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Course Outcomes 

1. Ability to determine stresses in solid members under different conditions. 

2. The ability to calculate deflections in beams under different support 

conditions, deflection in helical and leaf springs under different loading 

conditions. 

3. The ability to determine stresses in thin and thick cylindrical and thin 

spherical shells and buckling loads in column under different loading 

conditions. 

4. Ability to understand advanced topics of mechanics of solids for further 

research and industry applications. 
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Unit-1 

1. Stresses and strain 

2. Elastic constant  

3. Poisson's ratio 

4. Principal planes and principal stresses 

5. Mohr's circle for plane stress and plane strain 

6. Bending, torsional and its combinations  

7. Strain energy due to principal stresses  

8. Energy of distortions  

9. Thermal stresses  

10. Strain gauges and rosettes  
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Few basic concepts of engineering mechanics  

1. Static equilibrium equations  

 

2. FBD  (free body diagram) 

 

3. Centroid and its calculations  

 

4. Moment of inertia (area moment of inertia) 

 

5. Parallel & perpendicular axis theorem 
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Static equilibrium equations ? 

Static equilibrium means that the net force acting on the object is zero or object 

is not moving. 

 

 

 

in 2D space: 

1.  𝐻 = 0   (Submission of horizontal forces should be zero) 

2.  𝑉 = 0  (Submission of vertical forces should be zero 

3.  𝑀 = 0  ( submission of all forces moment about any axis should be zero) 
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In 3D space : We have 6 static equilibrium 

equations  

 

 

 

1.  𝐹𝑧 = 0 

2.  𝑀𝑥 = 0 

3.  𝑀𝑦 = 0 

4.  𝑀𝑧 = 0  
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Q1. The system as shown in figure is in equilibrium with the string in the center 

exactly horizontal. Find (a) tension T1, (b) tension T2, (c) tension T3 and  (d) 

angle θ. 
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Hint: Free body Diagram (FBD)   

Answer:   

T1 = 48.8 N 

T2 = 28 N  

T3 = 57.3 N 

θ   =  29.3◦ 

 



Free Body Diagram 

(FBD) 

It is used to show the relative magnitude and direction of all forces acting upon 

an object in a given situation. 
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Centroid  & Centre of gravity 

 

                                                                            

 

 

 Centroid & centre of gravity is a point where the entire mass of the body is 

assumed to be act. 
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For 2D object  
Like : Triangle, rectangle, 

circle etc. 

For 3D object  
Like : Book, cup, Ball etc. 

 



Location of centroid / centre of gravity 
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Centroid location of few common shape  
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Centroid calculation for composite shape  

The plane geometrical figures (such as T-section, I-section, L-section etc.) 

have only areas but no mass, the centre of area of such figures is known as 

centroid. 

Let x̄ and ȳ be the co-ordinates of the centre of gravity with respect to some 

axis of reference, 

Then 
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Centroid calculation for composite shape …  

 where a1, a2, a3........ etc., are the areas into which the whole figure is 

divided x1, x2, x3 ..... etc., are the respective co-ordinates of the areas a1, 

a2, a3....... on X-X axis with respect to same axis of reference. 

 y1, y2, y3....... etc., are the respective co-ordinates of the areas a1, a2, 

a3....... on Y-Y axis with respect to same axis of the reference. 

 

Note: 

1.  While using the above formula, x1, x2, x3 ..... or y1, y2, y3 or x and y 

must be measured from the same axis of reference (or point of reference) 

and on the same side of it.  

2. If the figure is on both sides of the axis of reference, then the distances in 

one direction are taken as positive and those in the opposite directions 

must be taken as negative 
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Q 2. Find the centre of gravity of a 100 mm * 150 mm * 30 mm T-section. 

 

 

 

 

 

 

 

 

 

Note : If section is having symmetry about any axis, its centroid will lie on the 

symmetrical axis. 
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Moment of inertia (Area moment of inertia) 
It is the second moment of area 

Consider a plane figure, whose moment of inertia is required to be found out 

about X-X axis and Y-Y axis. 

Let us divide the whole area into a no. of strips. Consider one of these strips. 

Let dA = Area of the strip 

x = Distance of the centre of gravity of the 

strip on X-X axis and 

y = Distance of the centre of gravity of the 

strip on Y-Y axis. 
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Moment of inertia (Area moment of inertia) 
few common shapes 
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• Rectangular  



Moment of inertia (Area moment of inertia) 
few common shapes 
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• Triangle   



Moment of inertia (Area moment of inertia) 
few common shapes 
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• Circle  



Parallel axis theorem  
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 The moment of inertia about an axis parallel to the centroid axis is equal to the 

sum of moment of inertia about the centroid axis and product of area and 

square of distance between the these two axes. 

 

 

 

I  = Mmoment of inertia about any axis 

Ic = Moment of inertia about the centroid axis 

M = Area 

h2 = Square of distance between the these two axes 

 



Perpendicular axis theorem  
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Perpendicular axis theorem is used when the body is symmetric in shape about 

two out of the three axes, if moment of inertia about two of the axes are known 

the moment of inertia about the third axis can be found using the expression: 

 

 

 

 

 



Q 3. An I- section is made up of 3 rectangles. Find the moment of inertia of the 

section about the horizontal axis passing through the centre of  gravity of the 

section. 

ANKIT SAXENA (saxena01ankit@gmail.com) 



MECHANICS OF SOLIDS  



 

 

What is the difference between engineering 

mechanics and mechanics of solids? 

  

Engineering mechanics : we study the external forces and their effects on 

rigid body. 

 

Mechanics of solids/ Strength of material/ Mechanics of materials : 

We study the internal resisting force (I.R.F) which are developed during the 

elastic deformation of a body under the action of external forces. 
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In engineering mechanics we always deals with the rigid body. But in 

mechanics of solids we deals with the deformable body. 

Rigid Body 

• Rigid body is basically defined as 

a body where changes in the 

distance between any two of its 

points is negligible. 

                                                                                                                                                                                                                                         

Deformable body 

• Deformable body is basically 

defined as a body where changes 

in the distance between any two 

of its points could not be 

neglected. 
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Assumptions  

• Body should be homogeneous and isotropic. 

• It obeys Hook's law. 

• Body should be prismatic. 

• Load is considered as static load. 

• Self weight of the body should be neglected. 
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Homogeneous Material 

 
• A material is said to be homogeneous when it exhibits same elastic 

properties at any point in a given direction.  

• Elastic properties are independent of point. 

 

 

 

 

 

 

Body A 
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x 

y 

z 

 
        E2                              E2 

        

           1               E1     

                     E2              2              E1 

 

                       3                 E1 

                                



Isotropic Material 

 
• A material is said to be isotropic when it exhibits same elastic properties in 

any direction at a given point.  

• Elastic properties are independent of direction. 

 

 

 

 

 

 

Body B 
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x 

y 

z 

 
        E1                              E2 

                        E1                            E2 

           1               E1     

                     E3              2              E2 

 

                       3                 E3 

                                



Homogeneous & Isotropic Material 
• A material is said to be both homogeneous & isotropic when it exhibits 

same elastic properties at any point and at any direction. 

• Elastic properties are independent from both direction and point. 

 

 

 

 

 

 

Body C 
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x 

y 

z 

 
        E                              E 

                        E                              E 

           1               E     

                     E                2              E 

 

                       3                 E 

                                



Hook's Law 

• When force is applied to a material, we know that it either stretches or 

compresses in response to the applied force.  

• Stress: It is defined as the internal resisting force per unit cross-section area 

at a given point. It is denoted by the symbol σ.  

σ =  [Force / unit cross-section area] at a point 

σ =  [F / A] 

• Strain: It is the ratio of change in dimension to the original dimension. It is 

denoted by the symbol ε. 

ε = [change in dimension / Original dimension] 

ε = [Δl / L] 
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According to Hook's law,  

"The strain of the material is proportional to the applied stress up to the 

proportional limit of that material." 

Stress ∝ strain  

ζ ∝ ε 
ζ = E ε 

 
E = Young's modulus of elasticity 

[F / A] = E [Δl / L] 
 

Δl =  
𝐹𝐿

𝐴𝐸
 

 
 

 

 

 

 

 

This is a static deflection/ 

deformation equation 



Prismatic Body 

• A body is said to be prismatic body if it has uniform cross section through 

out its length. 

 

 

 

 

Fig. Prismatic bar having rectangular x-s/c through out it's length 'L' 
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Cross Section (A) 

L 
 



Non-Prismatic Body 

. 

 

 

 

 

Note: 

1. This is a non-prismatic bar because it is not having uniform x-s/c through 

out its entire length. 

2. But this is consider as prismatic bar for length L1 & L2 alone with having 

x-s/c A1& A2 respectively.  
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Cross Section 

 (A1) 

                  L1                                   L2   
 

Cross Section 

 (A2) 

 



Important Point 

• Static deflection equation only can apply for a  prismatic body. 

 

Δl =  
𝐹𝐿

𝐴𝐸
 

 

• For non-prismatic body, we can apply the above equation only for the 

prismatic potion. 
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Static load  

• Load is a vector quantity. 

• Static load is defined as load whose magnitude and direction is constant 

throughout. 
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Load 

• It is a external force or couple which is subjected to a object or body. 

• In simple word load can also be defined as weight of one component with 

respect to another component. 

Shaft (W2) 

 

 

                                                                                                    X-s/c view 

         Bearing           Pulley (W1)  

 

Fig. Shaft support a pulley & bearing's support shaft and pulley both 
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1. While designing a pulley, self weight of pulley is neglected. 

2. While designing a shaft, the pulley weight is considered as load on the 

shaft but self weight of shaft is neglected. 

3. While designing a bearings, the pulley and shaft weights are considered as 

load on the bearings but self weight of bearings are neglected. 
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Classification of loads 

 

 

LOADS 

 

 

 

            

      Based on time               Based on direction              Based on distribution 

                                               of load w.r.t x-s/c                            of loads 
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Based on Time 
 

 

 

                                   

                         Static Load                                             Dynamic load 
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Dead Load 

(refers to loads that 

relatively don't 

change over time) 

Gradually  

Applied load  

(When 

a load is applied in 

small installments) 

Impact/ shock 

Or  

Suddenly applied load 

( load with a 
sudden impact due to 
falling or hitting one 
object on another) 

Fatigue  

Or 

Cyclic  

Or  

Variable 

loads 



 

Based on direction of load w.r.t x-s/c 
 

 

 

                                   

                       Normal Load                                               Shear load 
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Axial Load Eccentric axial 

load  

Transverse  

Shear load 

(TSL) 

Eccentric 

Shear load 

Tensile load                        Compressive load  



 

Based on distribution of loads 
 

 

 

                                   

        Concentrated  Load                                      Distributed load 
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Concentrated 

 Point  

load 

Concentrated 

 Point  

moment 

Uniformly  

Distributed  

Load  

(UDL) 

Uniformly  

Distributed  

Moment 

(UDM) 

Uniformly  

Variable 

 load 

(UVL) 



Important terminology 

Centroidal axis:  The axes that pass through the centroid of the x-s/c is known 

as centroidal axis. 

• Consider a bar having a square cross section. 

                                                   y                                     y 

 

                                                                                                                 x 

                                                                      z 

                        Front view                                           x-s/c view 

• We know that, centroid of square x-s/c lie at its the diagonal intersection. 

