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Solution of algebraic and transcendental
equations

The equations of the form fix) = 0 where f(x) is purely a polynomial in x. eg. x5 - x* - x* -1 =0
is called an algebraic equation. But, if f(x) involves trigonometrical, arithmetic or exponential
terms in it, then it is called transcendental equation.

Eg. xe*-2= 0and xlog,,x - 1.2 = 0.

Basic Properties and Observations of an Algebraic Equation and its Roots:

(i) If f(x) is exactly divisible by (x - a), then o is a root of f(x).
(i) Every algebraic equation of nth degree has n and only n real or imaginary roots.
Conversely, if o, 0,,......, o, be the n roots of the nth degree equation f(x) = 0, then

f(x) = A(x- ap)(x- ay)......... (x- o).
(iif) If f(x) is continuous in the interval [a, b] and f(a), f(b) have different signs, then the

equation have at least one root between x = a and x = b (oftenly known as Intemediate
Value Theorem.)

(iv) In an equation with real coefficients, imaginary roots occur in conjugate pairs, i.e. if

o + ip is root of f(x) = 0, then o - i is also its root. Similarly, if o+ /B is an irrational

root of f(x) = 0, then o - JB is also its roots.
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Fixed point iteration method

Consider the equation f(x) =0 woll)
We rewrite the equation in the form
x=¢(x) i (2)

Let us draw two curves

y=xandy=¢ (x)
The point of intersection of two curves is the root of (1).
Letx = x, be an initial approximate root, then first
approximation x, is found by

X, =6 (x)
Now taking x, as initial value, x, second
approximation is given by

X, = 0 (x,) and so on.

£ =)

This is also known as successive approximation method. © %, w4

P X
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Test for Convergence

For convergence it is convenient to identify an interval that contains the root and for which
¢ (x) has small magnitude.

x=¢ (x)

o = ¢ () ooy

x=ft&,_,) (2]
Subtracting (1) from (2), we have

X, —ot =¢(x,_;) —¢(x) ... 3)
By Mean value theorem

¢ (x,_1)— () i

i =¢" (&), where X, , <E<a . (@
n—1

Substituting the value of ¢(x,_;)—¢ () from (4) in (3). we get
Xp —OL = (xn—:' _':1) ¢"(E.r)
| %, —o| < k| x,_; —x] [If $'(x;)<k<l forall i] ... (5)

Similarly, |x,;-o|=<k|x, ,—a] ... (6)
Putting the value of |X,_; —| from (6) in (5). we have

2
|x, —a| <k |x,_,—a|

.............................................
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X -0 | SK" |3 - al

lim k"= 0

X, -a|=0 e

S0, the approximation converges by this method.

Note. 1, The rate of convergence is more if the value of ¢ (x) is smaller.
2, For real roots, the method is very useful.

Remember. The equation f (x) = 0 is written as x = ¢ (x).

This form x = ¢ (x) can be choosen in many ways. We have to choose ¢ (x) in such a way that
initial approximation x, should satisfy the condition | ¢ " (x ) [ <.

Them X, X, X, o x converge to the root o of the equation f (x) = .
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Problem -1

 Apply fixed point iteration method to find the real root of xe* = 1 correct to
three decimals, assume initial approximation as xo = 0.5

Solution.
The condition for the convergence of the iterative scheme is

| ¢ : (xk ) I <1.
Here xe* =1 =X = (i 0
= ¢ () = e~
Putting x =0.51in (1), we get

X, = gr03:=10.6065

Again putting x = 0.6065 in (1), we have

x, = e 96085 — 0.5453

Similarly putting the successive values of x in (1), we get
x, =e 33 =0.5797

x, =e 3777 =0.5601

x, =e 30 =0.5712 (') =—e*

x, =e %'2=0.5648 1$7(0.5) =—e %3
x, = e 348 =(.5685 = —0.6065
x, = e ~5%%5 =0.5664 ¢ (0.5 |<1
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x, =e %1 =(0.5676
x,, =e %=(0.5669
X, =e~=05673
X, g =000 =) 5671
X, =e 91 =0.5672

13
The above iterates are written to show the convergence of the iterates.

0.6065 ————" 0.5000
. | 08797 =T 05453
5] - ©
'§ 0.5712 3 0.5601 '§
@ | 0568 ST 05648 =
g 0.5676 = hsEed -5
E 0.5673 «—T—— ().5669 g

< P —
v 05672 v v 0.5671y

0.5671
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Newton-Raphson method

Let x, be an approximate root of /' (x) = 0 and let x, = x, + & be the correct root so that
f (x, + h) =0
To find %4, we expand f (x, + &) by Taylor's Series
2

h* .
fG&+h = fe)+rf &)+ 55 d Co) e If &, + k) = 0]
0O =f (x)) + hf’ (x,) [Neglecting the second and higher order derivative]
2 AR J (x0)
S (xp)
But x, = x,+ h
; e S 0)
Putting the value of /2, we get = x, =% Fees)
1 < ~ —_ X3 — M
x, is better approximation than x . X%, = ¥ £ x)
x, is better approximation than x .
Successive approximations are A S — e all
11 L FiGe)
xn +1 " f'(xn)
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Geometrical Interpretation

Let P, P be a curve y = f(x).
Slope of the tangent £ B to the curve at the point P (x_. v ) = f(x)).
Tangent P B cuts the x-axis at B L.e. (x, 0). F o)
X, - OB -
= 0A - AB
- X - P, Acot¥

