite automata. Context-free grammars and push-down automata. Regular and contex-free languages, pumping lemma. Turing machines and undecidability.

Section 7: Compiler Design Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation. Local optimisation, Data flow analyses: constant propagation, liveness analysis, common sub expression elimination.

Section 8: Operating System System calls, processes, threads, inter-process communication, concurrency and synchronization. Deadlock. CPU and I/O scheduling. Memory management and virtual memory. File systems.

Section 9: Databases ER-model. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints, normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control.

Section 10: Computer Networks Concept of layering: OSI and TCP/IP Protocol Stacks; Basics of packet, circuit and virtual circuit-switching; Data link layer: framing, error detection, Medium Access Control, Ethernet bridging; Routing protocols: shortest path, flooding, distance vector and link state routing; Fragmentation and IP addressing, IPv4, CIDR notation, Basics of IP support protocols (ARP, DHCP, ICMP), Network Address Translation (NAT); Transport layer: flow control and congestion control, UDP, TCP, sockets; Application layer protocols: DNS, SMTP, HTTP, FTP, Email.

MATHEMATICS SYLLABUS UNIT – 1

Analysis: Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum.

Sequences and series, convergence, limsup, liminf.

Bolzano Weierstrass theorem, Heine Borel theorem.

Continuity, uniform continuity, differentiability, mean value theorem.

Sequences and series of functions, uniform convergence.

Riemann sums and Riemann integral, Improper Integrals.

Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue measure, Lebesgue integral.

Functions of several variables, directional derivative, partial derivative, derivative as a linear transformation, inverse and implicit function theorems.

Metric spaces, compactness, connectedness. Normed linear Spaces. Spaces of continuous functions as examples.

Linear Algebra: Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear transformations.

Algebra of matrices, rank and determinant of matrices, linear equations.

Eigenvalues and eigenvectors, Cayley-Hamilton theorem.

Matrix representation of linear transformations. Change of basis, canonical forms, diagonal forms, triangular forms, Jordan forms.

Inner product spaces, orthonormal basis.

Quadratic forms, reduction and classification of quadratic forms UNIT - 2

Complex Analysis: Algebra of complex numbers, the complex plane, polynomials, power series, transcendental functions such as exponential, trigonometric and hyperbolic functions. Analytic functions, Cauchy-Riemann equations.

Contour integral, Cauchy's theorem, Cauchy's integral formula, Liouville's theorem, Maximum modulus principle, Schwarz lemma, Open mapping theorem.

Taylor series, Laurent series, calculus of residues.

Conformal mappings, Mobius transformations.

Algebra: Permutations, combinations, pigeon-hole principle, inclusion-exclusion principle, derangements.

Fundamental theorem of arithmetic, divisibility in Z, congruences, Chinese Remainder Theorem, Euler's Ø- function, primitive roots.

Groups, subgroups, normal subgroups, quotient groups, homomorphisms, cyclic groups, permutation groups, Cayley's theorem, class equations, Sylow theorems.

Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domain, principal ideal domain, Euclidean domain.

Polynomial rings and irreducibility criteria.

Fields, finite fields, field extensions, Galois Theory.

Topology: basis, dense sets, subspace and product topology, separation axioms, connectedness and compactness.

UNIT – 3

Ordinary Differential Equations (ODEs):

Existence and uniqueness of solutions of initial value problems for first order ordinary differential equations, singular solutions of first order ODEs, system of first order ODEs.

General theory of homogenous and non-homogeneous linear ODEs, variation of parameters, Sturm-Liouville boundary value problem, Green's function. **Partial Differential Equations (PDEs):**

Lagrange and Charpit methods for solving first order PDEs, Cauchy problem for first order PDEs.

Classification of second order PDEs, General solution of higher order PDEs with constant coefficients, Method of separation of variables for Laplace, Heat and Wave equations.

Numerical Analysis :

Numerical solutions of algebraic equations, Method of iteration and Newton-Raphson method, Rate of convergence, Solution of systems of linear algebraic equations using Gauss elimination and Gauss-Seidel methods, Finite differences, Lagrange, Hermite and spline interpolation, Numerical differentiation and integration, Numerical solutions of ODEs using Picard, Euler, modified Euler and

Runge-Kutta methods.

Calculus of Variations:

Variation of a functional, Euler-Lagrange equation, Necessary and sufficient conditions for extrema. Variational methods for boundary value problems in ordinary and partial differential equations.