• Here x & y axes are the centroidal axes.  

• Or in simple words we can say that centroidal axes lies in a plane of cross 

section. 
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x 
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Longitudinal axis :  

• Imaginary axis that  passing through the centroid of each and every x-s/c is 

known as longitudinal axis. 

• Longitudinal axes is always perpendicular to the plane of x-s/c. 

 

 

 

 

 

 

Polar Axis : Any axis that is perpendicular to the plane of cross section is 

known as polar axis.  

 

 

 

 

Longitudinal 

axis 

(LA)  
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Normal load :  

• If the line of action of force is perpendicular to the cross section area, is 

known as normal load. 

• If the line of action of force coincide with longitudinal axis is known as 

axial normal load. 

 

 

 

 

 

 
 

 

      

       (LA)                                                                                P (N) 

 

 

 

 

 

 

 

Figure: Normal axial load  

P (N) 

Line of action of 

force 
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• If the line of action of force having eccentricity (e) with longitudinal axis is 

known as eccentric axial normal load. 

 

 

 

 

 

 

 

Figure: Eccentric axial normal load 

 

 

 

      

       P (N) 

Line of action of force 

e 

 
 e 
 
 
 
 
 

  P (N) 

L.A 
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Tensile load: If the line of action of force is away from the x-s/c or in outward 

direction is know as tensile load. Tensile load having tendency to increase the 

member length. 

 

 

 

Compressive load: If the line of action of force is towards the x-s/c or in inward 

direction is know as compressive load. Compressive load having tendency to 

decrease the member length. 

 

      

       P (N) 

Line of action of force 

e 

  P (N) 

L.A 

e L.A 
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Shear load :  

• If the line of action of force is parallel to the plane of cross-section is 

known as shear load. 

• The line of action of force is perpendicular to the longitudinal axis. 

• The line of action of force is parallel to the centroidal axis. It may or may 

not pass through the centroid of the x-s/c. 

•                                                     y     

                                           P (N)                      x 

                                                                   

                                                                  L.A        z 

 

 

                         Q (N) 

 

• x & y are the 

centroidal axes. 

• z is a polar axis. 
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Transverse shear load (TSL):  

• The line of action of force is parallel to the plane of x-s/c and pass through 

the centroid of the x-s/c. 

                                                  y     

                                           P (N)                      x 

                                                                   

                                                                  L.A        z 

 

 

                         Q (N) 

 

y 

x 

P (N)  
 
Q (N) 
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Eccentric Transverse shear load (ETSL):  

• The line of action of force is parallel to the plane of x-s/c and but not pass 

through the centroid of the x-s/c having eccentricity (e) from the centroidal 

axis. 

                                                  y                      x 

                                                                   

                                                                  L.A        z 

                                                                                

                                                                                  

                                       e2                                                        Q (N) 

                                      Q (N) 

 

y 

x 

P (N) 

P (N) 
e1 

e1 

e2 



Representation of structure member in 2D 

• For the simplification any structure member (like beam, column etc.) is 

represented by its longitudinal axis (LA) and its support condition. 

 

 

                                                                                        L.A 

                     Fixed end 

              Figure- Cantilever beam (one end is fixed & one end is free) 
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Fixed end                                                     L.A    



Support & its representation 
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Number of reactions at any support  = Number of restricted motion by 

that support 

      Supports 

 

 

 

                         Simple Support                                               Fixed Support 

 

 

 

Roller Support                    Hinge support 
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Roller & Hinge Support : 

 

 

 

 

P (N) 

 

           RAV 

 

Roller support 

 

• Roller support only restrict the 

vertical motion. 

• So only vertical reaction is present. 

• RAV is the vertical reaction. 

 

 

 

RBV 

 

    Hinge support 

 

• Hinge support restrict the 

vertical & horizontal motion, 

rotation is permitted. 

• So only vertical (RBV) & 

horizontal reaction (RBH) is 

permitted. 

 

RBH = 0 
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Fixed Support: 

 

 

 

 

 

 

 

 

 

 

W (N) 

                MA                                                                                                                                                  MB 

 

                                       

                                          RAH                                                                                                      RBH 

 

 

 

 

 

                                                     RAV                                                                               RBH 

 

• At fixed support vertical, horizontal and rotation motion all are restricted. 

• So vertical, horizontal and moment reactions will act at the support. 



Important Point 

• If there is not any horizontal external loading in member, there will be no 

any horizontal reaction act at support. 

• In simple support there will be no moment reaction act at the support or we 

can say that moment reaction will be zero.  

• In fixed support if there is only vertical external loading, due to vertical 

loading both vertical & moment reactions will produced. 
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Beams  
(It is a structure member which is subjected to transverse shear load TSL) 

Beams  
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Statically determinate beams 
( Number of reaction determine by using 

static equilibrium equation ) 

Statically indeterminate beams 
(Total no. of reaction in the beam ) > 

(No. of useful total static equilibrium) 

Simply 

supported 

beam 

Over 

hanging 

beam 

Cantilever 

beam 

Fixed 

beam 

Propped 

cantilever 

beam 

Continuous 

beam 



Beam representation 

• Longitudinal axis 

• Types of support (Roller, hinge or fixed) 

• Span length 

• Loads acting on it. (External loads & support reactions) 

Span length: It is nothing but the total length of the beam structure.  
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Simply supported beam (S.S.B): 

• It has only 2 support (roller or hinge type ) at the end. 

• The end deflection is zero i.e. deflection at the support is zero. 

• Maximum deflection occurs between the support. 

 

 

 

 

 

 

 

• If the load is applied at the mid of beam span, the maximum deflection occurs 

at the centre of beam. 

 

 

 

 

RAV                                                                                         RBV                                         

A                                      P (N)             B              RBH     

 

                                  Δ 
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Simply supported beam (S.S.B): 

• The reaction RBH = 0, because there is not any horizontal external loading on 

the beam. 

• The S.S.B consists of one hinge and one roller support is always statically 

determinate type beam. 

 

 

RAV                                                                                         RBV                                         

A                                      P (N)             B              RBH     

 

                                  Δ 
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Over hanging beam : 

• In over hanging beam we use only 2 support but the location of the support is 

not at the ends. It is modified form of S.S.B. 

• Supports are used in between the ends. 

 

 

RAV                                                                                         RBV    

 

Span Length                                      

Δ1                       A                                      P (N)             B       RBH         Δ2 

 

                                                              Δ 
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Over hanging beam : 

• By the use of over hanging beam, we reduce the centre deflection. 

• But now end deflection Δ1 & Δ2 produced. 

 

 

RAV                                                                                         RBV    

 

Span Length                                      

Δ1                       A                                      P (N)             B       RBH         Δ2 

 

                                                              Δ 
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Continuous beam : 

• It is the modified form of over hanging beam. 

• Here we used more than 2 supports. 

• It is always statically indeterminate type beam structure. 

 

 

        RAV                                                                                         RBV    

 

Span Length                                      

Δ1                       A                                      P (N)             B       RBH         Δ2 

 

                                                              Δ 
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Cantilever Beam : 

• This type of beam is having one end is fixed and one end is free. 

• It is always statically determinate type beam. 

• Deflection at the fixed end is zero and at the free end is maximum. 

             MA          RAH           A                            P(N)       

                                                                                            B 

                                                                                    Δ 

                                                                                    

 

 

                                    RAV 
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Propped Beam : 

• This beam is a modified form of cantilever beam. To avoid end deflection we 

used simply support at the free end. 

• It is always statically indeterminate type beam. 

 

 

 

 

 

 

 

• For finding reactions in such beam we used compatibility equations. 

             MA          RAH           A                                       B 

                                                                                                       RBH 

                                                                                                                                                                        

 

 

                                    RAV                                                                    RBV 
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Fixed beam: 

 

                MA              A                                              B                            MB 

                          RAH                                                                      RBH              

 

                                                                                                                                                                        

 

 

                                   RAV                                                                        RBV 

 

 

 

 

• It is always a statically indeterminate type of beam. 

 

 

 

 

 

 

 

 

 



  Load Summary 

Load W.r.t Plane of x-s/c W.r.t. longitudinal axis 

Axial Load 

(AL) 

Line of action of force 

Perpendicular to the 

plane of X-S/C 

Line of action of force along 

the longitudinal axis 

Eccentric axial load 

(EAL) 

Line of action of force 

Perpendicular to the 

plane of X-S/C 

Line of action of force 

parallel to the longitudinal 

axis and having eccentricity  

Transverse shear load 

(TSL) 

Line of action of force 

parallel to the plane of X-

S/C 

• Line of action of force 

perpendicular to the  

longitudinal axis. 

• Line of action of force 

passing through the 

longitudinal axis. 
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Load W.r.t Plane of x-s/c W.r.t. longitudinal axis 

Eccentric Transverse 

shear load (ETSL) 

Line of action of force 

parallel to the plane of X-

S/C 

• Line of action of force 

perpendicular to the  

longitudinal axis. 

• Line of action of force will 

not pass through the 

centroid of the x-s/c. 

• There is a eccentricity 

between the line of action 

of force and longitudinal 

axis. 
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Q 1. For the given structure made of AB, BC & CD member. A external load P 

(N) is apply at the free end of member CD. Determine the which type of load 

(AL, TSL & ETSL) with respect to member AB, BC & CD. 

 

                     

                                                         B 

 

 

                         D                              C 

        P(N)             
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                                                A 

                                              L.A of AB                                        

 

                                                                                                                          

                                                                                                                         L.A of BC 

 

 

                                                                                         

                                                                                              L.A of CD 



Q 2. For the given structure made of AB, BC & CD member. A external load P 

(N) is apply at the free end of member CD. Determine the which type of load 

(AL, TSL & ETSL) with respect to member AB, BC & CD. 

 

                     

    A                                                   B 

 

 

                         D                              C 

                 P(N)             
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Bending couple 

 • A couple is said to be a bending couple when plane of the couple is along 

the longitudinal axis of the member. 

(or) 

• A couple is said to be a bending couple when plane of the couple is 

perpendicular to the plane of x-s/c of the member. 

(or)  

• A couple is said to be a bending couple when it acts about a centroidal axis 

which is in the plane of x-s/c. 
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M M

Y

/X S C

X

Z

.L A
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Top view

Front view

Side

view

Y

X

Z

.LA

( )

xz plane

or

horizontal

plane



( )

yz plane

or

vertical

plane



( )

/

xy plane

or

profile side

plane



M

Orthographic Projection 
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Important points 

 

• Y-Z plane = Vertical plane 

• X-Y plane = Profile or side plane 

• X-Z plane = Horizontal plane  

• X-section will lie is profile profile plane  

• Longitudinal axes will lie is vertical plane 

• Bending couple can be lie in vertical plane , horizontal plane or both the 

plane  

• X & Y are the centroidal axes. 

• Bending couple will lie along the centroidal axes. 

 



Type of Bending  
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Consider a bar having rectangular x-section is subjected to a sagging (+ve 

type) bending moment. 

 

Bending

( )

Sagging

or

ve Bending

( )

Hogging

or

ve Bending

Madan Mohan Malaviya University of Technology, 
Gorakhpur 

M M

Y
/X S C

X

Z

.L A

Y

X

Y

X



After apply Bending moment  
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( )

Sagging

or

ve Bending
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Consider a bar having rectangular x-section is subjected to a hogging (-ve 

type) bending moment. 

