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Relativistic quantum mechanics (RQM)

Relativistic quantum mechanics (RQM) is formulation of quantum mechanics
(QM) which is applicable to all massive particles propagating at all velocities
up to those comparable to the speed of light ¢ and can accommodate massless
particles.

V=0toc, m=0toV & m=infinite.

The theory has application in high energy physics, particle physics and
accelerator physics, as well as atomic physics, chemistry and condensed
matter physics.

- Relativistic quantum mechanics (RQM) is quantum mechanics applied with
special relativity. Although the earlier formulations, like the Schrédinger
picture and Heisenberg picture were originally formulated in a non-
relativistic background, a few of them (e.g. the Dirac or path-integral
formalism) also work with special relativity.
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RQMs have beauty and features to explore depth
understanding of-

The prediction of matter and antimatter,
-Spin magnetic moments of elementary spin fermions,

-Fine structure, and quantum dynamics of charged particles in electromagnetic fields.

-Depth of high energy physics, particle physics and accelerator physics, as well as
atomic physics, chemistry and condensed matter physics.

-The most successful (and most widely used) RQM is relativistic quantum field theory
(QFT), in which elementary particles are interpreted as field quanta. A unique
consequence of QFT that has been tested against other RQMs is the failure of
conservation of particle number, for example in matter creation and annihilation.
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Klein—Gordon equation

-The Klein—Gordon equation is a relativistic wave equation, related to the
Schrodinger equation.

-1t is second-order in space and time and manifestly Lorentz-covariant. It
IS a quantized version of the relativistic energy—momentum relation. Its
solutions include a quantum scalar or pseudoscalar field, a field whose
guanta are spinless particles.

-Its theoretical relevance is similar to that of the Dirac equation.

Electromagnetic interactions can be incorporated, forming the topic of s

calar electrodynamics, but because common spinless particles like the

pions are unstable and also experience the strong interaction (with

unknown interaction term in the Hamiltonian, the practical utility is
limited.
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Schrédinger representation ?

Equation

Time-dependent equation

The form of the Schridinger equation depends on the physical situation (see below for special cases). The most general
form is the time-dependent Schridinger equation (TDSE), which gives a description of a system evolving with time:[51:143

Time-dependent Schridinger equation (general)

d
ih— |2 (t)) = H%(t))

whereiistheimagjnarjrlmﬂ,ﬁ=ziisthereduﬁedﬂan:kmnmthaﬁngﬂm

T
dimension of action,[5I7100t 2]  (the Greek letter psi) is the state vector of the quantum
system, £ i= time, and H is the Hamiltonian operator. The position-space wave function of
the quantom system is nothing but the components in the expansion of the state vector in
terms of the position eigenvector |r}. It is a zcalar function, expressed as ¥(r, ) = {r|%¥).
similarly, the momentum-space wave function can be defined as ¥(p, t) = (p|¥), where
[p) is the momentum eigenvector.

A wave function that satisfies the
nonrelativistic Schridinger
equation with I = 0. In other
wiords, this comesponds toa
particke traveling freehy throwgh
empty space. The real part of the
wiave function is plotied here.

The most famous example is the nonrelativistic Schrodinger equation for the wave function in position space ¥(r,t) of a

single particle subject to a potential ¥(r, £}, such as that due to an electric field.[B]note 3]

Time-dependent Schrodinger equation in position basis
(single nonrelativisiic particle)

ih%if[r. £) = [‘Hﬁ:v* +V(, :}] ¥(r,t)

where m is the particle's mass. and ¥ is the Laplacian.
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Schrédinger representation ?

Time-independent equation L2 I3

The time-dependent Schridinger equation described above predicts that
wave functions can form standing waves, called stationary states.[Rote sl
These states are particularly important as their individual study later
simplifies the task of solving the time-dependent Schridinger equation for ~ Each of these three rows = a wave function which
any state. Stationary states can also be described by a simpler form of the  satisfies the time-dependent Schrodinger
Schridinger equation, the time-independent Schrédinger equation (TISE). equation for a harmonic ascillator. Left: The real

part (blue) and imaginary part (red) of the wave
function. Right: The probabiity distribution of
finding the particle with this wave function at a

- given position. The fop two rows are examples of
H |‘I'> = Eli‘} stationary states, which comespoend o standing
waves. The bottom row is an example of a state
which is nof a stationary state. The night column
where F is a constant equal to the energy level of the system. This is only  ‘llustates why stationary states are called

used when the Hamiltonian itself is not dependent on time explicitly. — Sttenary

However, even in thiz case the total wave function still has a time

dependency.

