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MOSFET capacitances

• L=LM-2LD
– L: the actual channel length
– LM: the mask length of the 

gate
– LD: the gate-drain, the gate-

source overlap
• On the order of 0.1μm
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Oxide related capacitance(1)

• The gate electrode overlap 
capacitance
– CGD(overlap)=CoxWLD

– CGS(overlap)=CoxWLD

• With Cox= ox/tox

– Both capacitance do not depend 
on the bias condition, they are 
voltage-independent

• The capacitances result from the 
interaction between the gate 
voltage and the channel charge
– Cut-off mode

• Cgs=Cgd=0
• Cgb=CoxWL

– Linear mode
• Cgb=0
• Cgs≅Cgd ≅(1/2) CoxWL

– Saturation mode
• Cgb= Cgd =0
• Cgs≅ (2/3) CoxWL
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Oxide related capacitance(2)

• The sum of all three voltage-dependent (distributed) gate oxide 
capacitances (Cgb+Cgs+Cgd)
– A minimum value of 0.66CoxWL, in saturation mode
– A maximum value of CoxWL, in cut off and linear modes
– For simple hand calculation

• The three capacitances can be considered to be in parallel
• A constant worst-case value of CoxW(L+2LD) can be used for the sum of 

MOSFET gate oxide capacitances 
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Junction capacitance(1)
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Example 7
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Junction capacitance(2)
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Example 8 (1)
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Example 8 (2)
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