Linear Integral Equations:

Linear integral equation of the first and second kind of Fredholm and Volterra type, Solutions with separable kernels. Characteristic numbers and eigenfunctions, resolvent kernel.

Classical Mechanics:

Generalized coordinates, Lagrange's equations, Hamilton's canonical equations, Hamilton's principle and principle of least action, Two-dimensional motion of rigid bodies, Euler's dynamical equations for the motion of a rigid body about an axis, theory of small oscillations.

UNIT - 4

Descriptive statistics, exploratory data analysis

Sample space, discrete probability, independent events, Bayes theorem. Random variables and distribution functions (univariate and multivariate); expectation and moments. Independent random variables, marginal and conditional distributions. Characteristic functions. Probability inequalities (Tchebyshef, Markov, Jensen). Modes of convergence, weak and strong laws of large numbers, Central Limit theorems (i.i.d. case).

Markov chains with finite and countable state space, classification of states, limiting behaviour of n-step transition probabilities, stationary distribution, Poisson and birth-and-death processes.

Standard discrete and continuous univariate distributions. sampling distributions, standard errors and asymptotic distributions, distribution of order statistics and range.

Methods of estimation, properties of estimators, confidence intervals. Tests of hypotheses: most powerful and uniformly most powerful tests, likelihood ratio tests. Analysis of discrete data and chi-square test of goodness of fit. Large sample tests.

Simple nonparametric tests for one and two sample problems, rank correlation and test for independence. Elementary Bayesian inference.

Gauss-Markov models, estimability of parameters, best linear unbiased estimators, confidence intervals, tests for linear hypotheses. Analysis of variance and covariance. Fixed, random and mixed effects models. Simple and multiple linear regression. Elementary regression diagnostics. Logistic regression.

Multivariate normal distribution, Wishart distribution and their properties. Distribution of quadratic forms. Inference for parameters, partial and multiple correlation coefficients and related tests. Data reduction techniques: Principle component analysis, Discriminant analysis, Cluster analysis, Canonical correlation.

Simple random sampling, stratified sampling and systematic sampling. Probability proportional to size sampling. Ratio and regression methods.

Completely randomized designs, randomized block designs and Latin-square designs. Connectedness and orthogonality of block designs, BIBD. 2k factorial experiments: confounding and construction.

Hazard function and failure rates, censoring and life testing, series and parallel systems.

Linear programming problem, simplex methods, duality. Elementary queuing and inventory models. Steady-state solutions of Markovian queuing models: M/M/1, M/M/1 with limited waiting space, M/M/C, M/M/C with limited waiting space, M/G/1.

Syllabus for Faculty Recruitment (Assistant Professor) Mechanical Engineering Department

Section 1: Engineering Mathematics

Linear Algebra: Matrix algebra, systems of linear equations, eigen values and eigen vectors. **Calculus:** Functions of single variable, limit, continuity and differentiability, mean value theorems, indeterminate forms; evaluation of definite and improper integrals; double and triple integrals; partial derivatives, total derivative, Taylor series (in one and two variables), maxima and minima, Fourier series; gradient, divergence and curl, vector identities, directional derivatives, line, surface and volume integrals, applications of Gauss, Stokes and Green's theorems.

Differential equations: First order equations (linear and nonlinear); higher order linear differential equations with constant coefficients; Euler-Cauchy equation; initial and boundary value problems; Laplace transforms; solutions of heat, wave and Laplace's equations.

Complex variables: Analytic functions; Cauchy-Riemann equations; Cauchy's integral theorem and integral formula; Taylor and Laurent series.

Probability and Statistics: Definitions of probability, sampling theorems, conditional probability; mean, median, mode and standard deviation; random variables, binomial, Poisson and normal distributions.

Numerical Methods: Numerical solutions of linear and non-linear algebraic equations; integration by trapezoidal and Simpson's rules; single and multi-step methods for differential equations.

Section 2: Applied Mechanics and Design

Engineering Mechanics: Free-body diagrams and equilibrium; friction and its applications including rolling friction, belt-pulley, brakes, clutches, screw jack, wedge, vehicles, etc.; trusses and frames; virtual work; kinematics and dynamics of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations; Lagrange's equation.

Mechanics of Materials: Stress and strain, elastic constants, Poisson's ratio; Mohr's circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; concept of shear centre; deflection of beams; torsion of circular shafts; Euler's theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength.

Theory of Machines: Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope.

Vibrations: Free and forced vibration of single degree of freedom systems, effect of damping; vibration isolation; resonance; critical speeds of shafts.

