
Object Oriented Programming

Unit-1

Tokens

• Separator is a token used to separate two
individual tokens used in a java program.

• Tokens in Java are the small units of code which a Java
compiler uses for constructing those statements and
expressions. Java supports 5 types of tokens which are:

• Keywords

• Identifiers

• Literals

• Operators

• Special Symbols

Fig. of Tokens

Keywords

• Keywords in Java are predefined or reserved words that have
special meaning to the Java compiler.

• Each keyword is assigned a special task or function and cannot
be changed by the user. You cannot use keywords as variables
or identifiers as they are a part of Java syntax itself.

• A keyword should always be written in lowercase as Java is a
case sensitive language. Java supports various keywords,
some of them are listed below:

List of Keyword

Identifier

• Java Identifiers are the user-defined names of variables,
methods, classes, arrays, packages, and interfaces. Once you
assign an identifier in the Java program, you can use it to refer
the value associated with that identifier in later statements.
There are some de facto standards which you must follow
while naming the identifiers such as:

• Identifiers must begin with a letter, dollar sign or underscore.
• Apart from the first character, an identifier can have any

combination of characters.
• Identifiers in Java are case sensitive.
• Java Identifiers can be of any length.

Constant

• A constant is a variable whose value cannot change once it
has been assigned. Java doesn't have built-in support for
constants.

• A constant can make our program more easily read and
understood by others. In addition, a constant is cached by the
JVM as well as our application, so using a constant can
improve performance.

• To define a variable as a constant, we just need to add the
keyword “final” in front of the variable declaration.

Syntax:-
final float pi = 3.14f;

Data Type

• Data type specifies the size and type of variable values,
and it has no additional methods.

Data types are divided into two groups:
• Primitive data types–

includes byte, short, int, long, float, double,
boolean and char

• Non-primitive data types –
such as String, Arrays and Classes

Data Type

Type Casting

• A type cast is basically a conversion from one type to another.
There are two types of type conversion:

• Implicit Type Conversion
Also known as ‘automatic type conversion’.
– Done by the compiler on its own, without any external

trigger from the user.
– Generally takes place when in an expression more than

one data type is present. In such condition type conversion
(type promotion) takes place to avoid lose of data.

– All the data types of the variables are upgraded to the data
type of the variable with largest data type.

Type Casting

• Explicit Type Conversion: This process is also called type
casting and it is user-defined. Here the user can typecast the
result to make it of a particular data type.

Program of Explicit

#include<iostream>
using namespace std;

int main()
{
int x=10;
char y=‘A’;
int result;
result=x+y;
count<<result<<endl;
}

Program of Implicit

#include<iostream>
Using namespace std;

int main()
{
float x=5/2;
cout<<x<<endl;

}

#include<iostream>
Using namespace std;

int main()
{
float x=(float)5/2;
cout<<x<<endl;
}

#include<iostream>
Using namespace std;

int main()
{
float x=(float)(5/2);
cout<<x<<endl;
}

Interface

• An interface describes the behavior or capabilities of a C++
class without committing to a particular implementation of
that class.

• The C++ interfaces are implemented using abstract
classes and these abstract classes should not be confused
with data abstraction which is a concept of keeping
implementation details separate from associated data.

Program of Interface

Class box
{
Public:
// pure virtual function
virtual double getVolume()=0;
Private:
double length;
Double breadth;
Double height;
}

Operator and Expression

WHAT ARE OPERATORS?
The operators are the special type of functions that
takes one or more parameters and gives new
result. It is a symbol that tells the compiler to
perform the mathematical and logical
manipulations. The programming language like C or
C++ is incomplete without the use of operators.

Operator

SOME OF THE BUILT IN OPERATORS ARE
• Arithmetic operators
• Relational operators
• Logical operators
• Assignment operators
• Bitwise operators
So, let us have a look all these operators briefly.

ARITHMETIC OPERATORS
• The arithmetic operators are used to perform the arithmetic

operations on the operands. The operations can be
addition, multiplication, subtraction and division.

Operator

RELATIONAL OPERATORS
• The relational operators are those operators that are used

to compare the values of two operands. For example, by
comparing two operands that their values are equal or not,
or the value of one operand is greater than the other.

LOGICAL OPERATORS
• The logical operators are those operators that are used to

combine two or more conditions. The logical operators are
AND (&&) and OR (||). If we combine two statements
using AND operator then only both the valid statements
will be considered and if we combine two statements using
OR operator then only either one of them will be
considered.

Operator

BITWISE OPERATORS
• The bitwise operators are those are used to perform bit level operations

on the operands. In the bitwise operators first operators are converted to
bit level and then calculation is performed on the operands. Some of the
operations which are performed are addition, subtraction, multiplication,
division, etc.

Eg:-
#include <stdio.h> 12 = 00001100 (In Binary)
int main() 25 = 00011001 (In Binary)
{ Bit Operation of 12 and 25
int a = 12, b = 25; 00001100
printf("Output = %d", a&b); & 00011001
return 0; ----------------------
} 00001000=8(In decimal)

Expression

WHAT ARE EXPRESSIONS?
• An expression is a sequence of operators and the operands. It

is a form when you combine operands and operators.
THE EXPRESSIONS ARE OF THREE TYPES
• Arithmetic expression
• Relational expression
• Logical expression
ARITHMETIC EXPRESSION
• An arithmetic expression is that expression in which

arithmetic operators are used. Like addition, multiplication,
subtraction, division, etc.

Expression

RELATIONAL EXPRESSION
• A relational expression is that expression in which relational

operators are used. The operators provided in relational
expression are less than (<), greater than (>), less than equal
to (<=), greater than equal to (>=), etc.