W T T S—— [y e e — s — e L

_ 54 [.‘4..\' - 1O%) . wcot w]

o tanwy AN
B 4 . -
= £ (%) (First approximation)

The tangent to the curve at P (corresponding to x ) cuts the axis at C (x,, 0).
Using x, as the starting point, then
S (%)
» - = —_ x —_— e —— —_—
Similarly > A 1 £ ()
Now x, is nearer to o than x, (second approximation).
The process can be repeated and the root « is approached very fast.
x = X, — f(x")

nme f(xn)

1V

MMS-203 Numerical Methods for Scientific Computations



Madan Mohan Malaviya Univ. of Technology, Gorakhpur

By Newton-Raphson formula
_ S(x,)
Xov1 n f(x,)
. S0 _x[0)= @)
T T W

On differentiating both sides w.r.t °x’, we get
@ @+xf - @] =[x f )-f )] f" )

¢,(X) = [f'(x)]z
_ b = [/ O +x 0 f " @-[f @] —x £ @) f @)+ @) [ (%)
Lf' @)
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S (x) [ (x)
= @ =)
For convergence, |¢"(x)|<]
f(x)-f"gx) 1
[/ (x)]
[ @<[f @]
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) Rate of Convergence of Newton — Raphson Mathod

Let x (approximate root) differs from the actual root o by a small quantity 7 .

So X = cx+hn .. (1)
G T ath, - @
By Newton-Raphson Formula
RACH
X ., = 7(x,) .. 3)
Putting the values of X and X from (1) and (2) in (3), we get
fa+h) S (o+h,)
+h = (I‘*‘hn - L h = hﬂ - ]
T, f’(CH'hn) = My f ((1+hn)

On expanding f(a+h,) and f'(o+h,) by ’lfaylor‘s Series, we get
f@)+h, f@)+—h’ f"(@)+...
by = b - 2

! [/ (@) +h, [ (@)+....
We know that f(a)=0, so

13
MMS-203 Numerical Methods for Scientific Computations



Madan Mohan Malaviya Univ. of Technology, Gorakhpur

hf (o) +%h,,2 (o) +...

Boi imih
L ot h @
bt @+ S @b @SB [ @ B @
S (@)+h, f7(a)+.... Iz (Ol)+h S (@)
I h, [ 2f 7 ((a))} approximately [/ () neglected]
S (@)
h, oh? (Zf'(a) constant)

1. It means that subsequent error /,.; at each step is proportional to the square of the
previous error & . So, the number of correct decimal is approximately doubled at each

J (@)

iteration if @ 8 not too large.

2. Convergence is of quadratic order i.e. P= 2.
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Problem-2

« Using Newton-Raphson method, find the real root of xlogiox = 1.2
correct to five decimal places.

Solution. Let J&x) = xlog, x-12
f(1) = -12=-ve,
J(2) = 2log,,2-12=-0.59794 = -ve
and f(3) = 3log,3-12=14314-12=0.23136=+ve
f@2).f6) < 0
So, aroot of f(x) = O liesbetween 2 and 3.
Let us take ¥ = 2
Also, [ (x) = logy x+x.% log,, e =log,, x+0.43429

. Newton's iteration formula gives

N f(x,) o oo log,px,-1.2  x,log), x,+0.43429x, —x, log;, x, +1.2

X = =
TR ) 7 logyg x, +0.43429 log,, x,, +0.43429

15
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. 0.43429x,+1.2
logy, x, +0.43429 - (1)

Putting x, = 2,the first approximation is

0.43429xx,+1.2  0.43429x2+1.2
LT logy X +0.43429  log,, 2+0.43429

0.86858 +1.2
= 0.30103+0.43429
Similarly putting n =1, 2, 3, 4 in (1), we get
L 0.43429x281+12 _, ..
2 log,, 2.81 + 0.43429

0.43429x2.741+1.2

x = =2.74065
3 log,,2.741 + 0.43429
2l 0.43429x2.74065+1.2 274065
4 log,, 2.74065 + 0.43429
Clearly, X = x
Hence, the required root is 2.74065 correct to five decimal places. Ans.
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Solution of linear system of
equations

INTRODUCTION

We have already solved simultaneous equations of two or three unknowns. When the number
of unknowns in simultaneous equations is large, then it becomes tedious to solve them by the
known methods. Simultaneous equations of large number of unknowns are very important in
the field of science and engineering. Now, we will use the following methods to solve such

simultaneous equations.
1. Direct method
(a) Gauss elimination method (b) Gauss-Jordan method
(¢) Crouts method (Factorisation method)
2, Iterative method
(a) Jacobi method
(b) Gauss-seidel method

MMS-203 Numerical Methods for Scientific Computations i
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Gauss elimination method

In this method the unknowns of equations below are eliminated and the system is reduced to
an upper triangular system. The unknowns are obtained by back substitution.