Machine Design: Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs.

Section 3: Fluid Mechanics and Thermal Sciences

Fluid Mechanics: Fluid properties; fluid statics, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli's equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings; basics of compressible fluid flow. **Heat-Transfer:** Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler's charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, Stefan- Boltzmann law, Wien's displacement law, black and grey surfaces, view factors, radiation network analysis

Thermodynamics: Thermodynamic systems and processes; properties of pure substances, behavior of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations.

Applications: *Power Engineering*: Air and gas compressors; vapour and gas power cycles, concepts of regeneration and reheat. *I.C. Engines*: Air-standard Otto, Diesel and dual cycles. *Refrigeration and air-conditioning*: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes. *Turbomachinery*: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines; steam and gas turbines.

Section 4: Materials, Manufacturing and Industrial Engineering

Engineering Materials: Structure and properties of engineering materials, phase diagrams, heat treatment, stress-strain diagrams for engineering materials.

Casting, Forming and Joining Processes: Different types of castings, design of patterns, moulds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding.

Machining and Machine Tool Operations: Mechanics of machining; basic machine tools; single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, jigs and fixtures; abrasive machining processes; NC/CNC machines and CNC programming.

Metrology and Inspection: Limits, fits and tolerances; linear and angular measurements; comparators; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly; concepts of coordinate-measuring machine (CMM).

Computer Integrated Manufacturing: Basic concepts of CAD/CAM and their integration tools; additive manufacturing.

Production Planning and Control: Forecasting models, aggregate production planning, scheduling, materials requirement planning; lean manufacturing.

Inventory Control: Deterministic models; safety stock inventory control systems.

Operations Research: Linear programming, simplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.

Department of Electrical Engineering M. M. M. University of Technology, Gorakhpur Syllabus For Written Examination (Assistant Professor)

Unit 1: Electric Circuits, Networks Analysis & Synthesis

Network elements, ideal voltage and current sources, dependent sources, R, L, C elements; Network solution methods: KCL, KVL, Node and Mesh analysis; Network Theorems: Thevenin's, Norton's, Superposition, Maximum Power Transfer, Reciprocity, Compensation, Millman's and Tellegen's theorems for both dc and ac circuits; Transient response of dc and ac networks, sinusoidal steady-state analysis, resonance, two port networks, balanced three phase circuits, star-delta transformation, complex power and power factor in ac circuits, graph theory; Solution of network equations using Laplace transform; Frequency domain analysis of RLC circuits; Two-port networks, parameters, driving point and transfer functions; Network synthesis; Filters; Attenuators.

Unit 2: Electromagnetic Field Theory

Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot-Savart's law, Ampere's law, Curl, Faraday's law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations; Maxwell's equations: differential and integral forms and their interpretation, boundary conditions, wave equation.

Unit 3: Signals and Systems

Representation of continuous and discrete time signals, shifting and scaling properties, linear time invariant and causal systems, Fourier series representation of continuous and discrete time periodic signals, sampling theorem and applications, Applications of Fourier Transform for continuous and discrete time signals, Laplace Transform and Z transform. R.M.S. value, average value calculation for any general periodic waveform

Unit 4: Electrical Machines

Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three-phase transformers: connections, vector groups, parallel operation; Auto-transformer, Electromechanical energy conversion principles; DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, speed control of dc motors; Three-phase induction machines: principle of operation, types, performance, torque-speed characteristics, no-load and blocked-rotor tests, equivalent circuit, starting and speed control; Operating principle of single-phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance and characteristics, regulation and parallel operation of generators, starting of synchronous motors; Types of losses and efficiency calculations of electric machines.

Unit 5: Power Systems

Basic concepts of electrical power generation, ac and dc transmission concepts, Models and performance of transmission lines and cables, Economic Load Dispatch (with and without

considering transmission losses), Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per-unit quantities, Bus admittance matrix, Gauss- Seidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of overcurrent, differential, directional and distance protection; Circuit breakers, System stability concepts, Equal area criterion.

Unit 6: Control Systems

Mathematical modelling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady-state analysis of linear time invariant systems, Stability analysis using Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Lag, Lead and Lead-Lag compensators; P, PI and PID controllers; State space model, Solution of state equations of LTI systems.