 

M M

Y
/X S C

X

Z

.L A

Y

X

Y

X

( )

Hogging

or

ve Bending



Bending Sign Convention  

• Cut a section x-x in member length anyway. 

 

 

 

• If the moment direction right side of the section x-x is anticlockwise & 

moment direction left side of the section is clockwise, consider as a sagging 

type bending or +ve type bending. 

• If the moment direction right side of the section x-x is clockwise & moment 

direction left side of the section is anticlockwise, consider as a hogging type 

bending or -ve type bending. 
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X

X
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Sec tion
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Sec tion

Right

Side

Sec tion

Left
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Sec tion

Left

Side

M M

M
.C W

.CW

M. .AC W

..ACW

( )

Sagging

or

ve Bending

( )

Hogging

or

ve Bending



Torsional or twisting couple 

• A couple is said to be twisting couple when the plane of the couple is 

perpendicular to the longitudinal axis of the member. 

(or) 

• A couple is said to be twisting couple when the plane of the couple is 

parallel to the plane of cross section. 

(or) 

• A couple is said to be twisting couple when the plane of the couple is 

perpendicular to the polar axis. 
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P x e  = Torsional or Twisting couple. 

YX - Side (or) profile plane 

YZ - Vertical plane  

XZ - Horizontal plane  

From the above figure, 

Plane of couple (P x e) is in the side plane i.e. YX plane. 

Y

X

Z

.L A

P

P

e
.P e
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                                  Represents line of action of force ⊥ to the plane of paper 

& in inwards direction.   

 

                                  Represents line of action of force ⊥ to the plane of paper 

& in outwards direction. 

 

Example: 

 



A

P

A B

C

D

AB Rod

CD Lever




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It can also be represent as- 

 

P

P

A B

C

D

AB Rod

CD Lever









Q 3. For the given structure made of AB, BC & CD member. A external load P 

(N) is apply at the free end of member CD. Determine the which type of load 

(AL, TSL, ETSL, Bending & torsion) with respect to member AB, BC & CD. 
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A B

CD
P

a

b

c
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A B

CD
P

a

b

c

Solution: 

 

 

 

 

 

 

 

 

For member CD 

 

 

 

 

 

(load P act as transverse shear load)  

 

CD
P

c
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For Member BC 

 

 

 

 

 

 

 

P act as axial tensile load 

P x c act as bending couple  

B

CD
P

c

P

P

B

C

P

b

b

P c
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For member AB 

 

 

 

 

 

 

 

 

P act as transverse shear load (TSL) 

P x c act as bending couple. 

 

A
B

CD

P

c

P

P

A
B

P

Pc



Loading Diagram 

(Axial Loading) 



Axial Loading Diagram 

Pure Axial Loading : 

A bar is said to be under pure axial loading when it is subjected two equal and 

opposite axial loads in such a way that the magnitude and direction of axial 

load remains constant through out the length of the member. 

Axial load = Constant 

Shear Force = Bending moment = Twisting Moment = 0 

A B PP
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,A E

L 0x x L
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Important 

As per the method of section,  

"The load acting at any x-s/c  is algebraic sum of the corresponding loads acting 

either on the left hand side (L.H.S) of the x-s/c or on the right hand side (R.H.S) 

of the x-s/c. " 

 

 

 

Conditions-  

1. Bar should be prismatic. 

2. Bar should be under pure axial load. 

3. Bar should made of homogeneous & isotropic material. 

P

A

PL
l

AE







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A B PP

,A E

L 0x x L

.L A

A

A

A

A

B

B

B

B

tanP Cons t
tanP Cons t

Axial Load Diagram (ALD) 

 

 

SFD 

 

BMD 

 

TMD 
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Q1. For the bar as shown in the figure determine maximum tensile load & 

maximum compressive load acting on the x-s/c of bar. 

2P3P8PP

A

B C D E
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Q2. For the bar as shown in the figure determine the following maximum tensile 

load & maximum compressive load acting on the x-s/c of bar. Also determine the 

axial loads acting at thex-s/c A,B,C,D &E. 

 

2P3P

A

B C D E

7P 5P



Loading Diagram 

Bending Moment Diagram 
(BMD) 

 
 



Pure Bending 

A member is said to be under pure bending when it is subjected two equal and 

opposite couples in a plane along the axis of the member (Longitudinal axis) in 

such a way that the magnitude of bending moment remain constant.  

So,  

Bending moment = constant  

Axial force = Shear force = Twisting moment = 0 
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Neutral

Fibre

( )

Sagging
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veBending
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Neutral Fiber (Neutral Surface) 

The fiber whose length before and after the bending get unchanged, is called 

neutral fiber or neutral surface. 

 

Neutral Axis  

Line of intersecting of neutral surface with the cross-section is called neutral 

axis. 

Neutral

Surface

Neutral

Axis
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Q1. For the cantilever beam as shown in the figure draw the bending moment 

diagram. Determine maximum sagging and maximum hogging bending moment 

acting at the x-s/c of the beam. 

A B C D
E

4M3M 2M 5M
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Q2. For the S.S.B as shown in the figure draw the bending moment diagram. 

Determine maximum sagging and maximum hogging bending moment acting at 

the x-s/c of the beam. 

A B C
D E

4M
3MM
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Point of Contra flexure 

 

Point of contra flexure is the point where bending moment changes its sign 

i.e., from positive value to a negative value or Vice versa.  



Shear Force Diagram 
 



Shear Force Definition 

• Shear force acting at any x-s/c of the member is equal algebraic sum of 

shear forces ( i.e. ܄ II to the x-s/c) either on the L.H.S of the member or 

R.H.S of x-s/c of the member. 

 

 
B

A

C

D

E

F

G

H

X

Y

Z

P

P

Q
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X

Y

Q

P
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Sign Convention  

• Shear force at any section of the member is said to be positive when it acts 

in the upward direction on the left hand of the section & in downward 

direction on the right hand side of the x-s/c and vice versa. 
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Important Points  

• If a member is subjected to shear loading  (either TSL or ETSL), it always 

experienced bending moment acting on it. 

• Shear force acting at any section is the slope of bending moment diagram 

for that particular section. We can write as also, 

 

 

• If B.M is constant - S.F is zero 

• If B.M is variable - S.F (Shear Force) is non-zero 

• If member is subjected to Eccentric transverse shear loading (ETSL), it 

always experienced twisting moment acting on it. 
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Q Draw the shear force and bending moment diagram for the beam under 

giving loading condition. 

W

L



LOADING DIAGRAM 

EQUIVALENT LOADING DIAGRAM 
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Equivalent Load Under Eccentric Axial Load 

P

.L A

e

L
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Equivalent Load Under Shear Load 

P

.L A

1. Vertical Transverse Shear Load 

L
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Equivalent Load Under Shear Load 

P

.L A

1. Horizontal Transverse Shear Load 

L
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Equivalent Load Under Shear Load 

P

1. Eccentric Transverse Shear Load 

L

A
B

C

e

AB Rod

BC Lever




Y

Z

X
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Summary of Equivalent Load Diagram 

Loading 

Condition 

Axial Load  Shear Load Bending 

Moment 

Twisting 

Moment 

Pure axial load 

 

 

 

 

 

Constant  

(P) 

Zero Zero Zero 

Eccentric axial 

loading 

 

 

 

 

Constant  

(P) 

 

Zero 

 

Constant  

(P x e) 

 

Zero 
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Summary of Equivalent Load Diagram 

Loading 

Condition 

Axial Load  Shear Load Bending 

Moment 

Twisting 

Moment 

T.S.L 

 

 

Zero Constant = P Variable 

Free end = 0 

Fixed end = PL 

Zero 

E.T.S.L 

 

 

Zero Constant = P Variable 

Free end = 0 

Fixed end = PL 

 

Constant = Pe 
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Practise Question 

For the rod and lever assembly as shown in the figure determine- 

1. Axial load , shear force, bending moment & torsional moment acting on 

the rod. 

2. A.L, S.F, B.M & T.M acting on the x-s/c like A,B,C . 

Note:  

AB - Rod 

BC - Lever 
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Stress Distribution 



Stress distribution in different loading condition 

Axial Loading: 

• The intensity of stress is same at each and every point on the cross section. 

• Axial stress is denoted by (σ ). 

• It is either tensile or compressive in nature. 

• Consider a bar having rectangular x-section (A= a x b) 
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P

a

b

P

A
 



 
 
 
 
 
 
 
 
 
 

• If applied external force is tensile in nature. 

 

 

 

 

 

 

 

• If the applied external force is compressive in nature. 
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a

b


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b

P

A


 
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





  

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
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



Shear Loading: 
• Due to shear loading there is shear stress  induced in the member. 

• Shear stress is denoted by (τ). 

τ = 𝐏 
𝑨 𝒀 

𝑰
𝑵𝑨

𝒃
 

η  =  shear stress developed at a fiber on the plane of x-s/c of beam. 

A = Area of hatched portion which is above the fiber where η is to be determined. 

Ȳ  = distance of centroid of hatched portion from the neutral axis (N.A) 

AȲ = first moment of area of hatched portion about  N.A 

INA = moment of inertia of cross section about N.A 

b    = width of fiber where η is to be determined. 
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Rectangular x-section 

• Consider a rectangular x-section of dimensions b & d respectively. 

 

 

 

 

 

 

 

 

• A is the area of hatched x-section cut off by a line parallel to the neutral 

axis. ȳ is the distance of the centroid of A from the neutral axis. 

τ = 𝐏 
𝑨 𝒀 

𝑰
𝑵𝑨

𝒃
 

A = b ( 
𝑑

2
 - y)  
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ȳ = [ 
1

2
 ( 

𝑑

2
 - y) + y] 

   = 
1

2
 ( 

𝑑

2
 + y ) 

INA   = 
𝑏𝑑3

12  

Width of strip = b  

Substituting all the values, 
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τ 
 

τ 

This show there is a 

parabolic distribution of 

stress with  y.  



The maximum value of shear stress at y = 0 

So  

 

 

 

 

The mean shear stress is defined as - 

 

The relation between mean and maximum shear stress is given as - 
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Shear stress distribution in rectangular section is given as - 

 

 

 

 

 

 

 

It may be noted that the shear stress is distributed parabolically over a 

rectangular cross-section, it is maximum at y =0 and is zero at the extreme 

ends. 
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Important Points 

• If P is the applied shear force , then relationship between ηMax & ηAvg for 

rectangular, square and triangle section is given as - 
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Shear stress distribution in triangular section 
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Important Points 

• If P is the applied shear force , then relationship between ηMax & ηAvg for 

circular section is given as -  

 𝐾 =  
4

3
 

ηMax =( 
4

3
 ) * ηAvg 

ηAvg = 
𝑃

𝜋

4
𝑑2

 

 

Note : R is the radius of the circle. 
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Important Points 

• If P is the applied shear force , then relationship between ηMax & ηAvg for 

square section having diagonals horizontal & vertical is given as -  

𝐾 =  
9

8
 

ηMax =( 
9

8
 ) * ηAvg 

ηAvg = 
𝑃

𝑎2 
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I - Section 

As we know - 

τ = 𝐏 
𝑨 𝒀 

𝑰
𝑵𝑨

𝒃
 

If P, A, Ȳ, INA are constant. Then 

η α 
1

𝑏
 

From we conclude that if section width decrease, the induced shear stress value 

will go increase and vice versa. 
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I - Section 

• Stress distribution for I-section is given as- 

 

 

 

 

 

 

 

At the junction of web & flange, the section width change suddenly so there is 

drastically change in shear stress magnitude at web & flange junction. 
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T - Section 
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Bending  

Bending equation is given as- 

 

 

M = Bending Moment (N-mm) 

INA = Area moment of Inertia (mm4) 

ζb = Bending stress (
𝑁

𝑚𝑚2) 

Y = Distance of fiber where we calculate bending stress from the neutral 

fiber(mm) 

E = Young's modulus of elasticity (
𝑁

𝑚𝑚2) 

R = Radius of Curvature (mm) 
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Bending Equation Assumptions 

• The material is homogeneous and isotropic. 

