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Syllabus??
MPM-221: ADVANCE QUANTUM MECHANICS Credit 04 (3-1-0) 

Unit I: Formulation of Relativistic Quantum Theory

Relativistic Notations, The Klein-Gordon equation, Physical interpretation, Probability current density & Inadequacy of Klein-Gordon equation,

Dirac relativistic equation & Mathematical formulation, α and β matrices and related algebra, Properties of four matrices α and β, Matrix

representation of α
′𝑠
𝑖

and β, True continuity equation and interpretation.

Unit II: Covariance of Dirac Equation

Covariant form of Dirac equation, Dirac gamma (γ) matrices, Representation and properties, Trace identities, fifth gamma matrix γ5, Solution of

Dirac equation for free particle (Plane wave solution), Dirac spinor, Helicity operator, Explicit form, Negative energy states

Unit III: Field Quantization

Introduction to quantum field theory, Lagrangian field theory, Euler–Lagrange equations, Hamiltonian formalism, Quantized Lagrangian field 

theory, Canonical commutation relations, The Klein-Gordon field, Second quantization, Hamiltonian and Momentum, Normal ordering, Fock

space, The complex Klein-Gordan field: complex scalar field

Unit IV: Approximate Methods

Time independent perturbation theory, The Variational method, Estimation of ground state energy, The Wentzel-Kramers-

Brillouin (WKB) method, Validity of the WKB approximation, Time-Dependent Perturbation theory, Transition probability, Fermi-Golden Rule

Books & References:

1: Advance Quantum Mechanics by J. J. Sakurai ( Pearson Education India)

2: Relativistic Quantum Mechanics by James D. Bjorken and Sidney D. Drell (McGraw-Hill Book Company; New York, 1964).

3: An Introduction to Relativistic Quantum Field Theory by S.S. Schweber (Harper & Row, New York, 1961).

4: Quantum Field Theory by F. Mandl & G. Shaw (John Wiley and Sons Ltd, 1984)

5: A First Book of Quantum Field Theory by A. Lahiri & P.B. Pal (Narosa Publishing House, New Delhi, 2000)
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Relativistic quantum mechanics (RQM) 

Relativistic quantum mechanics (RQM) is formulation of quantum mechanics 

(QM) which is applicable to all massive particles propagating at all velocities 

up to those comparable to the speed of light c and can accommodate massless 

particles. 

V=0 to c, m= 0 to V & m= infinite. 

The theory has application in high energy physics, particle physics and 

accelerator physics, as well as atomic physics, chemistry and condensed 

matter physics.

- Relativistic quantum mechanics (RQM) is quantum mechanics applied with 

special relativity. Although the earlier formulations, like the Schrödinger 

picture and Heisenberg picture were originally formulated in a non-

relativistic background, a few of them (e.g. the Dirac or path-integral 

formalism) also work with special relativity.
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RQMs have beauty and features to explore depth 
understanding of-

The prediction of matter and antimatter,

-Spin magnetic moments of elementary spin fermions,

-Fine structure, and quantum dynamics of charged particles in electromagnetic fields.

-Depth of high energy physics, particle physics and accelerator physics, as well as

atomic physics, chemistry and condensed matter physics.

-The most successful (and most widely used) RQM is relativistic quantum field theory

(QFT), in which elementary particles are interpreted as field quanta. A unique

consequence of QFT that has been tested against other RQMs is the failure of

conservation of particle number, for example in matter creation and annihilation.
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-The Klein–Gordon equation is a relativistic wave equation, related to the

Schrödinger equation.

-It is second-order in space and time and manifestly Lorentz-covariant. It

is a quantized version of the relativistic energy–momentum relation. Its

solutions include a quantum scalar or pseudoscalar field, a field whose

quanta are spinless particles.

-Its theoretical relevance is similar to that of the Dirac equation.

Electromagnetic interactions can be incorporated, forming the topic of s

calar electrodynamics, but because common spinless particles like the

pions are unstable and also experience the strong interaction (with

unknown interaction term in the Hamiltonian, the practical utility is

limited.

Klein–Gordon equation
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Schrödinger representation ?
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Schrödinger representation ?
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Energy–momentum relation

In physics, the energy–momentum relation, or relativistic dispersion 

relation, is the relativistic equation relating an object's total energy to 

its rest (intrinsic) mass and momentum. It is the extension of mass-

energy relation for objects in motion:

This equations holds for a system, such as a particle or macroscopic 

body, having intrinsic rest mass m0, total energy E, and a momentum 

of magnitude p, where the constant c is the speed of light, assuming 

the special relativity case of flat spacetime.

The Dirac sea model, which was used to predict the existence of 

antimatter, is closely related to the energy-momentum equation.