Let a system of simultaneous equations in » unknowns x ., x,.......... x _be
a.x +a,x, +...... ta x =b ... (1)
a, x ta, x,+..... ta, x =b, L ()
a x +ta, x,+ ... ta x =0b_ v ()
Method to solve the above equations
Step 1. We eliminate x, from 2nd, 3rd ............ nth equation with the help of the first equation
a, x, + a., x2+ .............. + a x =0b
+ r — r
22.1:2+ et @, X X
a'2x2+ .............. ta, x =b
Step 2. We again eliminate x, from ’ird 4th..... nth equation with the help of second equation.
a,x +a, x, + a,x, t...eeereen. a,x, = b
C iRt I T AN, RN - +a, x = bt
a 33x3+ obdubdnindunsas T FR] [ P | 11 | BN
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ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

[n the third step we will eliminate x, and in fourth step x, and so on.
Finally the system of equations will be of the following form.

allxl+al2x2+ """""" alnxn = bl
8. %P ta,.x = b
cx =d

m n n

The given system is reduced to the above form i.e. triangular form.
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Problem-3

Example 1. Solve the following equations by using Gauss-elimination method

2x1+4x3+ X, | == 3
3xl+ 2x3—2x3 = =2
x—-x, + x, = 6

Solution. Third equation is written as first equation, the system becomes as

x,— x,+ x, = 6 .. (D
2x, + 4x,+ x, = 3 .. (2)
3, + 2x,—2x, = -2 ... (3)
Step 1. Subtracting 2 (1) from (2). and 3 (1) from (3). we get
x—x,+ x, = 6
6x, — x, = —9 e (B
S5x, — 5x, = =20 ... (5)
Step 2. Operate % 5 -
x,—x,+x, = 6 .. (D
6x,—x, = —9 ... (6)
—5x, = —15 e (D
Step 3. Backward substitution
-15
From (7), *3 = —5 = 3
From (6), 6x, -3 =-9 = 6x, = —6 = x, =—1
From (1), x, —(-1)+3=6 = x,=6-3-1=2
Hence, x,=2, x,=-1, x,=3 Ans.

20
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Gauss Jordan method

This is modification of the Gauss elimination method.

By this method we eliminate unknowns not only from the equations below but also from the
equations above. In this way the system is reduced to a diagonal matrix.

Finally each equation consists of only one unknown and thus, we get the solution. Here, the
labour of backward substitution for finding the unknowns is saved.

Gauss-Jordan method is modification of Gauss elimination method.

Example Apply Gauss-Jordan method to solve the equations :
x+y+z =9
2x —3yv+ 4z = 13
3x +4y + 5z = 40
Solution. The following system of linear equations can be written in matrix form:

By using Gauss Jordan method we have

1 1 1] [x] [ 9 ] 1 1 [ x 9
2 -3 4 y| = |13 L O -5 2 Y| _|-S5| R, —>R,—2R
3 4 5| [z] | 40 | 0 1 2] | =z 13| R; > R; — 3R,
- - . -
™y - o] 1 o -
I N N o 51[= 81R, —>R, +— R,
1l O -5 2| |¥| = |-5 =0 =5 2||¥y|=]|_5
12 z 12 1 12 z
O o —| = - - T R; >R, +— R — 12
i 5 | 3 3 T35 % _0 0 5 |
12 _
1 0 O] Ix i 1 0 0] Iy iy 1R .
- 2—>__ 2
iR 0o -5 0 y| = |15 | R, >R, —gR3 e O 1 0 y| =
o 0 % z 12 O 0 1 | z 5 Rs—)iRa

Hence, x=1, y=3, z=35

MMS-203 Numerical Methods for Scientific Computations £
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lterative Methods

We start with an approximation to the true solution and by applying the method repeatedly
we get better and better approximation till accurated solution is achieved.

There are two iterative methods for solving simultaneous equations.

(1) Jacobi's method (method of successive correction).

(2) Gauss-Seidel method (Method of successive correction).

JACOBI'S METHOD
The method is illustrated by taking an example.
a x+a, y+a;z=h

Let ayy X+ay y+ayz=>b .. (1)
az) Xx+axy; y+az z = by
After division by suitable constants and transposition, the equations can be written as
x=c —k,y—ksz
y=cy—kyx—kyz )
z=c3—k3y x—k3; ¥
Let us assume x = 0, y = 0 and z = 0 as first approximation, substituting the values of x, y, z
on the right hand side of (2), we getx = ¢, ¥y = ¢, z = c¢,. This is the second approximation to the
solution of the equations.
Again substituting these values of x, y, z in (2) we get a third approximation.
The process is repeated till two successive approximations are equal or nearly equal.
Note. Condition for using the iterative methods is that the coefficients in the leading diagonal
are large compared to the other. If these are not so, then on interchanging the equation we can
make the leading diagonal dominant diagonal.

MMS-203 Numerical Methods for Scientific Computations &
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Problem -4

Example  Solve by Jacobi’s method
x+y+3z =17
x+tiy+z =14
2x—-y+8 =12
Solution. The above equations can be written as

WLET 102 )] 3=
4 4 4

14 _x 2z

f > (3]3S ..(D
3
2 4 8 |

On substituting x = y = z = 0 on the right hand side of (1), we get

17 14 3

X =—,y=—, 2=
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A gain substituting these values of x., yv. zon R H.S. of (1). we obtain