Time-independent Schrodinger equation (general)

In the language of linear algebra, this equation is an eizenvalue equation. Therefore, the wave function is an eigenfunction
of the Hamiltonian operator with corresponding eigenvalue(s) &.

As before, the most common manifestation is the nonrelativistic Schrodinger equation for a single particle moving in an
glectric field (but not a magnetic field):

Time-independent Schrodinger equation (single nonrelativistic particle)

[;—::v* + F[r}] ¥(r) = B¥(r)

with definitions as above. Here, the form of the Hamiltonian operator comes from classical mechanics, where the

Hamiltonian function is the sum of the kinetic and potential energies, That is, H =T 4 V' =
single particle in the non-relativistic limit,

o T V(@ 9, 2) for a

|p|?
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Energy—momentum relation

In physics, the energy—momentum relation, or relativistic dispersion
relation, is the relativistic equation relating an object's total energy to
Its rest (intrinsic) mass and momentum. It is the extension of mass-
energy relation for objects in motion:

E? = (pe)* + (mgcg)i
This equations holds for a system, such as a particle or macroscopic
body, having intrinsic rest mass mo, total energy E, and a momentum
of magnitude p, where the constant c is the speed of light, assuming
the special relativity case of flat spacetime.

The Dirac sea model, which was used to predict the existence of
antimatter, is closely related to the energy-momentum equation.
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Klein—Gordon equation

The Klein—-Gordon equation (Klein—Fock—Gordon equation or sometimes Klein—-Gordon—-Fock equation) is
a_relativistic wave equation, related to the Schrédinger equation. It is second-order in space and time and
manifestly Lorentz-covariant. It _is_a quantized version of the relativistic energy—momentum_relation.
Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless
particles. Its theoretical relevance is similar to that of the Dirac equation.lll Electromagnetic interactions
can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles
like the

pions are unstable and also experience the strong interaction (with unknown interaction term in
the Hamiltonian,) the practical utility is limited.

The equation can be put into the form of a Schrédinger equation. In this form it is expressed as two coupled
differential equations, each of first order in time.[3] The solutions have two components, reflecting the charge
degree of freedom in relativity.3141 It admits a conserved quantity, but this is not positive definite. The wave
function cannot therefore be interpreted as a probability amplitude. The conserved quantity is instead interpreted
as electric charge, and the norm squared of the wave function is interpreted as a charge density. The equation
describes all spinless particles with positive, negative, and zero charge.

Any solution of the free Dirac equation is, component-wise, a solution of the free Klein—Gordon equation.

The equation does not form the basis of a consistent quantum relativistic one-particle theory. There is no known
such theory for particles of any spin. For full reconciliation of quantum mechanics with special relativity,
quantum field theory is needed, in which the Klein—Gordon equation reemerges as the equation obeyed by the
components of all free quantum fields.["b-11 In quantum field theory, the solutions of the free (noninteracting)
versions of the original equations still play a role. They are needed to build the Hilbert space (Fock space) and to
express quantum field by using complete sets (spanning sets of Hilbert space) of wave functions.
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Klein-Gordon Equation

For particles of rest mass m, energy and momentum are related by

]

E? =m’c* + c?p® (3.1)

[f the particles can be described by a single scalar wavefunction ¢(x), the
prescription of non-relativistic quantum mechanics

p — —ihV, E — ih ¢/ot (3.2)
icads to the Klein—-Gordon equation (2.27):
(O + u)p(x) =0 (3.3)



Lorentz invariant Schrodinger egn. ?

With the quantum mechanical energy & momentum operators:

i 0
T Ot Cw = (a8 8 3\ _[(d =
L recall: p* = (E,p) and 0" = (E’_a’_a_y’_a) = (E’_V)
p=—iV
You simply ‘derive’ the Schrodinger equation from classical mechanics:
p* 0 1
E=— —> | —¢ - _—V? ¢ Schrédinger equation
2m Ot 2m

With the relativistic relation between E, p & m you get:

2
E 2 - pz+7’n2 —> w¢ = V2 ¢ —m? ¢ Klein-Gordon equation



Free Klein-Gordon particle wave functions

With the quantum mechanical energy & momentum operators:

0
- (2.-)

E=1 =
— 0 d i} d
Ot recall: p* = (E,p) and 0" = (_ —— __)
- 4
p:—l S ricti pz . .o ge . . 0 1 2
non-relativistic E=— yields Schrédinger equation: i ~—¢=——V*¢
2m Ot 2m

at’ oax’ a9y’ oz

We “derived’ Klein-Gordon equation from relativistic E* = p* + m*

2
=20=V?¢—m?¢ or (0,0 + m?)g =0



‘Simple’ plane-wave solutions for ¢: ??