• The value of Young's modulus of elasticity [E] is same in tension and 

compression. 

• The transverse sections  which were plane before bending, remain plane 

after bending also.  

• The radius of curvature is large as compared to the dimensions of the 

cross-section. 

• Each fiber of the structure is free to expand or contract. 
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M
M

sec

Transverse

tion

Neutral

fibre

Top

fibre

Bottom

fibre

Figure: Type of sagging bending 



• In type of sagging bending, all fibre above the neutral fibre (top fibre) get 

compressed & all fibre below the neutral fibre (bottom fibre) get elongated. 
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Neutral Fibre : All the fibre that lengths get unchanged before and after the 

bending, is said to be neutral fibre. 

 

 In the same way in type of hogging bending, all fibre above the neutral fibre 

(top fibre) get elongated & all fibre below the neutral fibre (bottom fibre) 

get compressed. 

( )

Hogging

or

ve Bending
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Section Modulus: It is the ratio of INA to the y. It is denoted by Z. Section 

modulus defined the strength of the section. 

 

 

 

 

 

NAI
Z

y


b y 

• By increasing y value, bending stress (ζb) 

get increased. 

• At y = max, ζb   = max 
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Section modulus of common x-section About NA : 

1.  Rectangle 

 

 

 

2. Circle: 

 

 

 

3. Tube:  

r = inner radius 

R = outer radius 

 

3

32

d
Z




2

6

bh
Z 

4 4( )
4
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R


 



ANKIT SAXENA (saxena01ankit@gmail.com) 

Section modulus of common x-section : 

 

 

1.  Triangle: 

 

 

 

 

21
( )

24
Z bh



Bending stress distribution 
 

• Consider a cantilever beam having a circular cross section is subjected to 

sagging type bending. 

• The fibre above the neutral fibre will get experience compression so 

compressive stress induced in upper half of the x-section. 

• So maximum compressive stress induced at the top most fibre because  

y = ymax  = 
𝑑

2 
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Bending stress distribution 
 

• The fibre below the neutral fibre will get experience tension so tensile stress 

induced in lower half of the x-section. 

• So maximum tensile stress induced at the bottom most fibre because  

y = ymax = 
𝑑

2
 

• Bending stress (ζb) is linearly vary with respect to y. 
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b y 



Bending stress distribution 
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M                                                             M                                          Y 

 

                          Y                                                                                                  

                                                                               (σ)MAX = Compressive         

 

 

                                        Z                             (σ) =0                                               X 

 

 

                                                                            (σ)MAX = Tensile   

            X                                                                                                            
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Note:- 

1) The nature of bending stress and axial stress is same. That can be add or 

subtract directly. 

 2) In the same way direct shear stress and torsional shear stress have same nature, 

they can also directly add up and subtract. 

 

Example (1)  

If the maximum axial stress induced in the member at a point is 10 MPa tensile 

and maximum bending stress induced 30 MPa compressive. Determine the 

resultant stress induced at that point. 

 

Answer : 20 MPa (Compressive) 

 



Torsional or Twisting 

Torsional equation is given as - 

 

 

 

 

TR    = Twisting couple or Torque (N-mm) 

J = Polar moment of inertia  (mm4) 

ηMax = Torsional shear stress (Mpa) 

r = It is the distance between the rotational axis and the arbitrary point in the 

section (mm) 

G = Shear modulus (MPa) 

θ = angle of twist (radian) 

L = distance between the fixed end and arbitrary x-section. (mm)  
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Torsional or Twisting equation assumptions  

In the development of a torsion formula for a circular shaft, the following 

assumptions are made: 

• Material of the shaft is homogeneous & isotropic throughout the length of 

the shaft. 

• Shaft is straight and of uniform circular cross section over its length. 

• Torsion is constant along the length of the shaft. 

• Cross section of the shaft which are plane before torsion remain plane after 

torsion. 

• Radial lines remain radial during torsion. 

• Stresses induced during torsion are within the elastic limit. 
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Polar moment of inertia for common shape 

1. Square section:  

 

 

 

2. Rectangular section  
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Polar moment of inertia for common shape 

3.  Solid circular section:  

 

 

 

4.  Hollow circular section (Tube section)  
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Torsional shear stress distribution 

From the above equation - 

 

 

η ∝ r 

• There is a linear relationship between η & r. 

• If we increase r value η value will be increase and vice versa. 

• For η = η Max   ,   r = rmax = outer most point 
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Torsional shear stress distribution 

 if R is the radius of the circular x-section. 

                                                                   η =  ηmax & r = R 

 

 

 

 

                         r = 0                                                              η = 0 & r = 0 

 

 

 

                             

                                 η =  ηmax & r = R 

 

                                                                                                  
ANKIT SAXENA (saxena01ankit@gmail.com) 



Q. For the member as shown in the figure determine the maximum stress 

developed on the x-section of the member.  

                                                                                Y                                             Y 

 

 

                                                                                             Z             X                              X 

                                                                                        e =d/2  

                                                                                    P 

                                                           X                                                                  Y         d 

Options: 
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24( )

P

d

P

d

P
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Q. For the member as shown in the figure determine the maximum stress 

developed on the vertical x-section of the member.  

                                                                      

                              z                                     P                            y 

 

  

                                         x                                       x                         x      2b 

 

                                           

           y            2b                                                                     y 

                                                                                                 

                                                                                                2b 

                                        L   
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State of Stress 



Basic Terminology 

Oblique plane: Plane cut at an angle of θ with respect to cross sectional plane 

X-X.  

 

 

 

 

State of stress: It is representation of all the normal stresses (ζ) & shear 

stresses (η) acting at a point in a material in all the three mutual perpendiculars 

directions. 

 

 



X

X

P

A

B
C

ANKIT SAXENA (saxena01ankit@gmail.com) 



 

 

 

 

 

Uni-axial state of stress :  

• In uniaxial state of stress or 1-D state of stress, normal stress is acting only in 

one dimensional. 

• All the stress components (normal & shear) acting in other 2 direction (y & z) 

are zero. 

• The state of stress is given as- 

 

 

Bi-axial state of stress (2-D state of stress): 

• When a component is subjected to different loading in such a way that the 

stresses produced act on two planes perpendicular to each other. 

• All the stress components (normal & shear) acting in 3 direction (i.e. z 

direction) are zero. 

 

 

   xx
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1 D



 

 

 

 

 

• The state of stress is given as- 

 

 

 

Tri-axial state of stress (3-D state of stress): 

• when a component is subjected to different loading in such a way that the 

stresses produced act on three mutual perpendicular planes. 

• There are total 9 stress components (3 normal stress & 6 shear stress). 

• The state of stress is given as - 

 

  

 

 
xx xy

yx yy

 

 

 
 
 



 

xx xy xz

yx yy yz

zx zy zz

  

  

  

 
 

  
 
 
 

3 D
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Normal stress representation 
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Normal stress (σA) 

• A = It is a subscript, 

which represents the face 

on which normal stress is 

acting. 

• (ζx) = Normal stress is 

acting on x-face. 

• (ζy) = Normal stress is 

acting on y-face. 

• (ζz) = Normal stress is 

acting on z-face. 

 

x face

y face

z face



Shear stress representation 
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Shear stress (τAB) 

 A = It is a subscript, 

which represents the face 

on which shear stress is 

acting. 

 B = It is a subscript, 

which represents the 

direction on which shear 

stress is acting. 

• (ηxy) = Shear stress is 

acting on x-face & y-

direction.. 

• (ηyz) = Shear stress is 

acting on y-face & z-

direction. 

x face

y face

z face



For static equilibrium 
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ηxy & ηyx are also called 

complimentary shear stress. 

x face

y face

z face

xy yx

xz zx

yz zy





















UNIAXIAL STATE OF STRESS 
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Stress components on y-face & z-

face are zero.  

X

Y

Z

X

X

0

0

0

0

0

y

z

zy yz

xy yx

zx xz





 

 

 





 

 

 



BI-AXIAL STATE OF STRESS 
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Stress components on z-face are 

zero.  

X

Y

Z

y

xy
yx

x

x y

y x

x

y

y x

x y

0

0

0

z

zy yz

zx xz



 







 

 



TRI-AXIAL STATE OF STRESS 
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• All stress components (3 Normal 

stress & 6 shear stress ) will 

acting at a point. 

• Stress tensor is given as- 

X

Y

Z

y

xy
yx

x

x y

y x

x

y

y xz

xz
z

yz

zx

zy

 
3 D

xx xy xz

yx yy yz

zx zy zz

  

  

  

 
 

  
 
 
 



Sign convention for shear stress 

• The Shear Stress will be considered positive when a pair of shear stress 

acting on opposite sides of the element produce a clockwise (CW) torque 

(couple). 
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Expression for normal stress and shear stress on 

oblique plane under uni-axial state of stress 

 

 

 

 

 

Consider a oblique plane M-M, cut at an angle θ in clockwise direction 

from the x-sectional plane X-X. 

P - Axial tensile load (N) 

A - X-sectional area on X-X plane. 



X

X

P

A

B
C

M

M
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Tensile axial stress on X-X section is given as- 

 

 

θ = Angle made by oblique plane w.r.t x-sectional plane X-X. 

Let assume the depth of the x-section is unity. 

 

P

A
 

(1)unity 



ANKIT SAXENA (saxena01ankit@gmail.com) 

ζn = Normal stress on oblique plane 

(⊥ to the plane M-M plane)  

ηs = shear stress on oblique plane (II 

to the M-M plane) 

 

Taking all the force component ⊥ to 

the oblique plane. 

 

 

 

 

B

A



X

X

C

M

M

* *1AB

* *1n AC

* *1s AC

2

( * ) ( * *cos ) 0

( * ) ( * *cos )

*( )*cos

*cos

n

n

n

n

AC AB

AC AB

AB

AC

  

  

  

  

 









* *1AB

* *1n AC

* *1s AC
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Taking all the force components parallel to the oblique plane : 

 

 

 

 

 

 

1. When θ = 0°, oblique plane become x-sectional plane. Axial & shear 

stress on oblique plane is given as- 

 

( * ) ( * *Sin ) 0

( * ) ( * *Sin )

( * *Sin )

*Cos *Sin

( *Sin 2 )
2

s

s

s

s

s

AC AB

AC AB

AB

AC

  

  

  

   


 

 

 

 

 

 

2cos

sin 2 0
2

n

s

   


 

 

  
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Important point 

1. Axial tensile stress is always taken positive. 

2. θ is always measured in CW (clockwise) direction from the x-sectional 

plane (X-X) & taken as positive. 