17 7 2 _ 27
* T a 10 = a0
_1a 17 3 _ 33
» = s 20 10 20
3 =T 7 &3
z = = — — 4+ ——— = ——
2 16 20 |0
Again putting these values on R H.S. of (1) we get next approximations.
- — 17 33 189 _ 1039 _ 3 o5
4 |0 320 320
o B °7 63 _ 863 _ , ,6&
o 200 400 400
3 o7 33 176
z = — — -+ = = 1.1
2 160 160 160
Substituting. again. the values of x, yv. zon R H.S. of (1). we get
e = 17 _ 216 _ 3A.D _ , ggs
a a a
B e e M O
s S 5
. _ 3 _32s 2.16 _ oo
2 4 s
Repeating the process for x = 2. 885 y = 1.93, =z —= 0.96., we have
L 1S3 3
- = - == = 0.96 = S e —
o a a2 A > 4.25 0.48 0.72 3.05
14 2.88S5 O.96
e — = 2.8-0.577 — =
5% =S =S s O.192 2.03
S S 0.721 +0.241 — 1.02
= T a = T e TREs - s
This can be written in a table
Iterations 1 2 3 -+ 5 S
17 3 3= 17 — o7 = 1039 =
= — e —_—g.2 e 42sS = 2S5 ~
*=a  a "a = a - a0 320 B e
14 x = 14 33 V|63
_— = = — =28 —=1.65 =2_16
S s s = O = > 200 1.93 2 .03
3 x v 3 _ S3 — 176
< B . = — = O. 7875 = 1
=2 a = © > > |0 160 ©-2c 1.0=2
After Gth iteration == S, =203, z = 1.02

The actual values are x = 3., yv = 2, =z = Ans.
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Gauss Seidel Method

a,x+a,y+a;yz=h
Let Ay X+ay y+apnz=>b .. (1)

.a.31‘x+a32y:i-a33z=b3 . ' .
After division by suitable constants and transposition, the equations can be written as
x=c¢ —kyy—ksz

y=c¢,—kyx—kyz )
z=c3—ky x—ky y

Gauss-Seidel method is a modification of Jacobi's method. In place of substituting the same set
of values in all the three equations (2)
earlier step.

Step 1. First we put y = z = 0 in first of the equation (2) and x = ¢. Then in
second equation we put this value of xi.e., ¢, and z = 0 and obtain y. In the third equation we use the
values of x and y obtained earlier to get z.

Step 2. We repeat the above procedure. In the first equation we put the values of y and z
obtained in step 1 and redetermine x. By using the new value of x and value of z obtained in step 1 we
redetermine y and so on.

In other words, the latest values of the unknowns are used in each step.

Consider the following equations

ax+by+cz =d
ax+bytecz = d,
axtby+c,z = d
The above equations can be rewritten as
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1 1 1

x=—ld-by-¢qz] = o= [d2 —ax—¢, Z] L z=— [d;—a; x-b; y]
a b, €3

Initial approximations

X=X, Y=y, I=z

To find X = x

1
X '= == [dl -b yp ‘Clzo]
a

To find y = y;ptx=x,z2=2z
y, = é[dz—azx,—czz(,]
To find z = z,putx=x, y=y
z, = é[d3_03xl_b3}’1] and so on.

Note 1. The convergence of Gauss Seidel method is twice as fast as in Jocobi's method.
2. If the absolute value of largest coefficient is greater than the sum of the absolute
value of all the remaining coefficient than the method converses for any initial
approximation.

MMS-203 Numerical Methods for Scientific Computations
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Problem -5

Describe a method for solving a system of linear equations. Solve the following
system of linear equations using Gauss-Seidel method
23x, + 13x, + 3x, = 29
5.1'1 + 23:!n:‘2 + ?x3 =37
llxl_ it A 23x, = 43

Solution.

Here, we have
23x, +13x, +3x,= 29
5.1'1 i 23:!n:‘2 i 7x3 =37
8 -l X, 1 233:3 =43
Solving each equation of the given system for the unknowns with largest coefficient in terms

of the remaining unknowns, we have
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X =53 (29 - 13x, - 3x.) eI}
1
A E (37 - le - ?xa) Al
1
- M 73 (43 - ll.:rI —~ xz) .. (3)
For first iteration
Putting - A 0, Mo 0 in (1), we get

1
x, = 53 [29]= 126087

Putting x, = 126087, x,=0 in (2), we get
> W % [37 - 5 (1.26087) — 0] = 1.33459
Putting x, = 1.26087 and x, = 1.33459 in (3), we get
X, = % [43 — 11 x (1.26087) — 1.33459]
1

= — [43 - 13.86957 - 1.33459] = 1.20851

MMS-203 Numerical Methods for Scientific Computations
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For the second iteration

Putting x, = 1.33459 and x; = 1.20851 in (1), we get
1
C [29 — 13 x 1.33459 — 3 x 1.20851]
1
= a3 [29 — 17.34967 — 3.62553] = 0.34890
Putting x, = 0.34890 and x, = 1.20851 in (2). we get
1
X, = 53 [37 — 5 x0.34890 — 7 x 1.20851]
1
= 53 [37 — 1.74450 — 8.45957] = 1.16504
Putting x, = 0.34890 and x, = 1.16504 in (3). we get
1
o S [43 — 11 x 0.34890 — 1.16504]
1
= 53 [43 — 3.8379 — 1.16504] = 1.65205
For the third iteration
Putting x, = 1.16504 and x, = 1.65205 in (1). we get
1
X, = 33 [29 — 13 x 1.16504 — 3 x 1.65205]
1
= 353 [29 — 15.1502 — 4.95615] = 0.38668
Putting x, = 0.38668 and x, = 1.65205 in (2). we get
1
> el [37 — 5 < 0.38668 — 7 = 1.65205]
1
= [37 — 1.9334 — 11.56435] = 1.02184

MMS-203 Numerical Methods for Scientific Computations
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x, = 0.38668 and x,= 1.02184 in (3), we get
1

X3 = 23 [43 — 11 x 0.38668 — 1.02184]
1
= 3 [43 — 4.25348 — 1.02184]
= 1.640203
For the fourth iteration
Putting x, = 1.02184 and x, = 1.640203 in (1), we get