Use 4-derivatives to make Klein-Gordon equation Lorentz invariant:

& =V2g-m2g > 0,0mNé <o



‘Simple’ plane-wave solutions for ¢: ??
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Probability & current densities ??



Probability & current densities
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Probability & current densities Cont..
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Difficulties with Probability densities
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Dirac Relativistic Equation??
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Covariance form of the Dirac Equation




Covariance form of the Dirac Equation




Gamma Matrices




Properties of Gamma Matrices




Properties of Gamma Matrices




Properties of Gamma Matrices




Properties of Gamma Matrices




Properties of Gamma Matrices




Solution of Dirac Equation for free particles: Plane wave solution




Solution of Dirac Equation for free particles: Continue...




Solution of Dirac Equation for free particles: Continue




Solution of Dirac Equation for free particles: Continue




Solution of Dirac Equation for free particles: Continue




Solution of Dirac Equation for free particles: Continue




Solution of Dirac Equation for free particles: Continue




Solution of Dirac Equation for free particles: Continue




Solution of Dirac Equation for free particles: Continue




Solution of Dirac Equation for free particles: Plane wave solution




KG-equation (9,0 + m?)¢ = 0, problem?

‘Surprise’ of the plane-wave ¢ — Ne P* = Ne “F11+T solutions,
if you plug them in the KG equation you find:

E°= ]32+m2 = E=t4 ]32+m2 solutions with E<0
y » |20 E>0
p=2NIE o
<0 E<0 solutions with p <0

.

One way out: drop KG equation! That is what Dirac successfully did!
Other way out: re-interpret in terms of charge density & charge flow:

. . 0 > (0 g>0particles
9”—>q><3“2|N|2(qu,q><@{j P

79 < 0 g<0 particles

In reality (electrons negatively charged) just the opposite way ...:

E > 0 particles with q = —|e|
E < 0 anti-particles with q = +|e|






Schrodinger —Klein-Gordon — Dirac
0

p" = (E,p)
Quantum mechanical E & p operators: - Ot

ﬁ=—i§) — oM = i(%, —V)

You simply ‘derive’ the Schrodinger equation from classical mechanics:
2

E:p— —> 1 Q¢ — g i Vz ¢ Schroédinger equation
2m Ot 2m

With the relativistic relation between E, p & m you get:

2
E 2 :pz +m2 —> §¢ = V2 Q— m2 @ Klein-Gordon equation

The negative energy solutions led Dirac to try an equation with
first order derivatives in time (like Schrodinger) as well as in space

. 0 =
la(l) = —1 OC‘V(I) + Bm(l) Dirac equation



Does it make sense?

Also Dirac equation should reflect: ~E 2 —1_9)2 +m?

7, = o
Basically squaring: la(]) =—io-Vp+ Pmo = a-pd+ fmo
Tells you:

l(O_g . ﬁ+ Bmc)zl — (@zpz /Bmc)( QP + 6mc)
2 / — ﬁszCQ > ﬂ2=1
: 2 / +2 [04 P2+ (i + Baz-)pz-mc} —> ;2=1
m ‘_/z af+Ba =0

+ > [(cuey + ajou)pip;] —> i#: o g +0;05=0

1>]

I—)’Z



Properties of . and 3

L and a can not be simple commuting numbers, but must be matrices

Because [3°= a;%=1, both and a must have eigenvalues + 1

Since the eigenvalues are real (+1), T
both fand a must be Hermitean Q; — & €1 gt =

AijBjyCy; = Cy; AijBjx = BjCy; Ajj
Both S and a must be traceless matrices: Tr(ABC) = Tr(CAB) = Tr(BCA)

anti
p3=1 cyclic  commutation B2=1

Tr(ea; ) = Tr(aBB) = Tr(BaP) = —Tr(aPP) = —Tr(a; ) and hence Tr(c; )=0

You can easily show the dimension d of the matrices ,a to be even:
—|eie|, dodd
+|o;ei|, d even
or: with eigenvalues 1, matrices are only traceless in even dimensions

either: 7 £ 7 : || = | — ajou] = (—=1)%e04| = {



Explicit expressions for a; and 3

In 2 dimensions, you find at most 3 anti-commuting matrices,
Pauli spin matrices:

0 1 0 —i 1 0
17\ 10/ 27\ o) T \0 -1

In 4 dimensions, you can find 4 anti-commuting matrices,
numerous possibilities, Dirac-Pauli representation:

- 1 0 - 0 OL
(o 1) @ (0 %)
0 0 1 0 O 0O O
0 10 0 0 O 10 O
0) “1_<0 0) az=| o9 —j “3_<1 0
-1 1 0 i 0 0 -1

iy

_=o O

COoOm O
=
oOmOoO O
COm O
SO~ QO
(=R )
OO =

Any other set of 4 anti-commutating matrices will give same physics

(if the Dirac equation is to make any sense at all of course .....
and ... if it would not: we would not be discussing it here!)



Co-variant form: Dirac y-matrices

la(l) = —I 6{-\7(]) + Bm¢ does not look that Lorentz invariant

Multiplying on the left with B and collecting all the derivatives gives:

mo = lﬁ%(l) + i ,B&)-\?(I) = iy“ﬁucl) note: 3, = (8;,+V)
Hereby, the Dirac y-matrices are defined as:

'705»8((1) _?), ’ykzﬁak(_?jk %k)
And you can verify that: y*v" + y“y* = 2g*”

0f — 4 A0
As well as: (70)2 = +1 and: ’yk: = +7k s yH+ = yOyhy0
(v*)? = -1 7 ==



Co-variant form: Dirac y-matrices

oo T

mo = iy“f)“(b with the Dirac y-matrices defined as:

|

Ok
0

0
oy,

|

0
—1

1
0

(

b=

v’ =




Warning!
This m¢ = iy“@ud) notation is misleading, y*' is not a 4-vector!

The ”Y“ are just a set of four 4 x4 matrices, which do no not transform

at all i.e. in every frame they are the same, despite the p-index.

The Dirac wave-functions (¢ or y), so-called “spinors” have interesting

Lorentz transformation properties which we will discuss shortly.

After that it will become clear why the notation with y“ is useful!
& beautiful!

Y% = +7°

To make things even worse, we define: { y ’Yk
k= —



Spinors & (Dirac) matrices

* X *x ¥

* X *x ¥

* Kk % X

x*x %X X ¥

x X %X %

*x %X X ¥

X % % %
/I\
X
N\

%

%

%

%
\—/

Il
=4
&

I—l
<

o S R

x* %X ¥ X

* %X ¥ X

K S R

|

%
(:) X (* * x %)
*
this one we will encounter later ...

+

<

<
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Dirac current & probability densities

Proceed analogously to Schrodinger & Klein-Gordon equations,
but with Hermitean instead of complex conjugate wave-functions:

0 = —iho Ty — meyt -
= —ihOo 1 + ihOpT Y — meyt X 0
— —ihd, Y107 + ihdkbt Ry — meytyP
— _?;ﬁ(jﬂ pin0y0 — RO Ty E — meapTa©
= —ihGupiy " — meypiy
(Y =piy®) — —ihd Py — mey -
] @Y mep =0 Xy
Dirac equationsfor W & Y: 4 —>
Xy ihy*(0,4) — mey =0
Add these two equations to get:

Conserved 4-current: ) — ih(aﬂ?ﬁ)’y“ Y+ ih?ﬁ’}/” (au?,b) — tho, [QZ’}/“’ ?,b}
o mw{ 70 = 7% = [ol* + [r* + [t + ¢isf* > 0

-k Ak
J = Yy Y (exactly what Dirac aimed to achieve ...)




—>

Solutions: particles @ restp = 0

— = . . y 0
Dirac equation for p = 0 is simple: Zh’}/ 80’1,0 — mC’l,D =0

Solve by splitting 4-component in two 2-components: y = (WAJ
Ye

with 3,5(1/c)3, follows: ((1) _(1)) ( g%g ) __me ( zg)

solutions:

imc

YW oc e~ n




Solutions: moving particles p % 0

Dirac equation for p + 0 less simple: ih’y"@,,zb — mcw =0

Anticipate plane-waves: zp — u(p)e n(Et—P T) u(p)e—%pfc

u
And again anticipate two 2-components: U(p) = (UAE E;j
B

Plugging this in gives: 0 = (y*p, —mc)u(p) = (’yopb —v*p, — mc) u(p)

B E/c—mc —p - & u4(p)
B ( p-o —E/c—mc)(uﬁ(p))
_ ( (E/c—mc)ua(p) — P Gup(p) )

7 dua(p) — (E/c+ me)ug(p)

C — —

= { ua(p) = Fm=-0)us(p)