Unit 7: Electrical, Electronic Measurement & Instrumentation

Bridges and Potentiometers, Measurement of voltage, current, power, energy, and power factor; Instrument transformers, Digital voltmeters and multi-meters, Phase, Time, and Frequency measurement; Oscilloscopes, Error analysis, Transducers: Type, classification and applications, Measurement of non-electrical quantities.

Unit 8: Analog and Digital Electronics

Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: biasing, equivalent circuit and frequency response; oscillators and feedback amplifiers; operational amplifiers: characteristics and applications; single stage active filters, Active Filters: Sallen Key, Butterworth, VCOs and timers; Number systems; Boolean algebra, minimization of functions using Boolean identities and Karnaugh map; Logic gates; Combinatorial and sequential logic circuits, multiplexers, demultiplexers, Schmitt triggers, sample and hold circuits, A/D and D/A converters.

Unit 9: Power Electronics

Static V-I characteristics and firing/gating circuits for Thyristor, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost Converters; Single and three-phase configuration of uncontrolled rectifiers; Voltage and Current commutated Thyristor based converters; Bidirectional ac to dc voltage source converters; Magnitude and Phase of line current harmonics for uncontrolled and thyristor based converters; Power factor and Distortion Factor of ac to dc converters; Single-phase and three-phase voltage and current source inverters, sinusoidal pulse width modulation.

Syllabus for Faculty Recruitment (Assistant Professor) Computer Science & Engineering Department

Engineering Mathematics

- Discrete Mathematics: Propositional and first order logic. Sets, relations, functions, partial orders and lattices. Monoids, Groups. Graphs: connectivity, matching, coloring. Combinatorics: counting, recurrence relations, generating functions.
- Linear Algebra: Matrices, determinants, system of linear equations, eigenvalues and eigenvectors, LU decomposition.
- Calculus: Limits, continuity and differentiability. Maxima and minima. Mean value theorem. Integration.
- Probability and Statistics: Random variables. Uniform, normal, exponential, poisson and binomial distributions. Mean, median, mode and standard deviation. Conditional probability and Bayes theorem.

Computer Science and Information Technology

- Digital Logic: Boolean algebra Combinational and sequential circuits. Minimization. Number representations and computer arithmetic (fixed and floating point).
- Computer Organization and Architecture: Machine instructions and addressing modes. ALU, datapath and control unit. Instruction pipelining, pipeline hazards. Memory hierarchy: cache, main memory and secondary storage; I/O interface (interrupt and DMA mode).
- Programming and Data Structures: Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary search trees, binary heaps, graphs.
- Algorithms: Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design techniques: greedy, dynamic programming and divide-and-conquer. Graph traversals, minimum spanning trees, shortest paths
- Theory of Computation: Regular expressions and finite automata. Context-free grammars and push-down automata. Regular and contex-free languages, pumping lemma. Turing machines and undecidability.
- Compiler Design: Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation. Local optimisation, Data flow analyses: constant propagation, liveness analysis, common sub expression elimination.
- Operating System: System calls, processes, threads, inter-process communication, concurrency and synchronization. Deadlock. CPU and I/O scheduling. Memory management and virtual memory. File systems.
- Databases: ER-model. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints, normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control.
- Computer Networks: Concept of layering: OSI and TCP/IP Protocol Stacks; Basics of packet, circuit and virtual circuit-switching; Data link layer: framing, error detection, Medium Access Control, Ethernet bridging; Routing protocols: shortest path, flooding, distance vector and link state routing; Fragmentation and IP addressing, IPv4, CIDR notation, Basics of IP support protocols (ARP, DHCP, ICMP), Network Address Translation (NAT); Transport layer: flow control and congestion control, UDP, TCP, sockets; Application layer protocols: DNS, SMTP, HTTP, FTP, Email.

Syllabus for Faculty Recruitment (Assistant Professor)

<u>Civil Engineering Department</u>

Section 1: Structural Engineering

Engineering Mechanics: System of forces, free-body diagrams, equilibrium equations; Internal forces in structures; Frictions and its applications; Centre of mass; Free Vibrations of undamped SDOF system.

Solid Mechanics: Bending moment and shear force in statically determinate beams; Simple stress and strain relationships; Simple bending theory, flexural and shear stresses, shear centre; Uniform torsion, Transformation of stress; buckling of column, combined and direct bending stresses.

Structural Analysis: Statically determinate and indeterminate structures by force/ energy methods; Method of superposition; Analysis of trusses, arches, beams, cables and frames; Displacement methods: Slope deflection and moment distribution methods; Influence lines; Stiffness and flexibility methods of structural analysis.