3. If θ is measured ACW (anti-clockwise) direction from the x-sectional 

plane (X-X) taken as negative (-θ). 
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Principal plane (Plane of zero shear):  

A plane on which normal stress is either maximum or minimum & shear stress is 

zero, it said to be principal plane. 

On principal plane-            

ζn = Maximum or minimum 

ηs= zero 

Principal stress: 

The normal stress value of the principal plane is said to be principal stress.  

 In uniaxial state of stress only 1 principal stress present. (ζ1) 

 In biaxial state of stress condition, there are 2 type of principal stress- 

1. Maximum principal stress (ζ1) 

2. Minimum principal stress (ζ2) 

 In tri-axial state of stress condition, there are 3 type of principal stress induced. 

(ζ1, ζ2. ζ3 ).   
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Maximum shear stress plane: 

1. A plane on which shear stress is maximum. 

2. On maximum shear stress plane the normal stress is non zero. 

3. The non zero value of normal stress is the average of maximum and 

minimum principal stress. 

 

Pure shear plane  

A plane on which normal stress is zero, it said to be  plane of pure shear. 

On pure shear plane- 

ζn = 0 

 When principal stresses are equal in magnitude but unlike in nature. 

 ζ1 = - ζ2 

 



Conclusion  

Under the uniaxial loading, the normal & shear stress on a oblique plane is 

given as- 

                                               & 
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2*cosn  

Plane of 

location 

Normal stress 

(σn) 

Shear stress 

(τs) 

Remark  

θ = 0° ζ 0 1. This is a major principal plane. 

2. Normal stress = Maximum 

3. Shear stress = 0 

θ = 45° ζ/2 -ζ/2 

θ = 90° 0 0 1. This is a minor principal plane. 

2. Normal stress = Minimum 

3. Shear stress = 0 

 

θ = 135° ζ/2 ζ/2 

sin 2
2

s


  
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Q 1. Determine the following when a prismatic bar is subjected to a axial 

tensile load of 20 KN. Assume cross sectional area of the bar is 200 mm2.  

a) Normal and shear stress developed on an oblique plane making an angle 

60° from longitudinal axis. 

b) Resultant stress on the maximum shear stress plane. 

c) Maximum tensile and compressive stress & maximum shear stress 

developed on a prismatic bar. 

X

X

P

A

B
C

M

M

060
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Important  

 

 

[Stress is a         order tensor quantity] 

 

 Zero order tensor  example = All Scalar Quantity  (speed, distance etc.) 

 First order tensor  example =  Vector quantity (Magnitude & Direction) 

 2nd order tensor  example =  stress  (Magnitude, direction & face) 

 

  

ndII
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Important 

 

While solving any numerical problem in mechanics of solids- 

• Always put load value in Newton (N) 

• Always put all the dimensions in mm. 

• Stress unit - MPa (         ) 

  
2

N

mm



Expression for normal stress and shear stress 

on oblique plane under bi-axial state of stress 



BI-AXIAL STATE OF STRESS 
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Stress components on z-face are 

zero.  

X

Y

Z

y

xy
yx

x

x y

y x

x

y

y x

x y

0

0

0

z

zy yz

zx xz



 







 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let assume that the member has a unity depth. 

B C

DE

xx

x y

x y

x y

x y

y

y

n s 

A

ANKIT SAXENA (saxena01ankit@gmail.com) 



Force balance on oblique plane  

C

DE




. .1x CD

. .1xy CD

. .1xy ED

. .1s EC
. .1n EC

. .1y ED
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Resolving the force ⊥ to the oblique plane : 

 
Normal stress on oblique plane is given as- 

2 2

2 2

. .sin . .sin . .cos 0

( ) ( )sin ( )sin ( )cos

cos 2 cos sin sin

cos sin sin 2

1 cos 2 1 cos 2
( ) ( ) s

2 2

. . .cos

cos

xy xy

xy xy

xy

xy

xy

n x y

n x y

n x y

n x y

n x y

ED CD ED

CD ED CD ED

CE CE CE CE

CE CD     

    

    

   

 


   

   

  

  

  

  

 

  

  

 
  

 

 

in 2

1 1
( ) ( ) cos 2 sin 2

2 2
xyn x y x y



          
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Resolving the force II to the oblique plane : 

Shear stress on oblique plane is given as- 

 

 

 

 

Note:- 

1. Axial tensile stress is taken as positive. 

2. The angle of inclination (θ) of oblique plane w.r.t x-sessional plane is taken 

as positive in clockwise direction (CW). 

3. The  shear stress ηxy on x-face is taken as positive when it is in CW 

(clockwise direction). 

1
( )sin 2 cos 2

2
s xyx y       
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n

n

s

s

Shear stress on oblique plane is taken as positive when it forms a couple in anti-

clockwise direction (ACW).  
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Q1. Determine the normal stress and shear stress on an oblique plane for a given state of 

stress. 

100MPa

50MPa

50MPa

030
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Q2. Determine the normal stress and shear stress on an oblique plane for a given state of 

stress. 

100MPa

030
200MPa

03 0

n s
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Q3. A point is subjected to equal & unlike normal stress on 2 mutually ⊥ plane passing 

through a point. Determine normal stress & shear stress on an oblique plane inclined 45° 

to the x-section plane. 
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Expression for principal plane location & Principal 

stress 

On principal plane, normal stress is maximum and shear stress is zero. 

Method 1: 

 
( ) 0

[ 0

2

1 1( ) ( )cos2 sin2 ]
2 2

1 ( )( 2sin2 ) (2cos2 ) 0
2

tan2 xy

x y

n

x y x y xy

x y xy

d
d

d
d



 




      


    









   

   


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Method 2: 

 

 

 

 

From both the methods we get the same result. Apply trigonometry rule, we get 

0

2

1( )sin2 cos2 0
2

tan2 xy

x y

s

x y xy



 



    







   



2

2 xy

x y 

2 2( ) 4x y xy    
2 2

2 2

2

( ) 4

( )

( ) 4

sin2

cos2

xy

x y xy

x y

x y xy



  

 

  





  



  




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Substitute the value of sin2θ & cos2θ in normal stress (ζn) on oblique plane 

equation and we get the principal stresses ζ1 & ζ2 value in biaxial state of stress 

condition. 

2 2 2 2

2 2

2 2 2 2

1/2

1/2

2
1/2

( ) 2
.

( ) 4 ( ) 4

( ) 4
[ ]

( ) 4 ( ) 4

(

1 1( ) ( )cos2 sin2
2 2

1 1( ) ( ).
2 2

1 1( )
2 2

1 1( ) ( ) 4
2 2

x y xy

x y xy x y xy

x y xy

x y xy x y xy

n x y x y xy

x y x y xy

x y

x y x y x

  
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       

     

  

     


 

     


 

     



    

  

 

    2

2 2
1

2 2
2

)

( )
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1 1( ) ( ) 4
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y
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Determination of maximum shear stress & 

orientation of maximum shear stress plane  

For ηs to be  Maximum - 

 

 

 

 

 

 

 

Apply trigonometry rule, we get 
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( ) 0

1
[ ( )sin 2 cos 2 0

2

1
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

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2 xy
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Substitute the value of sin2θ & cos2θ in ηs equation, we get ηMax 
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Shear Stress (τMax) 

In plane ηMax 

• Calculate ηMax on a plane  

• Plane is a 2D 

• Always consider bi-axial state of 

stress. 

• It consists of only 2 principal 

stress.    

Absolute ηMax 

• Calculate ηMax  at a point 

• Point is a 3D 

• Always consider tri-axial state od 

stress  

• It consists of 3 principal stress. 

• If 3rd principal stress is not given, 

its value taken as zero. 
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Tri-axial state of stress 

In tri-axial state of stress condition Absolute (Abs.) ηMax  is given as - 

 

 

 

Biaxial state of stress 

In biaxial state of stress condition Absolute (Abs.) ηMax  is given as - 

Tri-axial                      Biaxial 

ζ3                        0 

 

2 3 3 11 2. , ,
2 2 2

m

Maxabs Max
    


 



1 2 2 1. , ,
2 2 2

m

Maxabs Max
   





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Biaxial state of stress 

 

In biaxial state of stress condition In plane ηMax  is given as - 

 

 

 

 

 

1 2

2
Max

 



In plane
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Important point 

 

The summation of normal stress on complimentary plane (90° to each 

other) is constant at given state of stress or at given point. 

 

Biaxial state of stress  

 

Tri-axial state of stress 

 

1 2 x y     

1 2 3 x y z         
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Plane of pure shear (τ*) 

ζn =0 

θ = ? 

                              Mpa 

If both ζ1 &  are ζ2 +ve 

Then                       

          No plane of pure shear 

 

 

β = Angle made by plane of pure shear with respect to the principal plane. 

*

1 2   

* ve  

1

2

tan






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Q. for a biaxial state of stress at a point as shown in figure, determine the 

following - 

1. Principal plane & principal stress 

2. Shear stress on a plane of pure shear 

3. Maximum tensile and compressive stress  

4. Maximum shear stress developed at a point. 

100MPa

400MPa

x face

y face
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Q. for the given stress tensor at a point , determine the following - 

1. Principal stress at that point 

2. Shear stress at that point 

 

40 10 0

10 20 0

0 0 10



 
 

  
 
 



Mohr's Circle 



 

Mohr's Circle 

 

• It is a graphical representation of Biaxial (2D) state of stress. 

• It is a stress circle which is used to determine the normal stress & shear 

stress on any oblique plane. 

• Mohr's circle is also used to determine the principal stresses and principal 

planes location. 
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Sign convention used in Mohr's circle 

1. On X-axis, we represents normal stress & on Y-axis we represents shear 

stress. 

Axis 

Axis 
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O



2. Draw state of stress of a given point. 

Example: (1)                                                 (2) 

 

 

 

 

 

3. Locate a point A corresponding to the state of stress on x-face. 

4. Locate a point B corresponding to the state of stress on y-face. 
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x

y

x face

y face

x

y

x face

y face

xy

x y
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Axis 

Axis 

x

y

x face

y face

Example 1 

(Let assume ζx > ζy) 

( ,0)xA ( ,0)yB O
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Axis 

Axis 

x

y

x face

y face

Example 2 

(Let assume ζx > ζy) 

xy

x y

( , )x xyA  

( , )y xyB  

O
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Axis 

Axis 

( ,0)xA ( ,0)yB 

5. Join A & B point 

6. Bisect the  line joining A & B, cut the ζ axis at point C. 

7. Point C is the centre of Mohr's circle. (Always remember that the centre of 

Mohr's circle will lie on ζ-axis.) . 

 

 

Example 1 

 

 

 

 

                                                                         line bisect AB 

CO
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Axis 

Axis 

 

Example 2 

( , )x xyA  

( , )y xyB  

C
O
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Axis 

Axis 

8. By Taking AC & BC as radius and C as centre draw a circle. 

9. The points (M& N) at which Mohr's circle cut the ζ-axis represents principal 

stress and radial lines CM &CN represents the principal planes. 