C

up(p) = Fr=z=(P- F)ua(p)




Solutions: moving particles p % 0

Solutions: pick u,(p) & calculate ug(p): U B(p ST B +inc2 (ﬁ X )’LLA (p)

w=()= 1\ w=0Q)= [ o

€. - 0 . 1
1 —ig. 2 _ i
w( ) ox e7RPT ﬁ% @b( ) ox eTRPE C(pm—zng)
E>0 | de=tiny Ei’?_ )
E_l_mcz E+m62

In limitp — 0 you retrieve the E>0 solutions, hence these are p + 0 electron solutions

Similarly: pick ug(p) & calculate u,(p): u A(p) — E_fmz (ﬁ - 0 )UB (p)

Up = ((1)) — ( cpz \ Up = ((1)) - ( c(pz—ipy) \

e+ F—mc? E—mc?
; c(pz+ipy) ; —cp,
w(g) X e rPT F—mc? q’b(‘i) X € RPZT FE—mc?

1 0

E<0 o0 S

In limitp — 0 you retrieve the E<0 solutions, hence these are p + 0 positron solutions







o* = (9,,—V)

Dirac equation

-_ .0

E=1 =

From: E?=p*+m? & classical = QM ‘transcription’: { _ 6%,
p=—i

7, -
We found: lad) = —ia-Vo+ pmo = a-pd + pm¢

With B, a,, a, & o, (4x4) matrices, satisfying: E 2 7 1_7)2 + mz

|(O_j ' ﬁJV Bmc)zl — (@ipi + 5777/0) (Oéjpj + ﬁmc)
32m2c? > B2=1
/ + Z [04 pz @zﬁ + Bag)ps mc} —> q;?=1

1>7

10 0 0 00 0 1 0 0 0 —i 0 0 1 0
o1 o0 o [0 0 1 0 {0 0 i o [0 o 0o -1
ﬁ_<00—1 0> “1_<0100> 2=\ —i 0o o] * (1 0 0 0

00 0 -1 1.0 0 0 i 0 0 0 0 -1 0 0

/ af+Po=0

T Z (i + a0i)pip;] —> i o a+a;a;=0

)



Co-variant form: Dirac y-matrices

0 S,
Dirac’s original form does not look covariant: ia o =—io-Vd+ pmo
Multiplying on the left with 8 and collecting all the derivatives gives covariant form:
mo = lﬁa(b +ipa-Vé =iy"dyd note:9, = (8, +7)

With Dirac »matrices defined as: y° = = ((1) 0 ) Yk = Bak = ( 0 Gk)

—1 —O0y 0

10 0 0 0 0 0 1 0 0 0 —i 0 0 1 0
o001 o o)\.1._. {0 o 10} .2 [ o0 o i o)l.s [0 0 0 -1
14 _<0 0 -1 0)” _<0 1 0 0>” = i 0 o]7Y _<—1 0 0 0)
00 0 -1 1 0 0 0 i 0 0 0 0 1 0 0

From the properties of 5, a,, o, & a; follows: 'y“’y Y+ ’Yy'Y‘u — QQ‘W

0y2 07 — 0
=11 it A
g”“))z = -1 Y= —oF r vy



Dirac particle solutions: spinors

, u
Ansatz solution: \y = [u

a(p)
s(P) ¢

~lpX ——> Dijrac eqgn.: 1

b-0

- ua(p) = g——up(p)
| u®) = ()

P = 0 solutions:

0. ‘e Y

us =\,

AR (0

T ad I I ol
0 \ 0

spin % electrons

p = 0 solutions:
O

v 1
0
CPz

E+me?

c(pzs+ipy)
E+me?

e kP

E>0

P x

e kPT

0
1

6(pm—ipg)
F+me

—CEz
E+me?

.2
w(s) X e+%t

0
ime® (0\

0
\ 1)

C('P:l: _ipy)
F—mc?