Formulation of Relativistic 
Quantum Theory 

• Klein-Gordon Equation
• Dirac Equation: free particles 
• Dirac Equation: interactions

e+e−→+− cross section



Klein Gordon 
Equation
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Klein–Gordon equation
The Klein–Gordon equation (Klein–Fock–Gordon equation or sometimes Klein–Gordon–Fock equation) is

a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and

manifestly Lorentz-covariant. It is a quantized version of the relativistic energy–momentum relation.

Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless

particles. Its theoretical relevance is similar to that of the Dirac equation.[1] Electromagnetic interactions

can be incorporated, forming the topic of s calar electrodynamics, but because common spinless particles

like the

pions are unstable and also experience the strong interaction (with unknown interaction term in

the Hamiltonian,) the practical utility is limited.

The equation can be put into the form of a Schrödinger equation. In this form it is expressed as two coupled

differential equations, each of first order in time.[3] The solutions have two components, reflecting the charge

degree of freedom in relativity.[3][4] It admits a conserved quantity, but this is not positive definite. The wave

function cannot therefore be interpreted as a probability amplitude. The conserved quantity is instead interpreted

as electric charge, and the norm squared of the wave function is interpreted as a charge density. The equation

describes all spinless particles with positive, negative, and zero charge.

Any solution of the free Dirac equation is, component-wise, a solution of the free Klein–Gordon equation.

The equation does not form the basis of a consistent quantum relativistic one-particle theory. There is no known

such theory for particles of any spin. For full reconciliation of quantum mechanics with special relativity,

quantum field theory is needed, in which the Klein–Gordon equation reemerges as the equation obeyed by the

components of all free quantum fields.[nb 1] In quantum field theory, the solutions of the free (noninteracting)

versions of the original equations still play a role. They are needed to build the Hilbert space (Fock space) and to

express quantum field by using complete sets (spanning sets of Hilbert space) of wave functions.

https://en.wikipedia.org/wiki/Relativistic_wave_equation
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Energy%E2%80%93momentum_relation
https://en.wikipedia.org/wiki/Quantum_field_theory
https://en.wikipedia.org/wiki/Energy%E2%80%93momentum_relation
https://en.wikipedia.org/wiki/Dirac_equation
https://en.wikipedia.org/wiki/Scalar_electrodynamics
https://en.wikipedia.org/wiki/Pion
https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
https://en.wikipedia.org/wiki/Probability_amplitude
https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Charge_density
https://en.wikipedia.org/wiki/Quantum_field_theory
https://en.wikipedia.org/wiki/Fock_space


Klein-Gordon Equation



Lorentz invariant Schrödinger eqn.?

E=𝑖

𝑡

With the quantum mechanical  energy & momentum operators:

Ԧ𝑝=−𝑖

You simply ‘derive’ the Schrödinger equation from classical mechanics:

E = 
𝒑2

2𝑚
𝑖

𝑡
 = −

1

2𝑚
2→ Schrödinger equation

With the relativistic relation between E, p & m you get:

𝐸2 = 𝒑2+𝑚2 2

𝑡2
 = 2 −𝑚2→ Klein-Gordon equation

recall: 𝒑𝝁 = 𝑬, 𝒑 and  𝝏𝝁 =
𝝏

𝝏𝒕
, −

𝝏

𝝏𝒙
, −

𝝏

𝝏𝒚
, −

𝝏

𝝏𝒛
=

𝝏

𝝏𝒕
, −𝜵



Free Klein-Gordon particle wave functions

E=𝑖

𝑡

With the quantum mechanical  energy & momentum operators:

Ԧ𝑝=−𝑖

We ‘derived’ Klein-Gordon equation from relativistic 𝑬𝟐 = 𝒑𝟐 +𝒎𝟐

2

𝑡2
 = 2 −𝑚2

recall: 𝒑𝝁 = 𝑬, 𝒑 and  𝝏𝝁 =
𝝏

𝝏𝒕
, −

𝝏

𝝏𝒙
, −

𝝏

𝝏𝒚
, −

𝝏

𝝏𝒛
=

𝝏

𝝏𝒕
, −𝜵

E = 
𝒑𝟐

𝟐𝒎
𝒊

𝒕
 = −

𝟏

𝟐𝒎
𝟐yields Schrödinger equation:non-relativistic 

𝜕𝜇𝜕
𝜇 +𝑚2  = 0or



‘Simple’ plane-wave solutions for : ??

Use 4-derivatives to make Klein-Gordon equation Lorentz invariant:

2

𝑡2
 = 2 −𝑚2 → = 0



‘Simple’ plane-wave solutions for : ??



‘Simple’ plane-wave solutions for : ??



Probability & current densities ??



Probability & current densities

= 0



Probability & current densities Cont..



Probability & current densities Cont..



Difficulties with Probability densities





Dirac Relativistic Equation??