LOGICAL EXPRESSION
• A logical expression is that expression in which logical

operators are used. Some of the logical operators are AND
(&&), OR (||), NOT (!).

Operator precedence

Example:-
c=a+b*d

c=(a+b)*d

Operator Precedence

• Example:-
a,b=10,c=10,d=20

a=b+c*d a=(b+c)*d
a=10+10*20 a=(10+10)*20
a=10+200 a=20*20
a=210 a=400

• a=b=c=d

Conditional Statement in C++

• Different form of implementation of if
statement are:-

• Simple if statement
• If else statement
• Nested if-else statement
• Else if statement

Conditional Statement in C++

• Simple if Statement:-
This is used to execute the statement only if the condition
is true.

Syntax:- if(condition)
{

block of statement;
}

Conditional Statement in C++

1. if (20 > 18) {
cout << "20 is greater than 18";

}

2. int x = 20;
int y = 18;
if (x > y) {
cout << "x is greater than y";

}

Conditional Statement in C++

• Print "Hello World" if x is greater than y
int x = 50;
int y = 10;
___(x___ y)
{
cout << "Hello World";
}

Conditional Statement in C++

• If else Statement:-
Use the else statement to specify a block of code to be
executed if the condition is false.

Syntax:-
if (condition) {

// block of code to be executed if the condition is true
} else {
// block of code to be executed if the condition is false

}

Conditional Statement in C++

• int time = 20;
if (time < 18) {
cout << "Good day.";

} else {
cout << "Good evening.";

}

Conditional Statement in C++

• Nested if Statement:-
A nested if in C++ is an if statement that is the target of

another if statement. Nested if statements means an if
statement inside another if statement.

Syntax:-

int main()
{

int i = 10;

if (i == 10)

{
// First if statement
if (i < 15)

cout<<"i is smaller than 15\n";

if (i < 12)
cout<<"i is smaller than 12 too\n";

else
cout<<"i is greater than 15";

}

return 0;
}

Conditional Statement in C++

• Else if Statement:-
Use the else if statement to specify a new condition if the first

condition is false.
Syntax:-

if (condition1) {
// block of code to be executed if condition1 is true

} else if (condition2) {
// block of code to be executed if the condition1 is false and

condition2 is true
} else {
// block of code to be executed if the condition1 is false and

condition2 is false
}

Conditional Statement in C++

• int time = 22;
if (time < 10) {
cout << "Good morning.";

} else if (time < 20) {
cout << "Good day.";

} else {
cout << "Good evening.";

}

Iterative Statement

• The statements that cause a set of statements to be executed
repeatedly either for a specific number of times or until some
condition is satisfied are known as iteration statements.

• That is, as long as the condition evaluates to True, the set of
statement(s) is executed.

• The various iteration statements used in C++ are
– for loop,
– while loop and
– do while loop.

Iterative Statement

• For Loop:-
The for loop is one of the most widely used loops in C++. The
for loop is a deterministic loop in nature, that is, the number
of times the body of the loop is executed.
Syntax:-

for(initialize; condition; inc/dec)
{

//body of the for loop
}

Iterative Statement

Example of for loop:-

#include<iostream>
using namespace std;
int main() {
int n;
for(n=l; n<=10; n++)
cout<<n<<" ";
return 0;

}

Iterative Statement

• While loop:-
The while loop is used to perform looping operations in
situations where the number of iterations is not known in
advance. That is, unlike the for loop, the while loop is non
deterministic in nature.

The syntax of the while loop is:-
while(condition)

{
// body of while loop
}

Iterative Statement
#include<iostream>
using namespace std;
int main() {

int n,i,sum;
cout<<" Enter the number of consecutive positive"<<
"\n integers(starting from 1): ";
cin>>n;
sum=0;
i=1;
while (i<=n) {
sum+=i;
++i;

}
cout<<"\nThe sum is "<<sum;
return 0;
}

Iterative Statement
#include<iostream>
using namespace std;
int main() {
int n,i,sum;
cout<<" Enter the number of consecutive

positive"<<
"\n integers(starting from 1): ";
cin>>n;
sum=0;
i=1;
while (i<=n) {
sum+=i;
++i;

}
cout<<"\nThe sum is "<<sum;
return 0;
}

n=5
sum=0
i=1
1<=5
sum=sum+i
sum=0+1
sum=1
i=2 2<=5
sum=3
i=3 3<=5
sum=6
i=4 4<=5
sum=10
i=5 5<=5
sum=15

Iterative Statement

• In a while loop, the condition is evaluated at the beginning of
the loop and if the condition evaluates to False, the body of
the loop is not executed even once.

• If the body of the loop is to be executed at least once, no
matter whether the initial state of the condition is True or
False, the do-while loop is used.
Syntax:-

do {
//body of do while loop
}while(condition) ;

Iterative Statement
#include<iostream>
using namespace std;
int main () {
int a,d,n,sum,term=0 cout<<"Enter the first term,

common difference,"
<<"and the number of terms to be summed"
<<"respectively:\n";
cin>>a>>d>>n;
sum=0;
int i=1;
cout<<"\nThe terms are ";
do //do-while loop {
term= a+ (i-1)*d;
sum+=term;
cout<<term<<" “;
++i;

}
while (i<=n) ;
cout<<"\nThe sum of A.P. is "<<sum;
return 0;
}

Term=0
a=3
d=6
n=3
Sum=0, i=1
Term=a+(i-1)*d

=3+(1-1)*6
=3

Sum=sum+term
=0+3=3

i=2
Term=9
Sum=3+9=12
i=3
Term=15

Sum=12+15
=27