Dirac equatlgn

more oK NI partlcles-*“
norm ‘ ‘ \ sgtion

4-vector current
antl/partlcles




sorry for the c’s

One more look at p-G

U — £ ) - O )U
The conditions: A(p) B E —;’”*02 (21 Z) B(p)
up(p) = oz (D F)ua(p)
c? )
Imply:  us(p) = 25— 1P 0) ua(p)
9
C — =\ 2
= 1= Ez—mzc‘l(p.a) = p*c®* = E* —m*c*

i.e. energy-momentum
relation, as expected

Check this: |
g - () (" 3) (] 2)

= ( (P izipy) (px_—pi'py) ) = (- F)? = (Pﬁ + (P2 —'i-z-??)(m +ip,) ) _ 2



Normalisation of the Dirac spinors

Just calculate it!: (1
Spinors 1 & 2, E>0: o B o kP ﬁgz—g
T el
= 1+ &»J&zﬁz
L+ 7 i~ s — N VB[ e
To normalize @ 2E particles/unit volume
Spinors 3 & 4, E<O: yoR—
Wiy = 1+ picf}ﬁicij)gicz Y@ o e P %—Fﬂ
2 2.4
14 55_‘,,%232 \ 0
= LS = g = e N = B me

To normalize @ 2E particles/unit volume



Current & probability densities

Again, just plug it in! j" = ?,L"Y’u’ Y {

particle
@ rest

5

0
0
moving
particle

N

N

eps
E|'me?

e(pztipy)
E+mc?

\ 0
(1)

\

\

always using
N=./|E| + mc?

7O =y
= yFyp

0

1 ) Y=yl =2me  2E>0

kfk‘”(—?;k ‘g’“)ww*(fk ‘B’“)wﬁ‘
]ow((l) ?)¢¢T¢{+gg gzo %Z‘E‘EU
0 e\, (0 o\, [+2 E>0
L]kw(—ak Ok)?’bw(ak Ok)?’b{—%’ E <0
y

not that easy, next slide!



Current & probability densities

Explicit verification of j, for moving particle solution y(V:

(000 1\ [ 1
0010 0

010 0 Bt
\1000)\45“%))

. F+me?
( c(patipy) \
E+me?
(pz—ipy) e 5
_ 2 CP= C\Pxz —*Py E
o ‘N’ (1’0’ E+mc2? E-+mc? ) e
1)

j. = |N*(1,0, 7= C(JDa:—ipy))

" F4+me?2' FE-+4+mce?

N2 (6(pa:+ipy) 1 C(p:c—ipy))

- ) E+4+me? E+me?
- 2 CPx N
- ‘N E+pch 4 2p$
: cp
And j, for moving anti-particle solution y3): j, = |N|* £ mxcz = —2Py



Antiparticles




Surprising applications

PET — Positron Emission Tomography

detectors

coincikdence
electronics

" 4

image
reconstruction




Particles & Anti-particles

4-component Dirac spinors — 4-solutions.
These represent: 2 spin states of the electron
2 spin states of the anti-electron i.e. the positron

Different ways how to proceed:
 Use E>0 & E<O solutions of the electron Dirac eqgn.
e Use E>0 & E<O solutions of the positron Dirac eqn.
* Use E>0 solutions for the ‘particle’ i.e. electron &
Use E<O solutions for the ‘anti-particle’ i.e. positron

Will opt for the last option:
i.e. using the physical E & P to characterize states



And now: E<O — antiparticles

‘Dirac sea’: fill all E<0 states (thanks to Pauli exclusion principle)

single e~ y—>e‘e” e‘e" >y
F . F s )
_’...._._-.—
My - —@—— M |- { v Mg - : y
l :
= — = =
-— - —- - —
& & " & & 95—
—— *r—=o o ®
But: e does not work for bosons

e an infinite energy sea not a nice concept ...



And now: E<O — antiparticles

‘Feynman-Stiickelberg’: E<O particle solutions propagating backwards in time
E>0 anti-particle solutions propagating forwards in time

e—i(—E)(-t) — o—iEt

e~ (E>0) e~ (E>0)
4 time 4
—
E =2E E =2E

_ 4 . 4
e~ (E<0) e* (E>0)

‘Up-shot’: Dirac equation accommodates both particle & antiparticles!

Sequel: will use particle & anti-particle spinors labelled with their

physical, E>0 & real P, kinematics. (exponents remain opposite)



We had: Dirac ‘u’-spinors

1 0
0 1
C. y =VE +me ¥ —EZZ Y@ = VE +m e P¥| PxPy
m E+m
Px+ipy —Dz
E+m E+m
E>0 = u(E,f) P = uy(E,§) e P
Pz Px—1iDy
E-m E—m
. Dx+ip _ “p,
e+ y® = VIEl +m e™ ™ E—my y@W = J|E| + m e~ ¥ E_Pm
1 0
0 1

E<O

= uy(E,p) e P¥ = u,(E,p) e”P™



From now on use: Dirac ‘u’- & ‘v’-spinors

u-spinors: for electrons, labeled with physical E>0 & P

1 0
0 1
—_ \If(l) —VE+me ipx| Pz \If(z) = \E + m e"x| Px"ipy
e E+m E+m
Px+ipy —Dz
E+m E+m