Dirac 
Relativistic 
Equation 

Cont..
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Covariance form of the Dirac Equation



Covariance form of the Dirac Equation



Gamma Matrices



Properties of Gamma Matrices



Properties of Gamma Matrices



Properties of Gamma Matrices



Properties of Gamma Matrices



Properties of Gamma Matrices



Solution of Dirac Equation for free particles: Plane wave solution



Solution of Dirac Equation for free particles: Continue…



Solution of Dirac Equation for free particles: Continue



Solution of Dirac Equation for free particles: Continue



Solution of Dirac Equation for free particles: Continue



Solution of Dirac Equation for free particles: Continue



Solution of Dirac Equation for free particles: Continue



Solution of Dirac Equation for free particles: Continue



Solution of Dirac Equation for free particles: Continue



Solution of Dirac Equation for free particles: Plane wave solution



‘Surprise’ of the plane-wave                                                         solutions,
if you plug them in the KG equation you find:                                               

KG-equation                                    , problem?

One way out: drop KG equation! That is what Dirac successfully did!
Other way out: re-interpret in terms of charge density & charge flow:

q>0 particles

q<0 particles

In reality (electrons negatively charged) just the opposite way …:

particles with

anti-particles with

solutions with E<0

solutions with  <0

𝜕𝜇𝜕
𝜇 +𝑚2  = 0



Dirac equation:
free particles



You simply ‘derive’ the Schrödinger equation from classical mechanics:

E=
𝒑2

2𝑚
𝑖

𝑡
 = −

1

2𝑚
2→ Schrödinger equation

With the relativistic relation between E, p & m you get:

𝐸2=𝒑2+𝑚2 2

𝑡2
 = 2 −𝑚2→ Klein-Gordon equation

Schrödinger − Klein-Gordon − Dirac

Dirac equation

The negative energy solutions led Dirac to try an equation with 
first order derivatives in time (like Schrödinger) as well as in space

𝑖
𝜕

𝜕𝑡
 = −𝑖 𝛻 + 𝑚

E=𝑖

𝑡

Quantum mechanical  E & p operators:
Ԧ𝑝=−𝑖

𝒑𝝁 = 𝑬,𝒑

→ i𝝏𝝁 = 𝒊
𝝏

𝝏𝒕
, −𝜵



Does it make sense?

Also Dirac equation should reflect:  𝑬𝟐=𝒑𝟐+𝒎𝟐

Basically squaring:  𝒊
𝝏

𝝏𝒕
 = −𝒊 𝜵+ 𝒎 = 𝒑 + 𝒎

Tells you:  

 2=1

i
2=1

i +i = 0

ij: i j +j i = 0

𝐄𝟐

𝐦𝟐

𝐩𝟐



Properties of i and 
 and  can not be simple commuting numbers, but must be matrices 

Because  2= i
2=1, both  and  must have eigenvalues  1 

Since the eigenvalues are real ( 1), 
both  and  must be Hermitean

Both  and  must be traceless matrices:  Tr(ABC) = Tr(CAB) = Tr(BCA) 

You can easily show the dimension d of  the matrices  , to be even:

d odd
d even

or: with eigenvalues 1, matrices are only traceless in even dimensions

either:

cyclic
anti 

commutation 2=1  2=1

𝑨𝒊𝒋𝑩𝒋𝒌𝑪𝒌𝒊 = 𝑪𝒌𝒊 𝑨𝒊𝒋𝑩𝒋𝒌 = 𝑩𝒋𝒌𝑪𝒌𝒊 𝑨𝒊𝒋

Tr(i ) = Tr(i) =  Tr(i) = −Tr(i) = −Tr(i ) and hence Tr(i )=0



Explicit expressions for i and 

In 2 dimensions, you find at most 3 anti-commuting matrices, 
Pauli spin matrices:

In 4 dimensions, you can find 4 anti-commuting matrices, 
numerous possibilities, Dirac-Pauli representation:

Any other set of 4 anti-commutating matrices will give same physics
(if the Dirac equation is to make any sense at all of course …..
and … if it would not: we would not be discussing it here!)

𝜷 =

𝟏 𝟎
𝟎 𝟏

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

−𝟏 𝟎
𝟎 −𝟏

𝜶𝟏 =

𝟎 𝟎
𝟎 𝟎

𝟎 𝟏
𝟏 𝟎

𝟎 𝟏
𝟏 𝟎

𝟎 𝟎
𝟎 𝟎

𝜶𝟐 =

𝟎 𝟎
𝟎 𝟎

𝟎 −𝒊
𝒊 𝟎

𝟎 −𝒊
𝒊 𝟎

𝟎 𝟎
𝟎 𝟎

𝜶𝟑 =

𝟎 𝟎
𝟎 𝟎

𝟏 𝟎
𝟎 −𝟏

𝟏 𝟎
𝟎 −𝟏

𝟎 𝟎
𝟎 𝟎



Co-variant form: Dirac -matrices

𝑖
𝜕

𝜕𝑡
 = −𝑖 𝛻 + 𝑚 does not look that Lorentz invariant

𝑚 = 𝑖
𝜕

𝜕𝑡
+ 𝑖 𝛽𝛻 ≡ 𝑖𝜕

Multiplying on the left with  and collecting all the derivatives gives:

Hereby, the Dirac -matrices are defined as:

And you can verify that:

As well as: and:

note: 𝝏𝝁 = 𝝏𝒕, +𝜵

→ 𝜸𝝁+ = 𝜸𝟎𝜸𝝁𝜸𝟎



Co-variant form: Dirac -matrices

𝜷 =

𝟏 𝟎
𝟎 𝟏

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

−𝟏 𝟎
𝟎 −𝟏

𝜶𝟏 =

𝟎 𝟎
𝟎 𝟎

𝟎 𝟏
𝟏 𝟎

𝟎 𝟏
𝟏 𝟎

𝟎 𝟎
𝟎 𝟎

𝜶𝟐 =

𝟎 𝟎
𝟎 𝟎

𝟎 −𝒊
𝒊 𝟎

𝟎 −𝒊
𝒊 𝟎

𝟎 𝟎
𝟎 𝟎

𝜶𝟑 =

𝟎 𝟎
𝟎 𝟎

𝟏 𝟎
𝟎 −𝟏

𝟏 𝟎
𝟎 −𝟏

𝟎 𝟎
𝟎 𝟎

with the Dirac -matrices defined as:

𝜸𝟎 =

𝟏 𝟎
𝟎 𝟏

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

−𝟏 𝟎
𝟎 −𝟏

𝜸𝟏 =

𝟎 𝟎
𝟎 𝟎

𝟎 𝟏
𝟏 𝟎

𝟎 −𝟏
−𝟏 𝟎

𝟎 𝟎
𝟎 𝟎

𝜸𝟐 =

𝟎 𝟎
𝟎 𝟎

𝟎 −𝒊
𝒊 𝟎

𝟎 𝒊
−𝒊 𝟎

𝟎 𝟎
𝟎 𝟎

𝜸𝟑 =

𝟎 𝟎
𝟎 𝟎

𝟏 𝟎
𝟎 −𝟏

−𝟏 𝟎
𝟎 𝟏

𝟎 𝟎
𝟎 𝟎

𝒎 = 𝒊𝝏



Warning!

The Dirac wave-functions ( or ), so-called ´spinors´ have interesting

Lorentz transformation properties which we will discuss shortly. 

After that it will become clear why the notation with         is useful!

To make things even worse, we define:                              

𝑚 = 𝑖𝜕This                                   notation is misleading,          is not a 4-vector!

The         are just a set of four 44 matrices, which do no not transform 

at all i.e. in every frame they are the same, despite the -index.





& beautiful!



Spinors & (Dirac) matrices

𝜸𝝁 =

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

𝝓 =

∗
∗
∗
∗

𝝓+ = ∗ ∗ ∗ ∗

𝜸𝝁𝝓 =

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

×

∗
∗
∗
∗

=

∗
∗
∗
∗

𝝓+𝜸𝝁 = ∗ ∗ ∗ ∗ ×

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

= ∗ ∗ ∗ ∗

𝝓+𝝓 = ∗ ∗ ∗ ∗ ×

∗
∗
∗
∗

= ∗ 𝝓𝝓+ =

∗
∗
∗
∗

× ∗ ∗ ∗ ∗ =

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

𝝓 𝜸𝝁 =

∗
∗
∗
∗

×

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

=

𝜸𝝁𝝓+ =

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

× ∗ ∗ ∗ ∗ =

this one we will encounter later …



Dirac current & probability densities

Conserved 4-current:

Proceed analogously to Schrödinger & Klein-Gordon equations, 
but with Hermitean instead of complex conjugate wave-functions:

 en  Dirac equations for                      :&

Add these two equations to get:

× 

× ഥ

× 𝟎

(exactly what Dirac aimed to achieve …)



Solutions: particles @ rest 𝒑 = 𝟎

Solve by splitting 4-component in two 2-components:
A

B






 
=  
 

Dirac equation for  𝒑 = 𝟎 is simple:

with   0(1/c) t follows:

solutions: e− e+



Solutions: moving particles 𝒑 ≠ 𝟎
Dirac equation for  𝒑 ≠ 𝟎 less simple:

Anticipate plane-waves:

And again anticipate  two 2-components:
( )

( )
( )

A

B

u p
u p

u p

 
=  
 

Plugging this in gives:



0 k



Solutions: moving particles 𝒑 ≠ 𝟎

e−

e+

Solutions: pick uA(p) & calculate uB(p):  

Similarly: pick uB(p) & calculate uA(p):  