1
X, =33 [29 — 13 x 1.02184 — 3 x 1.640203]

1
x = 7= [29 — 13.28392 - 4.89498] = 0.46937

! 23
Putting x, = 0.46937 and x, = 1.640203 in (2), we get
1
X, = 33 [37 =5 x0.46937 — 7 x 1.640203]

1
53 [37 - 2.34685 — 11.481421] = 1.007466

Putting x, = 0.46937 and x, = 1.007466 in (3), we get

1
X3 = 33 [43 — 11 x 0.46937 — 1.007466]

1
= 5% [43 — 5.16307 — 1.007466] = 1.601281

MMS-203 Numerical Methods for Scientific Computations
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I
X =% [29 - 13 x 1.007466 - 3 x 1.601281] = 0.48257

=
]

1
X, =5 [43 - 11 x 0.48257 - 1.016443] = 1.594578

The following table shows all the iterations

I
T [37 -5 x 0.48257 - 7 x 1.601281] = 1.016443

X, 1.26087 0.34890 0.38668 0.46977 0.48257
X, 1.33459 1.16504 1.02184 1.007466 1.016443
X, 1.20851 1.65205 1.640203 1.601167 1.594578
x, = 048257, x, = 1016443, x, = 1.594578

MMS-203 Numerical Methods for Scientific Computations
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Jacobi’'s method for symmetric matrices

The Jacobi method is suitable for finding the eigenvalues of a real symmetric matrices. A real symmetric matrix is system-
atically reduced to a diagonal matrix by Jacobi method. This method use the similarity transformed matrix which is simpler
but has the same eigenvalues as the given matrix. The transformation matrices which are used are orthogonal matrices.
The advantage of using orthogonal matrices is that it minimizes errors in the process. Jacobi method can be used to find
all eigenvalues simultaneously of any real symmetric matrix A. We know from matrix theory that, the eigenvalues of a real
symmetric matrix A are real. This method reduces the given matrix to a diagonal form, where the diagonal elements are

the eigenvalues of the given matrix. In this method, the given matrix A is transformed to a new matrix A; by the scheme

Ay = PTAP (6)

Where P, is an orthogonal matrix. Therefore, P! = P! This transformation introduces a zero at a non-diagonal position

of A. Then another matrix A, is produced by the equation

Ay =Py A\ Py = PP APLP) [by (6)]
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in which a new non-diagonal element is reduced to zero. Continuing this process of reducing the non-diagonal elements to

zero one by one, we finally obtain a matrix

Ay =P 'P .. .P['APP, ... PP, (7)

Which is a diagonal matrix. The eigenvalues are the diagonal elements of A;. The non-diagonal element need not be reduced
exactly to zero but must be less than a specified small quantity. The orthogonal matrices F; used above are extensions of
a rotation matrix in a two-dimensional system. P,’s are chosen as follows. Suppose a non-diagonal element, say a,;, has to

be reduced to zero. If A is an n x n matrix, then P is also an n x n matrix, where the sub matrix

g gy

i i
consisting of the ith and jth rows and columns is replaced by

cosf —sinf

sin?  cos#
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All the other diagonal elements of P are equal to unity. The other non-diagonal elements are taken as zero. For example, if

Ais a4 x 4 matrix and a non-diagonal element, say a2, has to be reduced to zero. Then, we take

1 0 0 0

0 cosfl —sind 0
Py

Il
o0
o

(0 sinfl  cosf 0

0 0 0 1

Note the second and third rows and columns in (8). Now, let

11 fl1z i1y 14

g fze ey 24

A= (9)

13 d23 gy gy

14 24 fAzq 44

is a given symmetric matrix. The transformation P AP; gives
T
Ay = PrAPR (10)
The element equated to zero in the (2, 3) position of A; gives the equation

: 2 .2 .
—aaa sinf cosf + ags cos”™ # — ey sin” 0 4 agasinfcosd =0
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This equation yields,

tan 20 = = = —tan

a2 — 33 22 — {33

dagy 1 1 { 2y ‘
Solving this trigonometric equation we get four values of 8. If # has to be small, we take =3 < # < T. Substituting for
f in equations (8) and (10), we get the values of Py and A; respectively. Next, we work with A; to annihilate some other

non-diagonal element to zero. The process is truncated when all the non-diagonal elements are numerically less than the

desired accuracy. The eigenvectors are obtained as the corresponding columns of
F=P]Hg...Fk (ll)

Each step of reduction in the above method is called a rotation. The pair (4, j) is called the plane of rotation and # is the
angle of rotation. The sequence in which the elements are reduced to zero is ays, a1, ..., @10} 23,024, ..., a2, and so on.
If aii(1 # ) is reduced to zero, the element a;; also gets reduced to zero automatically by symmetry. In Jacobi method,
the number of iterations increase if the matrix is large. If A is an n x n matrix, the minimum number of rotations required

i 5 =]
to reduce A into a diagonal form may be ﬂi;—]
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Problem-1

Example Let us now consider the real symmetric matriz

1 V2 2
A= 2 3 /2
_zﬁl

to find the eigenvalues and the corresponding eigenvectors by Jacobt method,
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Solution.

The given matrix is real and symmetric. The largest off-diagonal element is a1z = a31 = 2. The other two elements in

this 2 x 2 sub matrix are a;1 = 1 and asz = 1. Now, we compute tan2f = ;2—‘:;’— where |a;;| be numerically the largest
" 17

off-diagonal element of A. Therfore

= 0 =

N

K| =

Therefore
cosf 0 —sinf
Si1= 0 1 0
sinf 0 cosf
cos T 0 —sin
= 0 1 0
| s‘iuf 0 cos %
: 0o -
Ve V3
= 0 1 0
= 0 ]
va ?..'