 

Example 1 

 

 

                                                                         line bisect AB 

( ,0)y

B

 ( ,0)x

A



C
1( ,0)M 2( ,0)N 

O
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Axis 

Axis 

 

Example 2 

( , )x xyA  

( , )y xy

B

 

C

1( ,0)M 
2( ,0)N 

O



Observations  

1. Every radial line of circle is representing a plane. 

2. Coordinates of any point on Mohr's circle circumference represents the 

normal stress & shear stress on that radial plane (radial line by joining 

coordinate point with the centre of circle). 

3. Every plane in Mohr's circle is representing by the double angle from the 

actual represents in state of stress. 

4. The centre of Mohr's  circle will always lie on ζ-axis. 

5. On the plane of pure shear the value of normal stress is zero. The centre of 

Mohr's circle will be at origin (O). 
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Axis 

Axis 

O

(0, ) 

(0, ) 



Observations  

6. Centre co-ordinate of Mohr's circle is given as- 

 

 

7. Radius of Mohr's circle is given as - 

 

 

8. A radial line II to the η-axis represents the plane of maximum shear stress. 
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  ,0
2

x y
C

  
  
 

2 21
( ( ) 4 )

2
x y xyr     



Q. Which of the following Mohr's circle is possible? 
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Axis 

Axis 

O

Axis 

Axis 

O

Axis 

Axis 

O

Axis 

Axis 

O
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Q. Draw the Mohr's circle for a given state of stress of a point & determine 

the followings: 

1. Co-ordinates of Mohr's circle centre. 

2. Principal stress 

3. Normal stress on ηmax plane. 

4. Resultant stress on ηmax plane. 

5. Maximum tensile & compressive stress 

x face

y face

80MPa

20MPa
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Q. Draw the Mohr's circle for a given state of stress of a point & determine the 

followings: 

1. Co-ordinates of Mohr's circle centre. 

2. Principal stresses 

3. Normal stress & shear stress on a given oblique plane (O.P) which is at 70° 

w.r.t X-face. 

4. Resultant stress on ηmax plane. 

x face

y face

70MPa

40MPa

40MPa



Q. At a point in a material subjected to 2 direct stresses on a plane at right angle. 

The resultant stress on a plane A is 80 MPa and inclined at 30° to the normal 

stress and the resultant stress on a plane B is 40 MPa which is inclined to 45° to 

the normal stress. Find the principal stresses & show the position of two planes A 

& B relative to the principal plane. 
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Strain & Elastic Constants 



                Types of Strain 

  

ANKIT SAXENA (saxena01ankit@gmail.com) 

( )

Normal

strain



Longitudinal

strain

Lateral

strain

Volumetric

strain

( )

Shear

strain


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Normal strain (ε) 

It is defined as the ratio of change in dimension to the original dimension. It 

is denoted by the symbol ε. It is given as- 

Δl = Change in dimension 

L = Original dimension 

 

Longitudinal strain - 

It is defined as the ratio of change in dimension along the direction of line of 

action of action of load to the original dimension. 

l

L





P PP P

L l L
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Lateral strain  

It is defined as the ratio of change in dimension perpendicular (⊥) to the 

direction of line of action of action of load to the original dimension. 

Consider a bar having a circular x-section with diameter (d). After apply the 

tensile axial load, the length (L) will increase and diameter (d) will get 

decrease. 

 

 

 

 

P PP P

L l L

d dd



Important points 

1. Every longitudinal strain is associated with 2 lateral strain. 

2. Longitudinal & lateral strain are unlike in nature. 

3. Under tri-axial state of stress, in strain tensor there are total nine strains (3 

normal strain + 6 shear strain) components developed.  

4. Under tri-axial loads, total normal strain in any direction is equal to the 

algebraic sum of one  longitudinal strain & 2 lateral strain in that direction. 
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Important points 
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.long

lateral

l

L

d

d











 

 

Longitudinal & lateral strain is given as- 

P PP P

L l L

d dd
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Volumetric strain  

It is defined as the ratio of change in volume to the original volume. It is 

denoted by      . 

 

 

Poisson's ratio (   ) 

It is ratio of lateral strain to the longitudinal strain. It is denoted by      - 

 

 

(-ve) sign indicate lateral strain and longitudinal strain are unlike in nature.  

 

 

 

v

v

V





v





( )lateral

longitudinal





 



Relationship between normal stress and normal 

strain 

Consider a cuboid, subjected to tri-axial loading - 

 

 

 

 

 

 

As per Hook's law,   

Stress ∝ corresponding strain  
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x face

y face

z face

y

z

x

x

y

z

x
x

E


 
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Strain   

x-direction 

 

 

y-direction 

 

z-direction 

Loading 

Condition 

 

 

 

 

 

x

y

x y z

x

E


x

E




x

E




y

E




y

E




z

E




z

E


 z

E



y

E



z
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Total normal strain in x-direction is given as- 

 

 

 

 

 

 

In the same way εy & εz is given as- 

 

 

 

 

 

 

Volumetric strain is given as- 

 

1
[ ( )]

yx z
x

x x y z

E E E

E

 


    

  

  

1
[ ( )]

1
[ ( )]

y y x z

z z y x

E

E

    

    

  

  

1
(1 2 )( )

v x y z

v x y z
E

   

    

  

   
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Q. A steel wire having 35*35 mm2 x-section and length 100 mm is acting upon 

by a tensile load of 180 KN along its longitudinal axis and 400 KN & 300 KN 

along the axis of lateral surfaces. Determine- 

1. Change in the dimensions of the bar 

2. Change in volume 

3. Longitudinal axial load acting alone to produce the same longitudinal strain 

as in 1. 

Given E = 205 MPa & µ = 0.3 

180KN

400KN

300KN

100l mm

35b mm

35t mm



Hydrostatic state of stress 

• Under the hydrostatic state of stress, every plane is principal plane. 

• Under the hydrostatic state of stress, shear stress is zero on each & every 

oblique plane. 

 

 

 

 

 

• In hydrostatic state of stress - 

• Mohr's circle is a point under hydrostatic state of stress condition. (M.Imp) 
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x y z     

z 

y 

x 



Shear strain 

• It is defined as the change in initial right angle between two line elements 

which are parallel to X & Y axis. 

 

 

 

 

 

 

• It is denoted by (  ) 
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A B

CD

'A 'B



l

b




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'

tan

( ) _

tan

In ADA

l

if small angle

l

l






 





 











 



Strain tensor 

• For Tri-axial state of stress (3D state of stress), Strain tensor is given as- 
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 
3

2 2

2 2

2 2

xy xz
x

yx yz

yD

zyzx
z

 


 
 




 
 
 
 

  
 
 
 
 



Normal strain & shear strain on oblique plane  

 

• Normal strain (εn) is given as - 

 

 

 

 

• Shear strain (γs) is given as - 
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1 1
( ) ( )cos 2 sin 2

2 2 2

xy

n x y x y


          

1
( )sin 2 cos 2

2 2 2

xys
x y


      



Principal strains under bi-axial state of stress 
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2 2

1/2

1 1
( ) ( ) 4( )

2 2 2

xy

x y x y


        



Elastic Constant 

• Elastic constant are used to determine strain theoretically. 

• These are used to obtain relationship between stress & strain. 

• For a homogeneous and isotropic material there are 4 elastic constants. 

 

 

1. [E] Young's modulus & Modulus of elasticity 

2. [G] shear modulus & modulus of rigidity 

3. [K] bulk modulus  

4. [μ] Poisson's ratio 
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, , ,E G K 



• For a homogeneous and isotropic material the number of independent elastic 

constants are 2. i.e. [E & μ]. 

Important table  
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Material  Number of Independent Elastic 

constant 

Homogeneous & isotropic 2 

Orthotropic 9 

Anisotropic  21 



Relationship between elastic constant 
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2 (1 )E G  

3 (1 2 )E K  

9

3

KG
E

K G






Young's Modulus: 

Under uniaxial state of stress condition, 

 

 

 

 

 

 

 

It is also defined as the slope of engineering stress & engineering strain curve 

up to proportional limit. 
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Normal

stress
E

Longitudinal

strain



E





1
long

E
 



 

Shear Modulus [G] : 

 

 

 

Bulk Modulus [K] : 

Under hydrostatic state of stress condition- 
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Shear

stress
G

Shear

strain




 






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Strain energy due to principal 

stresses 



  

P P

L

t
(Within the elastic limit) 

P
P
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System execute a work 
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This work is stored within the body in form of internal energy 

 

This energy is known as a strain energy.  

 It is denoted by 'U' 

 It is also defined as the area under the load-elongation curve (P-δ) within 

elastic limit. 

Elongation (δ) 

        

L
o
a
d

 (
P

) Elastic Limit 
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U = Area under (P-δ) curve 
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,x x 

,y y 

,z z 

     
. 1

. . .
2

x x y y z z

S E

Volume
        

 
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Resilience 

It is defined as the energy stored within the elastic limit. 

 

Proof Resilience 

It is defined as the energy stored at the elastic limit. 

 

Modulus of Resilience 

It is defined as the energy stored per unit volume within the elastic limit. 
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General equation for 

strain energy when bar 

is subjected to pure 

axial load 

L

dx

PP

x

x

x

d
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Strain energy of the bar due to its self weight 

L dxx x

x

A

 

 

 

 

 

 

Let        =  Weight density (weight per 

unit volume) 

Weight of the member =  


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Strain energy of conical bar due to its self weight 

L
dx

xx

x

Let        =  Weight density (weight per unit 

volume) 

Weight of the member 



21
. .
3

W R L 

r

R R

r

L
x
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Strain energy of bar under axial load  

 

 

• K = 2, Prismatic bar under pure axial load. [ P axial load] 

• K = 6, Prismatic bar under self weight. [ P is the weight of prismatic bar] 

• K = 10, Conical bar under self weight. [ P is weight of conical bar] 
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Strain energy due to principal stress 
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Strain energy per unit volume is also denoted the total strain energy (U). 

So,  

 

This total strain energy [U] has two components- 

1. Volumetric Energy 

2. Distortion Energy 

 

Total energy = [Volumetric Energy +  Distortion Energy]  
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1 1, 

2 2, 
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Distortion Energy per unit volume  

Total energy/ Vol = [Volumetric Energy/ Volm] 

            + 

              [  Distortion Energy/Volm] 
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Factor of safety [FOS] 

It is the ratio of failure stress to the allowable stress/ permissible stress/ working 

stress/ Design stress. 

 

 

 

Margin of safety = FOS -1 
min 1

Failure stress
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Important Point  

Loading  
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Failure 

stress 
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Yield 
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Failure 
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Ultimate  
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Q. A component is made of  brittle material having ultimate strength 350 

MPa & yield strength 220 MPa. If the component is subjected a tensile 

force 150 N & having cross-section area 1 mm * 1 mm. calculate factor 

of safety and margin of safety. 



Strain energy due to principal 

stresses 



  

P P

L

t
(Within the elastic limit) 

P
P
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System execute a work 
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This work is stored within the body in form of internal energy 

 

This energy is known as a strain energy.  

 It is denoted by 'U' 

 It is also defined as the area under the load-elongation curve (P-δ) within 

elastic limit. 