In limit 𝒑 → 𝟎 you retrieve the E>0 solutions, hence these are 𝒑 ≠ 𝟎 electron solutions  

In limit 𝒑 → 𝟎 you retrieve the E<0 solutions, hence these are 𝒑 ≠ 𝟎 positron solutions  

− −

𝒖𝑨 =
𝟏
𝟎

→ 𝒖𝑨 =
𝟎
𝟏

→

𝒖𝑩 =
𝟎
𝟏

→𝒖𝑩 =
𝟏
𝟎

→

E>0

E<0



Recap
introduction

Dirac
equation



Dirac equation

With  , 1, 2 & 3 (44) matrices, satisfying:

 2=1

i
2=1

 + = 0

ij: i j +j i = 0

𝐄𝟐

𝐦𝟐

𝐩𝟐

From:  𝑬𝟐=𝒑𝟐+𝒎𝟐
E=𝑖


𝑡

Ԧ𝑝=−𝑖
& classical → QM ‘transcription’:  

𝒊
𝝏

𝝏𝒕
 = −𝒊 𝜵+ 𝒎 = 𝒑+ 𝒎We found:  

𝜷 =

𝟏 𝟎
𝟎 𝟏

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

−𝟏 𝟎
𝟎 −𝟏

𝜶𝟏 =

𝟎 𝟎
𝟎 𝟎

𝟎 𝟏
𝟏 𝟎

𝟎 𝟏
𝟏 𝟎

𝟎 𝟎
𝟎 𝟎

𝜶𝟐 =

𝟎 𝟎
𝟎 𝟎

𝟎 −𝒊
𝒊 𝟎

𝟎 −𝒊
𝒊 𝟎

𝟎 𝟎
𝟎 𝟎

𝜶𝟑 =

𝟎 𝟎
𝟎 𝟎

𝟏 𝟎
𝟎 −𝟏

𝟏 𝟎
𝟎 −𝟏

𝟎 𝟎
𝟎 𝟎

𝝏𝝁 = 𝝏𝒕, −𝜵

𝑬𝟐 = 𝒑𝟐 +𝒎𝟐?



Multiplying on the left with  and collecting all the derivatives gives covariant form:

note: 𝝏𝝁 = 𝝏𝒕, +𝜵

𝜸𝟎 =

𝟏 𝟎
𝟎 𝟏

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

−𝟏 𝟎
𝟎 −𝟏

𝜸𝟏 =

𝟎 𝟎
𝟎 𝟎

𝟎 𝟏
𝟏 𝟎

𝟎 −𝟏
−𝟏 𝟎

𝟎 𝟎
𝟎 𝟎

𝜸𝟐 =

𝟎 𝟎
𝟎 𝟎

𝟎 −𝒊
𝒊 𝟎

𝟎 𝒊
−𝒊 𝟎

𝟎 𝟎
𝟎 𝟎

𝜸𝟑 =

𝟎 𝟎
𝟎 𝟎

𝟏 𝟎
𝟎 −𝟏

−𝟏 𝟎
𝟎 𝟏

𝟎 𝟎
𝟎 𝟎

Co-variant form: Dirac -matrices

Dirac’s original form does not look covariant: 𝑖
𝜕

𝜕𝑡
 = −𝑖 𝛻+ 𝑚

With Dirac -matrices defined as: 𝛾0 = 𝛽 =
1 0
0 −1

𝛾𝑘 = 𝛽𝛼𝑘 =
0 𝜎𝑘

−𝜎𝑘 0

From the properties of  , 1, 2 & 3 follows:

→ 𝜸𝝁+ = 𝜸𝟎𝜸𝝁𝜸𝟎



Dirac particle solutions: spinors

Ansatz solution:  =
𝒖𝑨 𝒑

𝒖𝑩 𝒑
𝒆−𝒊𝒑∙𝒙

𝒑 = 𝟎 solutions:
e− e+𝒖𝑨 =

𝟎
𝟏

𝒖𝑩 =
𝟎
𝟏

− −

E>0 E<0spin ½ electrons spin ½ positrons

Dirac eqn.:

𝒖𝑨 =
𝟏
𝟎

𝒖𝑩 =
𝟏
𝟎

𝒖𝑨 𝒑 =
𝒑 ∙ 𝝈

𝑬 −𝒎
𝒖𝑩 𝒑

𝒖𝑩 𝒑 =
𝒑 ∙ 𝝈

𝑬 +𝒎
𝒖𝑨 𝒑

𝒑 ≠ 𝟎 solutions:



Dirac equation:
more on free particles

normalisation
4-vector current

anti-particles



One more look at  Ԧ𝑝

The conditions:

Imply:

 1

Check this:



 𝒑𝟐𝒄𝟐 = 𝑬𝟐 −𝒎𝟐𝒄𝟒

i.e. energy-momentum 
relation, as expected

sorry for the c’s



Normalisation of the Dirac spinors

Spinors 1 & 2, E>0:

Just calculate it!:

Spinors 3 & 4, E<0:

To normalize @ 2E particles/unit volume

To normalize @ 2E particles/unit volume

−



Current & probability densities

Again, just plug it in!

particle
@ rest

moving
particle

not that easy, next slide!