=0 up(E,p) e™P*

= Uq (E, I_i) e_ip'x

v-spinors: for positrons, labeled with physical E>0 & D

e+

u,(—E,—p) e*?* = v (E,p) etP*

E>0 us(—E, —ﬁ) ptivx = (2 (E, I_)’) e+ip-x



Dirac equation

Dirac equation in original form with matrices o & f:
d =
iazp = —io-VyYy + my

With plane-wave solutions: v = u(p)e P* = [uA (p)

e~ 'P"X you find for spinor u(p):
s (p) you find for sp (p)

Eu(p) = d-pu(p) + Pmu(p)

This algabraic equation for u(p) you can solve for particles with p* = (E,p)

Co-variant form of Dirac equation with matrices y*:
ml/) — lY“aMIIJ with WY = u(p)e_ip'x — [uA(p)

e‘ip'x ou get “p —mju(p) = 0
ug(p) yousg (y H ) @)
Explicit expressions for the y" matrices:

10 0 0 0 0 o0 1 0 0 0 —i 0 0 1 0
o001 0o o)l.1_[o 1 0\ 2 [ 0 o0 i o)l s [0 0 0 -1
”‘(0 0 —1 0>”_<0 1 0 0)”_ 0 i 0 0 ”‘(—1 0 0 0)

00 0 -1 1 0 0 0 i 0 0 0 0 1 0 0

And the algebra for the y* matrices: y"y’ + y'y* = 2g"*¥



Spinors

i p-o
uy(p) = ug(p)
: us(®)] —ip. : E—m
Ansatz solution: y =[ e 'P"* =——> Diraceqn.: - —
to(P) up(P) = 2y (p)
- E+m

P = 0 solutions:

" I B
Uy = | up =
0 ~ 0 W
[ 1) (0 (
Yo o e 8 Yo oce é 5O o e+ 5
\ 0/ \ 0/ \

E >0 spin ’ positrons

spin % electrons
p # 0 solutions:

1 3
PV x ) V@ 0 ¥® b@ x .
CPp= c(pzs—1
—mc? o
_ 2 op 0 i ]_ i C(Pz:+?.p1!) ; —epz
e~ ’P CPz e RPT c(pz—ipy) e RPT E-—mc? e RPT F_mc2
E-+mc? “Ftmet 1 0
c(pz+ipy) “cp, 0 1

E+me? E+me2




Particles & anti-particles

u-spinors: for electrons, labeled with physical E>0 & P

1 0
0 1
e— W(l) =+E +m e~ X _Pz W(Z) =+E+m e—ip-x Px—iDy
E+m E+m
Px+ipy —Dz
E+m E+m
E>0 . .
— —ilp-X — DX
= u (E,p) e P = u,(E,p) e’ P

v-spinors: for positrons, labeled with physical E>0 & D

e+

\V(l) — U4(—E, _ﬁ) e+ip-x \V(Z) — U3(—E, _ﬁ) e+ip-x

B0 = vy(E,p) e"'P* = v,(E,p) e"'P*



Dlrac equatlon
174 partlcles
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Dirac particles & spin

As you might guess, the two-fold degeneracy is because of the spin=%
nature of the particles the Dirac equation describes!

How do you see this?

Use commutator with Hamiltonian H =¢¢ _>+ ,Bmc to find conserved quantities

—

First attempt: orbital angular momentum | = x[_j tells you:

[H,L]=[é p+Amc,Fx pl=a,[p,.Fx Bl=c, p,(F*B)-c,(FxB)p,
=0 P&y T | Py 85T P P Used: pr.-r.p+33,
=15, 6 D=y pk=l?07><f):—ih07xr);t6 ®

- (o 0
Second attempt: internal angular momentum X E[ 0 qJ tells you:
o)

- . 0 |
[H.2] =[a-p+Amc, 2] = Pylak, Zi] = Py (+[gk . "'[Gkom]j @
| total spin

O —>_—> —
— pk ZiEKIm( to ] 21 pk EkIMOm = 2|a X p * O @ J= L+1/2hz
+om O is conserved!



Dirac particles & spin

Do we indeed describe particles with spin =%?

12\? 3 !
(52) p— ¥~ sty — s—3  VYes!