Elongation (δ) 

        

L
o
a
d

 (
P

) Elastic Limit 
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U = Area under (P-δ) curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

1
[ . ]

2

1
. . . .

2

1
.

2

1

2

P

A l

A L

Volume

U

U

U

U



 

 

 



 









 
1

2

Strain Energy

Volume
 


 



ANKIT SAXENA (saxena01ankit@gmail.com) 

,x x 

,y y 

,z z 

     
. 1

. . .
2

x x y y z z

S E

Volume
        

 



ANKIT SAXENA (saxena01ankit@gmail.com) 

Resilience 

It is defined as the energy stored within the elastic limit. 

 

Proof Resilience 

It is defined as the energy stored at the elastic limit. 

 

Modulus of Resilience 

It is defined as the energy stored per unit volume within the elastic limit. 

 

 



ANKIT SAXENA (saxena01ankit@gmail.com) 

 

2

2

0

.

1
. .

2

1
.

2

.
2

L

x x

x x

E

P
E

A L

PL

AE

S E P

P L
S E

AE

P dx
S E

A E



 



















 
  

 

 

 

 

 

General equation for 

strain energy when bar 
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Strain energy of the bar due to its self weight 
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Strain energy of conical bar due to its self weight 

L
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Let        =  Weight density (weight per unit 

volume) 
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Strain energy of bar under axial load  

 

 

• K = 2, Prismatic bar under pure axial load. [ P axial load] 

• K = 6, Prismatic bar under self weight. [ P is the weight of prismatic bar] 

• K = 10, Conical bar under self weight. [ P is weight of conical bar] 
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Strain energy due to principal stress 
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Strain energy per unit volume is also denoted the total strain energy (U). 

So,  

 

This total strain energy [U] has two components- 

1. Volumetric Energy 

2. Distortion Energy 

 

Total energy = [Volumetric Energy +  Distortion Energy]  
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Distortion Energy per unit volume  

Total energy/ Vol = [Volumetric Energy/ Volm] 

            + 

              [  Distortion Energy/Volm] 
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Factor of safety [FOS] 

It is the ratio of failure stress to the allowable stress/ permissible stress/ working 

stress/ Design stress. 

 

 

 

Margin of safety = FOS -1 
min 1
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Q. A component is made of  brittle material having ultimate strength 350 

MPa & yield strength 220 MPa. If the component is subjected a tensile 

force 150 N & having cross-section area 1 mm * 1 mm. calculate factor 

of safety and margin of safety. 



 THEORY OF FAILURE  



Types of Theory of Failure 

1. Maximum principal stress theory [MPST] / Rankine's Theory 

2. Maximum shear stress theory [MSST] / Tresca & Guest Theory 

3. Maximum principal strain theory [MPSt.T] / St. Venant Theroy 

4. Total strain energy theory [TSET] / Haigh's Theory 

5. Maximum Distortion Energy Theory [MDET] / Von Mises Theory 
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Note  

1. Ductile materials are strongest in compression and weakest in shear 

loading condition. 

Compression > Tension > Shear  

 

2. Brittle materials are also strongest in compression and these are weakest 

in tension loading condition. 

Compression > Shear > tension 
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Maximum principal stress theory [MPST]  

Design Failure :-  

Principal stress > Permissible stress  

Design safe :- 

Principal stress ≤ Permissible Stress  

Major Principal stress,                      ζ1 ≤ ζ per 

  

                                                                                    (OR)    

 

 

 

                                                 Ductile Material                                   Brittle Material  
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Note  

1. Effect of shear stress is not considered.  

2. This theory is suitable for brittle material in every state of stress. 

3. This theory is not suitable for ductile material because ductile materials 

are weak in shear. 

4. The graphical representation of the theory of failure is square. 

5. Both, brittle and ductile materials are strongest in compression so yield 

compressive strength        is greater than the yield tensile strength       . 

6. In most of the cases we consider that yield shear strength is  equal to yield 

tensile strength. 
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      Graphical Representation 

 

       =   Yield compressive strength 

       =   Yield tensile strength 

 

Assumptions:   

 Graphical representation is used for biaxial state of stress. 
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      Graphical Representation of MPST 
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Maximum Shear Stress Theory [MSST] 

[Tresca's & Guest's Theory] 

Design unsafe  

     Absolute 

Design safe 

  Absolute 

 

 

 

             = Yield shear strength  
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  Relationship between Sys & Syt  

 

 

 

 

 

 

 

                                                                               {for Tri-axial state od stress} 

 

Note -  [ For biaxial state of stress,           ]  
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Important Points 

1. This theory of failure is suitable for ductile material. 

2. If the principal stresses are like in nature, MPST & MSST will give the 

same result. 

3. Under uniaxial state od stress both MPST & MSST will give the same 

result. 

4. Under the hydrostatic state od stress condition for the ductile material we 

will use MPST. 

5. The graphical representation of MSST is Hexagon. 

6. According to MSST,   
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Graphical Representation of MSST  

1 2

1

2

yt

yt

yt

S

S

S

 





 

 

 



1

2

1
yt

S




1
yc

S



2 ytS 

2 ycS 

1

2

ytS








1

2

ytS




 



Hexagon



Maximum Principal strain Theory [MPSt.T] 

Design Fail 

YP - Yield point  &  TT - Tension Test 

Design Safe  
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For Biaxial State of Stress 

 

 

 

Note - The Graphical representation of MPSt.T is Rhombus. 
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Total Strain Energy Theory [TSET] 

Design Fail,  

 

 

Design Safe,  
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For Triaxial state of stress, 

 

 

 

 

For biaxial state of stress, 

 

 

 

This is a equation of ellipse. So the Graphical representation TSET is 

Ellipse.    

Semi major axis =                                            Semi minor axis =  
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Maximum Distortion Energy Theory [MDET] 

Design unsafe, 

 

 

Design Safe,  
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For Biaxial state of stress , 

 

 

This is a equation of ellipse. So the Graphical representation MDET is Ellipse.    

 

Semi Major Axis - 

 

Semi Minor Axis -   

 

 

2

2 2

1 2 1 2

ytS

FOS
   

 
    

 

2 ytS

2

3 ytS



Important Points  

 

• By using MDET, Relationship between Sys & Syt  

 

 

• MSST is most safe but uneconomical theory of failure. 

• MDET is most economical and safe theory of failure. 

• Under the uniaxial state of stress, All the five theory of failure will 

give the same results. 
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Q for the given state of stress condition of a point find the factor of safety by 

using MSST & MDET.   [Syt = 400 MPa] Given 

40MPa

20MPa

125MPa
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Q A rectangular bar is subjected to tensile force of  100 N and shear force 50N. 

The x-s/c area of the bar is t x t mm2. Determine the dimension of x-s/c by using  

MPST & MSST.   [Syt = 150 MPa] Given 



 THEORY OF FAILURE  



Types of Theory of Failure 

1. Maximum principal stress theory [MPST] / Rankine's Theory 

2. Maximum shear stress theory [MSST] / Tresca & Guest Theory 

3. Maximum principal strain theory [MPSt.T] / St. Venant Theroy 

4. Total strain energy theory [TSET] / Haigh's Theory 

5. Maximum Distortion Energy Theory [MDET] / Von Mises Theory 
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Note  

1. Ductile materials are strongest in compression and weakest in shear 

loading condition. 

Compression > Tension > Shear  

 

2. Brittle materials are also strongest in compression and these are weakest 

in tension loading condition. 

Compression > Shear > tension 
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Maximum principal stress theory [MPST]  

Design Failure :-  

Principal stress > Permissible stress  

Design safe :- 

Principal stress ≤ Permissible Stress  

Major Principal stress,                      ζ1 ≤ ζ per 

  

                                                                                    (OR)    

 

 

 

                                                 Ductile Material                                   Brittle Material  
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Note  

1. Effect of shear stress is not considered.  

2. This theory is suitable for brittle material in every state of stress. 

3. This theory is not suitable for ductile material because ductile materials 

are weak in shear. 

4. The graphical representation of the theory of failure is square. 

5. Both, brittle and ductile materials are strongest in compression so yield 

compressive strength        is greater than the yield tensile strength       . 

6. In most of the cases we consider that yield shear strength is  equal to yield 

tensile strength. 
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      Graphical Representation 

 

       =   Yield compressive strength 

       =   Yield tensile strength 

 

Assumptions:   

 Graphical representation is used for biaxial state of stress. 
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      Graphical Representation of MPST 
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Maximum Shear Stress Theory [MSST] 

[Tresca's & Guest's Theory] 

Design unsafe  

     Absolute 

Design safe 

  Absolute 

 

 

 

             = Yield shear strength  
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  Relationship between Sys & Syt  

 

 

 

 

 

 

 

                                                                               {for Tri-axial state od stress} 

 

Note -  [ For biaxial state of stress,           ]  
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Important Points 

1. This theory of failure is suitable for ductile material. 

2. If the principal stresses are like in nature, MPST & MSST will give the 

same result. 

3. Under uniaxial state od stress both MPST & MSST will give the same 

result. 

4. Under the hydrostatic state od stress condition for the ductile material we 

will use MPST. 

5. The graphical representation of MSST is Hexagon. 

6. According to MSST,   
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Graphical Representation of MSST  
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Maximum Principal strain Theory [MPSt.T] 

Design Fail 

YP - Yield point  &  TT - Tension Test 

Design Safe  
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For Biaxial State of Stress 

 

 

 

Note - The Graphical representation of MPSt.T is Rhombus. 
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Total Strain Energy Theory [TSET] 

Design Fail,  

 

 

Design Safe,  
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For Triaxial state of stress, 

 

 

 

 

For biaxial state of stress, 

 

 

 

This is a equation of ellipse. So the Graphical representation TSET is 

Ellipse.    

Semi major axis =                                            Semi minor axis =  
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Maximum Distortion Energy Theory [MDET] 

Design unsafe, 

 

 

Design Safe,  
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For Biaxial state of stress , 

 

 

This is a equation of ellipse. So the Graphical representation MDET is Ellipse.    

 

Semi Major Axis - 

 

Semi Minor Axis -   
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Important Points  

 

• By using MDET, Relationship between Sys & Syt  

 

 

• MSST is most safe but uneconomical theory of failure. 

• MDET is most economical and safe theory of failure. 

• Under the uniaxial state of stress, All the five theory of failure will 

give the same results. 
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Q for the given state of stress condition of a point find the factor of safety by 

using MSST & MDET.   [Syt = 400 MPa] Given 

40MPa

20MPa

125MPa
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Q A rectangular bar is subjected to tensile force of  100 N and shear force 50N. 

The x-s/c area of the bar is t x t mm2. Determine the dimension of x-s/c by using  

MPST & MSST.   [Syt = 150 MPa] Given 



Strain energy due to principal 

stresses 



  

P P

L

t
(Within the elastic limit) 

P
P
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System execute a work 
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This work is stored within the body in form of internal energy 

 

This energy is known as a strain energy.  

 It is denoted by 'U' 

 It is also defined as the area under the load-elongation curve (P-δ) within 

elastic limit. 

Elongation (δ) 

        

L
o
a
d

 (
P

) Elastic Limit 
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U = Area under (P-δ) curve 
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Resilience 

It is defined as the energy stored within the elastic limit. 

 

Proof Resilience 

It is defined as the energy stored at the elastic limit. 