N= 𝑬 +𝒎𝒄𝟐
always using

N

N



Current & probability densities

Explicit verification of jx for moving particle solution  (1):

And jx for moving anti-particle  solution  (3): 𝒋𝒙 = 𝑵 𝟐
𝟐𝒄𝒑𝒙

𝑬 −𝒎𝒄𝟐
→ −𝟐𝒑𝒙



Antiparticles



Surprising applications
PET – Positron Emission Tomography



Particles & Anti-particles

4-component Dirac spinors → 4-solutions.
These represent: 2 spin states of the electron

2 spin states of the anti-electron i.e. the positron

Different ways how to proceed:
• Use E>0 & E<0 solutions of the electron Dirac eqn.
• Use E>0 & E<0 solutions of the positron Dirac eqn.
• Use E>0 solutions for the ‘particle’ i.e. electron & 

Use E<0 solutions for the ‘anti-particle’ i.e. positron

Will opt for the last option:
i.e. using the physical E &      to characterize states𝒑



And now: E<0 → antiparticles

‘Dirac sea’: fill all E<0 states (thanks to Pauli exclusion principle) 

But: • does not work for bosons
• an infinite energy sea not a nice concept …

single e− → e+e− e+e−→ 



And now: E<0 → antiparticles

‘Feynman-Stückelberg’: E<0 particle solutions propagating backwards in time
E>0 anti-particle solutions propagating forwards in time

time

𝒆−𝒊(−𝑬)(−𝒕) = 𝒆−𝒊𝑬𝒕

‘Up-shot’: Dirac equation accommodates both particle & antiparticles!

Sequel: will use particle & anti-particle spinors labelled with their
physical, E>0 & real     , kinematics. (exponents remain opposite)𝒑

e− (E>0)

e+ (E>0)
E =2E



e− (E>0)

e− (E<0)
E =2E





We had: Dirac ‘u’-spinors

e−

e+

 1 = 𝐸 +𝑚 𝑒−𝑖𝑝∙𝑥

1
0
𝑝𝑧

𝐸+𝑚
𝑝𝑥+𝑖𝑝𝑦

𝐸+𝑚

≡ 𝑢1 𝐸, Ԧ𝑝 𝑒−𝑖𝑝∙𝑥

 2 = 𝐸 +𝑚 𝑒−𝑖𝑝∙𝑥

0
1

𝑝𝑥−𝑖𝑝𝑦

𝐸+𝑚
−𝑝𝑧

𝐸+𝑚

≡ 𝑢2 𝐸, Ԧ𝑝 𝑒−𝑖𝑝∙𝑥

 3 = 𝐸 +𝑚 𝑒−𝑖𝑝∙𝑥

𝑝𝑧

𝐸−𝑚
𝑝𝑥+𝑖𝑝𝑦

𝐸−𝑚

1
0

≡ 𝑢3 𝐸, Ԧ𝑝 𝑒−𝑖𝑝∙𝑥

E>0

E<0

 4 = 𝐸 +𝑚 𝑒−𝑖𝑝∙𝑥

𝑝𝑥−𝑖𝑝𝑦

𝐸−𝑚
−𝑝𝑧

𝐸−𝑚

0
1

≡ 𝑢4 𝐸, Ԧ𝑝 𝑒−𝑖𝑝∙𝑥



From now on use: Dirac ‘u’- & ‘v’-spinors

e−

E>0

e+
𝑢4 −𝐸,− Ԧ𝑝 𝑒+𝑖𝑝∙𝑥≡ 𝒗𝟏 𝑬, 𝒑 𝒆+𝒊𝒑∙𝒙

E>0 𝑢3 −𝐸,− Ԧ𝑝 𝑒+𝑖𝑝∙𝑥≡ 𝒗𝟐 𝑬, 𝒑 𝒆+𝒊𝒑∙𝒙

 1 = 𝐸 +𝑚 𝑒−𝑖𝑝∙𝑥

1
0
𝑝𝑧

𝐸+𝑚
𝑝𝑥+𝑖𝑝𝑦

𝐸+𝑚

≡ 𝒖𝟏 𝑬, 𝒑 𝒆−𝒊𝒑∙𝒙

 2 = 𝐸 +𝑚 𝑒−𝑖𝑝∙𝑥

0
1

𝑝𝑥−𝑖𝑝𝑦

𝐸+𝑚
−𝑝𝑧

𝐸+𝑚

≡ 𝒖𝟐 𝑬, 𝒑 𝒆−𝒊𝒑∙𝒙

u-spinors: for electrons, labeled with physical E>0 &  𝒑

v-spinors: for positrons, labeled with physical E>0 &  𝒑



Dirac equation

With plane-wave solutions:  = 𝒖(𝒑)𝒆−𝒊𝒑∙𝒙 =
𝒖𝑨 𝒑

𝒖𝑩 𝒑
𝒆−𝒊𝒑∙𝒙 you find for spinor u(p): 