Construction Materials and Management: Construction Materials: Structural Steel – Composition, material properties and behaviour; Concrete - Constituents, mix design, short-term and long-term properties. Construction Management: Types of construction projects; Project planning and network analysis - PERT and CPM; Cost estimation.

Concrete Structures: Working stress and Limit state design concepts; Design of beams, slabs, columns; Bond and development length; Prestressed concrete beams.

Steel Structures: Working stress and Limit state design concepts; Design of tension and compression members, beams and beam- columns, column bases; Connections - simple and eccentric, beam-column connections, plate girders and trusses; Concept of plastic analysis - beams and frames.

Section 2: Geotechnical Engineering

Soil Mechanics: Three-phase system and phase relationships, index properties; Unified and Indian standard soil classification system; Permeability - one dimensional flow, Seepage through soils – two - dimensional flow, flow nets, uplift pressure, piping, capillarity, seepage force; Principle of effective stress and quicksand condition; Compaction of soils; One-dimensional consolidation, time rate of consolidation; Shear Strength, Mohr's circle, effective and total shear strength parameters, Stress-Strain characteristics of clays and sand; Stress paths.

Foundation Engineering: Sub-surface investigations - Drilling bore holes, sampling, plate load test, standard penetration and cone penetration tests; Earth pressure theories - Rankine and Coulomb; Stability of slopes – Finite and infinite slopes, Bishop's method; Stress distribution in soils – Boussinesq's theory; Pressure bulbs, Shallow foundations – Terzaghi's and Meyerhoff's bearing capacity theories, effect of water table; Combined footing and raft foundation; Contact pressure; Settlement analysis in sands and clays; Deep foundations – dynamic and static formulae, Axial load capacity of piles in sands and clays, pile load test, pile under lateral loading, pile group efficiency, negative skin friction.

Section 3: Water Resources Engineering

Fluid Mechanics: Properties of fluids, fluid statics; Continuity, momentum and energy equations and their applications; Potential flow, Laminar and turbulent flow; Flow in pipes, pipe networks; Concept of boundary layer and its growth; Concept of lift and drag.

Hydraulics: Forces on immersed bodies; Flow measurement in channels and pipes; Dimensional analysis and hydraulic similitude; Channel Hydraulics - Energy-depth relationships, specific energy, critical flow, hydraulic jump, uniform flow, gradually varied flow and water surface profiles.

Hydrology: Hydrologic cycle, precipitation, evaporation, evapo-transpiration, watershed, infiltration, unit hydrographs, hydrograph analysis, reservoir capacity, flood estimation and routing, surface run-off models, ground water hydrology - steady state well hydraulics and aquifers; Application of Darcy's Law.

Irrigation: Types of irrigation systems and methods; Crop water requirements - Duty, delta, evapo-transpiration; Gravity Dams and Spillways; Lined and unlined canals, Design of weirs on permeable foundation; cross drainage structures.

Section 4: Environmental Engineering

Water and Wastewater Quality and Treatment: Basics of water quality standards – Physical, chemical and biological parameters; Water quality index; Unit processes and operations; Water requirement; Water distribution system; Drinking water treatment.

Sewerage system design, quantity of domestic wastewater, primary and secondary treatment. Effluent discharge standards; Sludge disposal; Reuse of treated sewage for different applications.

Air Pollution: Types of pollutants, their sources and impacts, air pollution control, air quality standards, Air quality Index and limits.

Municipal Solid Wastes: Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal).

Section 5: Transportation Engineering

Transportation Infrastructure: Geometric design of highways - cross-sectional elements, sight distances, horizontal and vertical alignments.

Geometric design of railway Track - Speed and Cant.

Concept of airport runway length, calculations and corrections; taxiway and exit taxiway design.

Highway Pavements: Highway materials - desirable properties and tests; Desirable properties of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of flexible and rigid pavement using IRC codes.

Traffic Engineering: Traffic studies on flow and speed, peak hour factor, accident study, statistical analysis of traffic data; Microscopic and macroscopic parameters of traffic flow,

fundamental relationships; Traffic signs; Signal design by Webster's method; Types of intersections; Highway capacity.

Section 6: Geomatics Engineering

Principles of surveying; Errors and their adjustment; Maps - scale, coordinate system; Distance and angle measurement - Levelling and trigonometric levelling; Traversing and triangulation survey; Total station; Horizontal and vertical curves.

Photogrammetry and Remote Sensing - Scale, flying height; Basics of remote sensing and GIS.