The first rotation gives,
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D = S;'AS: = ST AS)

-

2= 0 2 a2 & 0 -4

= 0o 1 0 V2 3 V2 0 1 0

_—;L_: 0 2 V2 1 4 0 -
(:; 2 0
=12 3 0
9 0 =1

e

We may observe that the elements dy5 and ds; got annihilated. To make sure that our calculations are correct up to this
step, we may also observe that the sum of the diagonal elements of D, is same as the sum of the diagonal elements of the
original matrix A. As a second step, we choose the largest off-diagonal element of D) and is found to be di2 = d2;1 = 2. The

other elements are di11 = 3,d22 = 3. Now, we compute

2d 22 4 w T
tan 26 = = = x.=—=x=>20=—=>0=_
di1 —dxn 3—-3 0 2 4
Thus, we construct the second rotation matrix as
cos# —sinf 0 cosT —siny 0
S2 = sinf cosl 0 = sing cou-:- 0
0 0 1 J 0 0 1
% =dy 0
v -
=% % o
V= va
0 0 1
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At the end of second rotation, we get

D, = S5'D,S; = S] D, S,
1 1 9 1 oo |
5 A 0 3 2 0 | = 0
= _ 3 1 5 i o 1
= x O 2 3 0 = 7 0
) 0 1 0 0 -1 0 0 1
5 0 0
=|lo1 o (12)
0O 0 -1

Which turned out to be a diagonal matrix and therefore we stop the computation. From equation (12), we notice that the

eigenvalues of the given matrix are 5,1 and —1. The eigenvectors are the column vectors of S = §152. Therefore,

.
- 0 -3 - == 0
%] %] V32 % |
S=818%=| 0 1 0 4 = 0
V2 V2
1 1
dn 0 - 0 0 1
- V'S v2 L
r l l ’ -
2 ~ 2 - V2
= 5 0
Ve Ve
i -1
B L v
; : : O 1 - 117 il
Hence the eigenvectors corresponding to 5, 1 and —1 are respectively [5. v 5 -2»] [— L, L 5] and [— 73,(), -:73} 0
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Eigenvalues of a matrix by Power method

POWER METHOD FOR APPROXIMATING EIGENVALUES

we saw that the eigenvalues of an n X n matrix A are obtained by solving its
chaacteristic equation

s K o Lbe A"24-- ¢ ¢, = 0.

n-2

For large values of n, polynomial equations like this one are difficult and time-consuming
to solve. Moreover, numerical techniques for approximating roots of polynomial equations
of high degree are sensitive to rounding errors. In this section we look at an alternative
method for approximating eigenvalues. As presented here, the method can be used only to
find the eigenvalue of A that is largest in absolute value—we call this eigenvalue the
dominant eigenvalue of A. Although this restriction may seem severe, dominant eigenval-
ues are of primary interest in many physical applications.

Definition of Dominant Lt A, A,,..., and A, be the eigenvalues of an n X n matrix A. A, is called the
Eigenvalue and dominant eigenvalue of A if
Dominant Eigenvector | > AL i=2,...,n

The eigenvectors corresponding to A, are called dominant eigenvectors of A.
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Not every matrix has a dominant eigenvalue. For instance, the matrix

a=[o ]

(with eigenvalues of A, = 1 and A, = —1) has no dominant eigenvalue. Similarly, the
matrx
2 0 0
A=|0 2 0
0 0 1

(with eigenvalues of A, = 2, A, = 2, and A; = 1) has no dominant eigenvalue.

EXAMPLE 1

Solution

Finding a Dominant Eigenvalue

Find the dominant eigenvalue and corresponding eigenvectors of the matrix
2 —12
A= ;
E =9
From Example 4 of Section 7.1 we know that the characteristic polynomial of A is
A"+ 3X + 2= (A+ 1)(A + 2). Therefore the eigenvalues of A are A, = —1 and

A, = —2, of which the dominant one is A, = —2. From the same example we know that
the dominant eigenvectors of A (those correspondmg to A, = —2) are of the form

3
X = tLJ. t # 0.
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The Power Method

Like the Jacob1 and Gauss-Seidel methods, the power method for approximating eigenval-
ues 1s iterative. First we assume that the matrix A has a dominant eigenvalue with corre-
sponding dominant eigenvectors. Then we choose an 1nitial approximation x;, of one of the

dommant eigenvectors of A. This imtial approximation must be a nonzero vector m R".
Finally we form the sequence given by
X, = Ax,
X, = Ax; = A(Ax,) = Azxﬂ
X, = Ax, = A[Alx[}} = A3xn

x, = Ax, , = A(A" 'x,) = A,

For large powers of k, and by properly scaling this sequence, we will see that we obtain
a good approximation of the dominant eigenvector of A.