 

Modulus of Resilience 

It is defined as the energy stored per unit volume within the elastic limit. 
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General equation for 

strain energy when bar 

is subjected to pure 

axial load 
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Strain energy of the bar due to its self weight 

L dxx x
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Let        =  Weight density (weight per 

unit volume) 

Weight of the member =  



AL

 

2

0

2 2 2

0

2 2

0

3
2

2 3

2

2

.
2

2

1
.

2 3

6

.

3 2

1

3 2

L

x x

x x

L

L

P dx
S E

A E

A L dx

AE

A
x dx

E

A L

E

AL

E

AL L

AE

W L
SE

AE




























 
  

 









ANKIT SAXENA (saxena01ankit@gmail.com) 

Strain energy of conical bar due to its self weight 

L
dx

xx

x

Let        =  Weight density (weight per unit 

volume) 

Weight of the member 
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Strain energy of bar under axial load  

 

 

• K = 2, Prismatic bar under pure axial load. [ P axial load] 

• K = 6, Prismatic bar under self weight. [ P is the weight of prismatic bar] 

• K = 10, Conical bar under self weight. [ P is weight of conical bar] 
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Strain energy due to principal stress 
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Strain energy per unit volume is also denoted the total strain energy (U). 

So,  

 

This total strain energy [U] has two components- 

1. Volumetric Energy 

2. Distortion Energy 

 

Total energy = [Volumetric Energy +  Distortion Energy]  
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Distortion Energy per unit volume  

Total energy/ Vol = [Volumetric Energy/ Volm] 

            + 

              [  Distortion Energy/Volm] 
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Factor of safety [FOS] 

It is the ratio of failure stress to the allowable stress/ permissible stress/ working 

stress/ Design stress. 

 

 

 

Margin of safety = FOS -1 
min 1

Failure stress
FOS

Allowable stress

FOS


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Important Point  

Loading  

Static Fluctuating  

Ductile Brittle  

Failure 

stress 

= 

Yield 

strength 

Failure 

stress 

= 

Ultimate  

strength 
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Q. A component is made of  brittle material having ultimate strength 350 

MPa & yield strength 220 MPa. If the component is subjected a tensile 

force 150 N & having cross-section area 1 mm * 1 mm. calculate factor 

of safety and margin of safety. 



 THEORY OF FAILURE  



Types of Theory of Failure 

1. Maximum principal stress theory [MPST] / Rankine's Theory 

2. Maximum shear stress theory [MSST] / Tresca & Guest Theory 

3. Maximum principal strain theory [MPSt.T] / St. Venant Theroy 

4. Total strain energy theory [TSET] / Haigh's Theory 

5. Maximum Distortion Energy Theory [MDET] / Von Mises Theory 
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Note  

1. Ductile materials are strongest in compression and weakest in shear 

loading condition. 

Compression > Tension > Shear  

 

2. Brittle materials are also strongest in compression and these are weakest 

in tension loading condition. 

Compression > Shear > tension 
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Maximum principal stress theory [MPST]  

Design Failure :-  

Principal stress > Permissible stress  

Design safe :- 

Principal stress ≤ Permissible Stress  

Major Principal stress,                      ζ1 ≤ ζ per 

  

                                                                                    (OR)    

 

 

 

                                                 Ductile Material                                   Brittle Material  
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Note  

1. Effect of shear stress is not considered.  

2. This theory is suitable for brittle material in every state of stress. 

3. This theory is not suitable for ductile material because ductile materials 

are weak in shear. 

4. The graphical representation of the theory of failure is square. 

5. Both, brittle and ductile materials are strongest in compression so yield 

compressive strength        is greater than the yield tensile strength       . 

6. In most of the cases we consider that yield shear strength is  equal to yield 

tensile strength. 

ANKIT SAXENA (saxena01ankit@gmail.com) 

ycS ytS

yc ytS S



ANKIT SAXENA (saxena01ankit@gmail.com) 

      Graphical Representation 

 

       =   Yield compressive strength 

       =   Yield tensile strength 

 

Assumptions:   

 Graphical representation is used for biaxial state of stress. 
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      Graphical Representation of MPST 
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Maximum Shear Stress Theory [MSST] 

[Tresca's & Guest's Theory] 

Design unsafe  

     Absolute 

Design safe 

  Absolute 

 

 

 

             = Yield shear strength  
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  Relationship between Sys & Syt  

 

 

 

 

 

 

 

                                                                               {for Tri-axial state od stress} 

 

Note -  [ For biaxial state of stress,           ]  
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Important Points 

1. This theory of failure is suitable for ductile material. 

2. If the principal stresses are like in nature, MPST & MSST will give the 

same result. 

3. Under uniaxial state od stress both MPST & MSST will give the same 

result. 

4. Under the hydrostatic state od stress condition for the ductile material we 

will use MPST. 

5. The graphical representation of MSST is Hexagon. 

6. According to MSST,   
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Graphical Representation of MSST  
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Maximum Principal strain Theory [MPSt.T] 

Design Fail 

YP - Yield point  &  TT - Tension Test 

Design Safe  
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For Biaxial State of Stress 

 

 

 

Note - The Graphical representation of MPSt.T is Rhombus. 
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Total Strain Energy Theory [TSET] 

Design Fail,  

 

 

Design Safe,  
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For Triaxial state of stress, 

 

 

 

 

For biaxial state of stress, 

 

 

 

This is a equation of ellipse. So the Graphical representation TSET is 

Ellipse.    

Semi major axis =                                            Semi minor axis =  
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Maximum Distortion Energy Theory [MDET] 

Design unsafe, 

 

 

Design Safe,  
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For Biaxial state of stress , 

 

 

This is a equation of ellipse. So the Graphical representation MDET is Ellipse.    

 

Semi Major Axis - 

 

Semi Minor Axis -   
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Important Points  

 

• By using MDET, Relationship between Sys & Syt  

 

 

• MSST is most safe but uneconomical theory of failure. 

• MDET is most economical and safe theory of failure. 

• Under the uniaxial state of stress, All the five theory of failure will 

give the same results. 
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Q for the given state of stress condition of a point find the factor of safety by 

using MSST & MDET.   [Syt = 400 MPa] Given 

40MPa

20MPa

125MPa
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Q A rectangular bar is subjected to tensile force of  100 N and shear force 50N. 

The x-s/c area of the bar is t x t mm2. Determine the dimension of x-s/c by using  

MPST & MSST.   [Syt = 150 MPa] Given 



ELONGATION IN Taper CONICAL 
BAR DUE TO PURE AXIAL LOAD  
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ELONGATION IN Trapezoid BAR 
DUE TO PURE AXIAL LOAD  
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COMPOUND BAR SUBJECTED 
TO EXTERNAL LOAD  



Compound Bar 

1. In certain applications it is necessary to use a combination of elements or 

bars made from different materials, each material performs a different 

functions. 

2. These combinations of materials are termed as compound bar. 

 

Assumptions: Due to external loading in compound bar there is no 

bending. 
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Equivalent or combined 
modulus 



Equivalent or Combined Modulus 

1. In order to determine the common extension of a compound bar it is 

convenient to consider it as a single bar of an imaginary material with an 

equivalent or combined modulus Ec . 

Assumptions: 

1. Extension and the original lengths of the individual members of the 

compound bar are the same. 

2. So the strain in all members will be equal. 

3. Area of equivalent bar is the summation of all the area of individual 

members. 
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Thermal Stresses  



Thermal stress 

Thermal stress always normal tensile or normal compressive stress.  

                      Conditions 

1.  There should be always temperature variations. 

2. Thermal deformation due to above temp. variation should be restricted either 

completely or partially. 

Note - If condition 2 is not satisfied, thermal stress developed in the component 

is equal to zero. [ Free expansion] 
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Thermal Expansion 

 

 

 

 

 

 

 

 

     - temp rise 

E - Young's Modulus of elasticity of body material 

α - Thermal linear expansion co-efficient for body material 

          -  Initial Dimensions of body 

          -  Final Dimensions of body 

0t c

0 0 0, ,l t b

, ,f f fl t b
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Thermal Strain (εth) 

 

 

In the above case thermal strain developed in all the 3 directions, which are 

given as - 

 

Note - This is a case of free expansion so the thermal stress produced in the 

body is zero. 

.th T 

.th th thx y z
T     



Case-1 

Completely restricted expansion in one direction 

 

 

 

 

 

 

Fig. - A prismatic bar slightly held between two supports 
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 

   

 

0
0

0

( ) ( ) 0

0

th compressive

th

th

L

RL
TL

AE

R TEA compressive

R
TE compressive

A

TE



 





 

 



 

 
  
 



 

 

When temp rise occurs thermal 

stress is compressive in nature. 

When temp drop occurs thermal 

stress is tensile in nature. 



Note  

 

 

 

 

• Thermal stress is independent from the member length and x-s/c 

dimensions. 
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Case-2 

Partially restricted expansion in one direction 

,

( )o

E

t t C rise



 

A B

rigid

support

Flexible

support

d

l

A
B

l 

'B

1R1R
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R1 = Reaction offered by flexible support like spring. 

     =  Expansion permitted by flexible support/ Gap between rails/ yielding of 

supports/ deflection of spring. 

                = restricted expansion by flexible support. 



1

( ) ( )

. .

th compressive

th

th
th

L

R L
TL

AE

L
TL

E

TL
E E

L L

 

  

 


 

  




 

 
  
 

 

   
    
   

th 



Note  

 

 

• For free expansion, 

 

 

• Completely restricted expansion/compression 
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. .th
th

TL
E E

L L

  


   
    
   

, 0th th   

0, th TL   
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Q. For the tapered bas as shown in the figure. Determine- (i) Maximum thermal 

stress developed on the x-s/c of the tapered bar. 

(ii) Ratio of maximum and minimum thermal stress developed on x-s/c of the bar. 

(iii) Reactions offered by the supports. 

 

1d
2d

L

 , , oE T C rise
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1d
2d

L
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Q For the bar as shown in the fig. derive the expression for thermal stress. 

 , , oETCrise

d

L

 /K N mm
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Thermal stress in compound Bars (Bars in series) 

L L

1 1 1, ,A E 
2 2 2, ,A E 

 
.

0Total C B
 

A

B

C



Note  

Sum of thermal deformation   =    Sum of axial deformation 

 

 

 

Reactions offered by the supports are equal. 
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1 1 2 2

1 2
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 
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Q. For the compound bar as shown in the figure determine the following- 

(i) Thermal stresses developed in both the bar due to temp. rise of  T°C. 

(ii) Reaction offered by the support by assuming A = 100 mm2. 

(iii)  Deformation at B by assuming L=500 mm 

Assume :-   

 

 

6

200

12 10 /

100

o

o o

E GPa

C

T C C rise

 



 



L L

1 1 1, ,A E 
2 2 2, ,A E 

A

B

C
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Thermal stress in composite Bars (Bars in parallel) 

  

L

A B

 2

Copper Tube

 1

Steel Tube

 oT T C rise 
 1 1,E 

 2 2,E 

1 2 



Note  

Difference in thermal deformation   =    Sum of axial deformation 

 

 

 

Reactions offered by the supports are equal. 
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1 1 2 2

1 2
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A A
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
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1 2
1 2

1 2

L L
LT LT

E E

 
 
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