𝒊
𝝏

𝝏𝒕
𝝍 = −𝒊 𝜵𝝍+ 𝒎𝝍

Dirac equation in original form with matrices  𝜶 & 𝜷:

Eu(𝒑) = 𝒑𝒖(𝒑) + 𝒎𝒖(𝒑)

This algabraic equation for u(p) you can solve for particles with 𝒑𝝁 = 𝑬, 𝒑

Co-variant form of Dirac equation with matrices 𝜸𝝁:

𝒎𝝍 = 𝒊𝝏𝝍 𝒑 −𝒎 𝒖 𝒑 = 𝟎with  = 𝒖(𝒑)𝒆−𝒊𝒑∙𝒙 =
𝒖𝑨 𝒑

𝒖𝑩 𝒑
𝒆−𝒊𝒑∙𝒙 you get

𝜸𝟎 =

𝟏 𝟎
𝟎 𝟏

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

−𝟏 𝟎
𝟎 −𝟏

𝜸𝟏 =

𝟎 𝟎
𝟎 𝟎

𝟎 𝟏
𝟏 𝟎

𝟎 −𝟏
−𝟏 𝟎

𝟎 𝟎
𝟎 𝟎

𝜸𝟐 =

𝟎 𝟎
𝟎 𝟎

𝟎 −𝒊
𝒊 𝟎

𝟎 𝒊
−𝒊 𝟎

𝟎 𝟎
𝟎 𝟎

𝜸𝟑 =

𝟎 𝟎
𝟎 𝟎

𝟏 𝟎
𝟎 −𝟏

−𝟏 𝟎
𝟎 𝟏

𝟎 𝟎
𝟎 𝟎

Explicit expressions for the 𝜸𝝁 matrices:

And the algebra for the 𝜸𝝁 matrices: 𝜸𝝁𝜸𝝂 + 𝜸𝝂𝜸𝝁 = 𝟐𝒈𝝁𝝂



Spinors

Ansatz solution:  =
𝒖𝑨 𝒑

𝒖𝑩 𝒑
𝒆−𝒊𝒑∙𝒙

𝒑 = 𝟎 solutions:
e− e+

𝒑 ≠ 𝟎 solutions:

𝒖𝑨 =
𝟎
𝟏

𝒖𝑩 =
𝟎
𝟏

− −

E>0 E<0spin ½ electrons spin ½ positrons

Dirac eqn.:

𝒖𝑨 =
𝟏
𝟎

𝒖𝑩 =
𝟏
𝟎

𝒖𝑨 𝒑 =
𝒑 ∙ 𝝈

𝑬 −𝒎
𝒖𝑩 𝒑

𝒖𝑩 𝒑 =
𝒑 ∙ 𝝈

𝑬 +𝒎
𝒖𝑨 𝒑



Particles & anti-particles

e−

E>0

e+
 1 = 𝑢4 −𝐸,− Ԧ𝑝 𝑒+𝑖𝑝∙𝑥

= 𝒗𝟏 𝑬, 𝒑 𝒆+𝒊𝒑∙𝒙E>0

 2 = 𝑢3 −𝐸,− Ԧ𝑝 𝑒+𝑖𝑝∙𝑥

= 𝒗𝟐 𝑬, 𝒑 𝒆+𝒊𝒑∙𝒙

 1 = 𝐸 +𝑚 𝑒−𝑖𝑝∙𝑥

1
0
𝑝𝑧

𝐸+𝑚
𝑝𝑥+𝑖𝑝𝑦

𝐸+𝑚

= 𝒖𝟏 𝑬, 𝒑 𝒆−𝒊𝒑∙𝒙

 2 = 𝐸 +𝑚 𝑒−𝑖𝑝∙𝑥

0
1

𝑝𝑥−𝑖𝑝𝑦

𝐸+𝑚
−𝑝𝑧

𝐸+𝑚

= 𝒖𝟐 𝑬, 𝒑 𝒆−𝒊𝒑∙𝒙

u-spinors: for electrons, labeled with physical E>0 &  𝒑

v-spinors: for positrons, labeled with physical E>0 &  𝒑



Dirac equation:
more on free particles

Spin
Helicity
Chirality



Dirac particles & spin
As you might guess, the two-fold degeneracy is because of the spin=½ 
nature of the particles the Dirac equation describes!