MMS-203 Numerical Methods for Scientific Computations



Madan Mohan Malaviya Univ. of Technology, Gorakhpur

EXAMPLE

Solution

Approximating a Dominant Eigenvector by the Power Method

Complete six iterations of the power method to approximate a dominant eigenvector of

-

We begin with an initial nonzero approximation of

We then obtain the following approximations.

ol

x, = Ax,
X, = Ax,
X; = AX,
X, = Ax,
X, = AX,
X, — AX,

Tteration

2 -12
1 -5
2 -12]
|1 -5
2 -127
|1 -5
2 —12]
1 =5
2 -12
=5
2 -2
1

[—10
-4

}=

~10
~4

28]
10

:

¢

Approximation

[2.507
| 1.00

[2.80]
[ 1.00

[2.917
[ 1.00
[2.96
[ 1.00
[2.98"
[ 1.00

[2.99]
[ 1.00

—4

10

—22

46

~94

190
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Note that the approximations in Example 2 appear to be approaching scalar multiples of
3
Iy
which we know from Example 1 is a dominant eigenvector of the matrix

z =12
a=[1 5
I =5
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Given’s method for symmetric matrices

The Givens method leads to a tridiagonal matrix. The eigenvalues and eigenvectors of the original matrix are to determined
from those of the tridiagonal matrix. Let A be a real symmetric matrix. The Givens method consists of the following steps:
Step 1. Reduce A to a tridiagonal symmetric matrix using plane rotations. The reduction to a tridiagonal form is achieved
by using the orthogonal transformations as in the Jacobi method. However, in this case we start with the subspace containing

the elements ag2, @23, @iz, azy. Perform the plane rotation Sl_'.‘lS. using the orthogonal matrix

cosf) —sinf

sin 0 cosfl

Now, let us consider the matrix
a3y ai2 a3
A= | a2 ax a (13)
a3 a23 aas

and let the orthogonal rotation matrix S1 in the plane (2, 3) be

1 0 0 1 0 0 a1l a2 ais 1 0 0
Si= |0 cos# —sinf |-.. S'l"AS, = STAS, = | 0 cosf sin 6 ai2 a22 a23 0 cosf —siné
0 sinf cosf 0 —sinf  cosf a1z a23 ass 0 sinf cosf
i 1 12 cosf 4+ a3 siné — ayzsinf 4+ a3 cos
= ayzcosf + ayzsiné ass Sin 20 + aaa cos? 6 + asy sin? 6 asz3 cos 260 — aszzsinfcosf + azzsinfcosf
—ay128inf 4+ a3 cosf ag3 coS 260 — ags sinf cos @ + azz sinf cos b — @23 8in 260 + as2sin? 8 + az; cos® O
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Then in the resulting matrix, equating the element in the (1,3) position to zero for reducing S; ' AS; to tridiagonal matrix,
we get
__y3

—a128inf 4+ aj3cosf =0 = tanfl = — = 0 = tan~' ("J) (14)
2 a2

By this value of @, the above transformation gives zeros in (1,3) and (3, 1) positions. Let us further perform rotation in the
plane (2,4) and put the resulting element (1,4) = 0. This would not affect the zeros obtained earlier. Then the transforma-
tions are applied to the matrix in turn so as to annihilate the elements (1,3), (1,4),(1,5),...,(1,n); (2,4),(2,5),..., (2,n)

and finally we arrive at the tridiagonal matrix

- B

g 0 0 o0 . 0
G P2 ¢ 0 +«» oo s e 0
0 g ps @ 0

’)

0 0 0 0 ++ gn-2 Pn-1 Qn-1

0 00 0 ¢« 0 @n-1 pPn

Step 2. To obtain the eigenvalues of the tridiagonal matrix. Let the resulting tridiagonal matrix after first transformation

be obtained as

(8381 2 0
S AS1=81{A81=B=| a3 am an (15)

0 g3 O3
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o — A 12 1]
det(B - Al)=0= a2 ax — A ann | =0
0 (k23 3y — A

Say f4(A) = 0. Then we have,
fo(A) =1, fifA) =11 — A =an — Ao(A)

and
iy — A ayp 2
f2(A) = = (22 = A) J1(A) — @iz fo(A)
k12 kgg = A
Now expanding f3(A) in terms of the third row, we immediately obtain
a1 - A [ yq - A 0

fa(A) = (033 — A) — aza

)12 gy — A 2 2y

= f3(A) = (aas — A) f2(A) — aZz fi(A)
The recurrence formula in general is,
JilA) = (o = A) fic1(A) = {ﬁ:a--m-]sz-zfﬂ- 2<k<n (16)

Above is the characteristic equation which can be solved by any standard method. Thus the roots of (16) will be the

eigenvalues of the given real symmetric matrix. If none of the ai; (i # j) vanish then this equation generate a sequence

MMS-203 Numerical Methods for Scientific Computations
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{fi(A) : k =0,1,...,n}, which is called the Sturm sequence. A table of the sequence for various A is prepared and the
number of changes in sign of the Sturm sequence is noted, the difference between the number of changes of sign for consecutive
values of A gives an approximate location of the eigenvalues. Knowing the location of the eigenvalues, their exact values can
be obtained by any iterative method. That is, if V(z) denotes the number of changes in sign in the sequence for a given
number z, then the number of zeros of f,, in (a,b) is |V(a) = V(b)| provided a or b is not a zero of f,. In this way, we can
approximately compute the eigenvalues and by repeated bisections, we can improve these estimates.