(Y Iy
o @ Ly 2 .
For particles with p=0: 5231& == NIOB % « can use (X?,2;) to classify states
WA _% x )

For particles with p=0 we can not use 2;, but we can use spin // p: 1/ 23 . f)

[H, 5 gﬂ — ]Ai’ [H, i} — 5’ 2iae x p=10 Are you sure? Check it yourself!

—mpP—>  helicity + %
—@Emm—> helicity - %

1/23- D is called helicity with eigenvalues: +%



* HEIICIty states ight-handed

—mPp—> helicity + % RH
—m—> helicity — % LH

left-handed

1/23- D is called helicity with eigenvalues: + %

Instead of u; & u, spinors, we could use helicity % : uys & u spinors (& similarly for v-spinors)

¢ —
—

You ‘simply’ solve the 1 ( c-p 0 )( Ua )

eigenvalue equation: 55 O o-p/l\lug

(uA) - (0 - plua = 2p Auy
“p (o« plup = 2p Aug

Eigenvalues, use (0" p)* = p: PZHA = 2pA(0 - plus = 4132/12”;4 —=> A=zx%asitshould

With u,, you get ug using the Dirac eqn. as we did before (easier now o - pu, = 2piuy, ):

(plus = (E + mug. = up = 2/1( )uA
E+m



x Helicity states

right-handed

—mPp—> helicity + % RH
—m—> helicity — % LH

left-handed

1/23- D is called helicity with eigenvalues: + %

solving (o - plug = 2p Auy

easiest using spherical coordinates: P = (psinfcos¢, psinfsing, pcosf)

1 ( P2 px—z'py) _ 1( cos 6 sint‘}'e""‘ﬁ')

1
vields: 55 P =50t i b 2 { sin6e® —cosd

1 —ig . —l(P=
WithuA-_—(g)fO”OWS:( cosf@ sinfe )(a)=2/1(a)or: IacosH+bsmee 22a

sinfe® —cos@ J\ b b a sinfe*'? —bcosO =2Ab

b _ 24— cos Gew

— n: .
a Sin ( ;08 (gl \
. . I 3
For A = +%: b = : —.cosfi' P = 2 sin” (g) e = e"""g(—g)- = | =N EP Sm(iﬁ)i
a” TSm0 ¢ T dsn(Deos(d) cos(?) 7 €05 (9)
\ ﬁ;e@ sin (g) )




X

1/23- D is called helicity with eigenvalues: + %

Particles

F"'/ LH/ ur = NE+m
ur uy ;

Anti-particles

R% L% v = VE +m

Remark:

\

(

c
se'?

_pP_
E+m

p i
E+m ser )

p
E+m S

P

)

—=Pce'?

E+m
-5

ce'®

3

/

Helicity states

—mPp—> helicity + % RH
—m—> helicity — % LH

uy = VE +m

vy = YE+m

c = cos(0/2)
s =sin(0/2)
right-handed

left-handed
(=
ce'?
B
E+mS

\ el

( P 3
E+m ¢
_P_ it

E+m S€ i
C
L se?

we have used physical E & p for the v-spinors. Nevertheless: exponents still reflect
negative energy (& momentum)! This means that the physical E, p and even helicity of

v-spinors are obtained using the opposite of the operators used for u-spinors!

Afteral: we are re-interpreting the unwanted negative energy solutions of the Dirac eqn.!



Chirality

For massless & extremely relativistic particles, helicity states become simple:

c —S
. ip ip
Particles — uy =vVE| % =up up =VE| =y
sel¥ _cel®
S C
. . —cet?® ip _
Anti-particles vy =VE| "5 | =vr v =VE| %, =y
cel? sel¢
0O 0 1 O
These four states are also eigenstates of: (1) 8 8 (1) =y°> | y° = iyPyly?y3
0O 1 0 O
Eigenstates of y° called:
Left-handed (L)
. _ _ Right handed (R)
Simple check: v°uq = +u and: Y°vq4=-v
P T T T T chiral states.

5 — 5 =
yrup=-"uy yovy =ty Weak interactions!
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International Linear Collider (Japan?)




Real life examples: LEP e*e~

v

LAKE GENEVA GENEVA

S LEP experiment

| 3

’

LEP exporimant

ALEPH










Real life examples: LEP e*e

QOuter Cooling Circuit

PhooN W

BG

I‘ ;"
Electron i\l’ositron
TEC T
0

MUON DETECTOR

detector particle identification



Real life examples: LEP e*e




Other processes -----

NI
p\\ / p

Compton scattering: ey —> e~y q=p-K
k g=p+k k’
JJ..J‘F “'—.,LL k i

Pair creation: e‘'e™ — yy
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