How do you see this? 
Use commutator with Hamiltonian to find conserved quantities mcpH  +=



First attempt: orbital angular momentum tells you: prL




( ) ( )

0

   : Used                                        

],[],[],[





−=


===

−=

−==+=




+=

phip
i

h
pp

prrppprprp

pprprpprpprmcpLH

kilki

h

lkijklji

h

l

lji

h

ljjllkjijklkjijkll

llllll







022
0

0
2

0],[

],[0
],[],[],[





=










−
=












−
==+=

pipiip

ppmcpH

mklmk
m

m
klmk

lk

lk
klkk





































0

0
Second attempt: internal angular momentum tells you: 





total spin

is conserved!
+


hLJ 2/1

☺+

+

+

+



Dirac particles & spin
Do we indeed describe particles with spin =½?

Yes!

For particles with p=0: can use ( 2 ,3) to classify states

For particles with p0 we can not use 3 , but we can use spin // p:   p̂2/1 


is called helicity with eigenvalues:  ½p̂2/1 
 helicity + ½ 

helicity − ½

Are you sure? Check it yourself!



Helicity states
is called helicity with eigenvalues:  ½p̂2/1 

 helicity + ½  RH

helicity − ½  LH

right-handed

left-handed

Instead of u1 & u2 spinors, we could use helicity ½ : u & u spinors (& similarly for v-spinors)

You ‘simply’ solve the 
eigenvalue equation:

Eigenvalues, use                          :



  =  ½ as it should



With uA, you get uB using the Dirac eqn. as we did before (easier now         ):𝝈 ∙ 𝒑𝒖𝑨 = 𝟐𝒑𝒖𝑨

*



Helicity states
is called helicity with eigenvalues:  ½p̂2/1 

 helicity + ½  RH

helicity − ½  LH

right-handed

left-handed

solving                                        

yields: 

with follows: 



For  = +½: 

*

𝒂𝐜𝐨𝐬𝜽 + 𝒃𝐬𝐢𝐧𝜽𝒆−𝒊𝝋 = 𝟐𝝀𝒂

𝒂 𝐬𝐢𝐧𝜽𝒆+𝒊𝝋 − 𝒃𝐜𝐨𝐬𝜽 = 𝟐𝝀𝒃
or: 

easiest using spherical coordinates: 



Particles 

Helicity states
is called helicity with eigenvalues:  ½p̂2/1 

 helicity + ½  RH

helicity − ½  LH

right-handed

left-handed

Anti-particles 

Remark: 
we have used physical E & p for the v-spinors. Nevertheless: exponents still reflect 
negative energy (& momentum)! This means that the physical E, p and even helicity of 
v-spinors are obtained using the opposite of the operators used for u-spinors!  
Afteral: we are re-interpreting the unwanted negative energy solutions of the Dirac eqn.!

𝒄 ≡ 𝐜𝐨𝐬 𝜽/𝟐

𝒔 ≡ 𝐬𝐢𝐧 𝜽/𝟐*



Chirality
For massless & extremely relativistic particles, helicity states become simple:

𝑢

= 𝐸

𝑐
𝑠𝑒𝑖𝜑
𝑐

𝑠𝑒𝑖𝜑
𝑢

= 𝐸

−𝑠
𝑐𝑒𝑖𝜑
𝑠

−𝑐𝑒𝑖𝜑
Particles 

𝑣

= 𝐸

𝑠
−𝑐𝑒𝑖𝜑
−𝑠
𝑐𝑒𝑖𝜑

𝑣

= 𝐸

𝑐
𝑠𝑒𝑖𝜑
𝑐

𝑠𝑒𝑖𝜑
Anti-particles 

These four states are also eigenstates of:

0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

≡ 𝛾5

Simple check: 𝛾5𝑢

= +𝑢


𝛾5𝑢


= −𝑢



𝛾5𝑣

= −𝑣


𝛾5𝑣


= +𝑣



and:

 𝒖𝑹  𝒖𝑳

 𝒗𝑹  𝒗𝑳

Eigenstates of  5 called:    
Left-handed (L)

Right handed (R) 
chiral states. 

Weak interactions!

𝜸𝟓 = 𝒊𝜸𝟎𝜸𝟏𝜸𝟐𝜸𝟑



Dirac equation:
more on free particles
transformation properties

normalisation
orthogonality
completeness

*
!
!
!



International Linear Collider (Japan?) 



Real life examples: LEP e+e−



Real life examples: LEP e+e−



Real life examples: LEP e+e−



Real life examples: LEP e+e−

detector particle identification



Real life examples: LEP e+e−



Other processes 

k k’

p p’

k

k’p

p’

q=p+k
q=p-k’

p

k

p

k

k’ k’

p’
p’

e+

e−

e+

e−









Compton scattering: e− → e−

Pair creation: e+e−→ 

*
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