Step 3. To obtain the eigenvectors of the tridiagonal matrix. Let Y be the eigenvector of the tridiagonal matrix B and let
S1,82,...,5; be the orthogonal matrices employed in reducing the given real symmetric matrix A to the tridiagonal form
B, then the corresponding eigenvector X of A is given by X = SY, where § = 5,52...5; is the product of the orthogonal
matrices used in the plane rotations. The number of rotations needed for Givens method are equivalent to the number
of non-tridiagonal elements of the matrix. For a 3 x 3 matrix, only one rotation is required; whereas for a 4 x 4 matrix,
three rotations are required etc. That is, the total number of plane rotations required to bring a matrix of order n to its

- C (n=1)(n-
tridiagonal form is L"_).)(."_Ql
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Example 1. Let us now consider the real symmetric matriz

1 V2 2
A=1| v2 3 V2
2 V2 1
to find the eigenvalues and the corvesponding eigenvectors by Givens method.

Solution.
There is only one non-tridiagonal element a3 = 2. This is to be reduced to zero, hence one rotation is required. Now, to

annihilate a3, we define the orthogonal matrix in the plane (2,3) as:

1 (1] 0
O= |0 cosfl —sind

0 sind cost

where @ is obtained by tan @ = —::—-‘L = —;': =+ sinf = ‘/:: and cos @ = +t Therefore
OF v, E Vi

THerefore

0 0
Ar=0"'a0=0"a0=| ¢

|
F S S
*}J._

I
0
0
0
1
" Vi
0 —VB+y2 -Z||o 3

<
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1 V6 0
A= | Ve 3 -2
0 — 2 1
which is a tridiagonal matrix. Now, to find the eigenvalues of 4,, we proceed as follows:
The characteristic equation of A4, is
1—A VB 0
Ve 3—A —2 | =0
0 — /2 1—A

The Sturm sequence, i.e., the leading minors of order 0, 1,2, 3 are given by fo(A) = 1, filA) =1 =X, fa(A) = (3 = A)fa(A) —

Gfo(A) and fa(A) = (1 — A)fz(A) — 2f1(A). Let us now consider the changes of sign in the Sturm sequence as

A L folA) | Fu(A) | falA) [ falA) [ N(A)
—2 1 3 9 21 0
(1] 1 1 -3 -5 1
2 1 —1 -7 9 2
3 1 —2 —6 16 2
4 1 -3 -3 15 2
G 1 —5 b ] —35 3

Above table shows that there is an eigenvalue in the intervals (—2,0), (0, 2) and (4, 6). We now find better estimates of the

eigenvalues by repeated bisections. First, we shall find the eigenvalue in the interval (—2,0) by bisecting it at —1.

A folA) | flA) | falA) [ fa(A) [ NVIA)
—2 1 3 9 21 0
-1 1 2 2 0
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Note that f3(—1) = 0, so that A = —1 is an eigenvalue. Now, we shall find the eigenvalue in the interval (0, 2) by bisecting
it at 1.
Mo AN 20 [0 [N
of 1 E | =3 =5 2

1 1 0 —6 0

Since f3(1) = 0, so A = 1 is an eigenvalue. Next, we shall find the eigenvalue in the interval (4,6) by bisecting it at 5.

Alfo(N) | f1(A) [ f2(0) [ fa(W) [N(A)
5| 1 | -4 | 2 0 |.a
1 | -5]| 9 |-35| 3

(=]

Again, since f3(5) = 0, so A = 5 is an eigenvalue. Therefore, the eigenvalues of A, are 5,1 and —1 and hence the eigenvalues

of A are also 5,1 and —1. Now, to find the eigenvectors of A for each of the eigenvalues, we proceed as follows:

"N
For A = 5, let the eigenvector of Ay be Y = | y, |. Then we have,
Ys
1 V6 0 Y1 Y1
AY=)Y=| 6 3 -2 y2 | =95 | y2
0 —-v2 1 Y3 Y3
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Which gives the equations,

y1 + VBy2 = 5y (17)

VBy1 + 3y2 — V2ys = Sya

and — v2ya + ys = 5us (18)
Equation (17) gives,
¥ bz m Y2
4y1=v’ﬁ92=‘a == T =
VG 4 3 \/%
Equation (18) gives,
—V"Eyz = 4dyz = 2_535B = y2 = LE

PR

&)

T 3/3

“

T
Therefore, the eigenvector of 4 for A=5is Y = [é . \/Es — ﬁ-g] . Therefore, the eigenvector X of A for A = 5 is given by

1 0 0 |- :,11
— — 1 2 2
X=ov=lo & -3 Vi
o VI & ||-m
R
T2 /22
L
where € is the orthogonal matrix used in the plane rotation. For A = —1, let the eigenvector of 4, be ¥V = yz | - Then
Ya
we have,
1 VG 0 Y1 v
A1Y =AY = | V6 3 —Vv2 y2 | = =1 | w2
0 — \‘5 1 Tk b3
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Which gives the equations,

y1 + Voya = -y (19)
‘/E'Hl + Jiya — \/51.!;1 = =2
and — V2 +y3 = -3 (20)

Equation (19) gives,

! I 1 U
= Vip s Lo Lo b

2 -
Equation (20) gives,
\/E.szy:t:h!‘_;—;:y_;:}ﬂ_&:i!%
Vs Vi
I
Therefore, the eigenvector of Ay for A=-1is Y = [—::-: :!-! ::T] . Therefore, the eigenvector X of A for A = —1 is given
by
1 ] ] _ I-:
OV — N |
X =0} 0l -~ ﬂ 3
0 ‘/? | n
L 3 all &
= |-—=.0 LIT
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1T
Similarly, the eigenvector of Ay for A\=11is Y = [—%,[L —%] . Therefore, the eigenvector X of A for A =1 is given by
Lo 0] -3
={Y = 1 2
X=0Y 0 = -3 0
0 \/3 L| -4
3 V3 7
1)
272

AnNs.
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