


Introduction of crstellography

CHAPTER 1.
CRYSTAL STRUCTURE

• Elementary Crystallography
– Solid materials (crystalline, polycrystalline, amorphous)
– Crystallography
– Crystal Lattice
– Crystal Structure
– Types of Lattices
– Unit Cell
– Directions-Planes-Miller Indices in Cubic Unit Cell

• Typical Crystal Structures                                      (3D– 14 
Bravais Lattices and the Seven Crystal System)

• Elements of Symmetry
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Matter

GASES
LIQUIDS  

and LIQUID 

CRYSTALS

SOLIDS

matter
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Gases

• Gases have atoms or molecules that do not bond to 
one  another in a range of pressure, temperature 
and volume. 

• These molecules haven’t any particular order and 
move freely within a container.
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Liquids and Liquid Crystals

• Similar to gases, liquids haven’t any atomic/molecular order
and they assume the shape of the containers.

• Applying low levels of thermal energy can easily break the
existing weak bonds.

Liquid crystals have mobile
molecules, but a type of long range
order can exist; the molecules have a
permanent dipole. Applying an
electric field rotates the dipole and
establishes order within the
collection of molecules.
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Solids

• Solids consist of atoms or molecules executing
thermal motion about an equilibrium position
fixed at a point in space.

• Solids can take the form of crystalline,
polycrstalline, or amorphous materials.

• Solids (at a given temperature, pressure, and
volume) have stronger bonds between molecules
and atoms than liquids.

• Solids require more energy to break the bonds.
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SOLID MATERIALS

CRYSTALLINE

Single Crystal

POLYCRYSTALLINE
AMORPHOUS

(Non-crystalline)

http://www.alaskanessences.com/gembig/Pyrite.jpg
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Types of Solids
• Single crystal, polycrystalline, and amorphous,

are the three general types of solids.

• Each type is characterized by the size of ordered
region within the material.

• An ordered region is a spatial volume in which
atoms or molecules have a regular geometric
arrangement or periodicity.
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Crystalline Solid

• Crystalline Solid is the solid form of a substance in which
the atoms or molecules are arranged in a definite,
repeating pattern in three dimension.

• Single crystals, ideally have a high degree of order, or
regular geometric periodicity, throughout the entire
volume of the material.
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Crystalline Solid

Single Crystal

Single Pyrite
Crystal

Amorphous
Solid

◼ Single crystal has an atomic structure that repeats periodically
across its whole volume. Even at infinite length scales, each
atom is related to every other equivalent atom in the structure
by translational symmetry

http://weblog.burningbird.net/fires/001936.htm
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Polycrystalline Solid

Polycrystalline
Pyrite  form

(Grain)

◼ Polycrystal is a material made up of an aggregate of many
small single crystals (also called crystallites or grains).

◼ Polycrystalline material have a high degree of order over
many atomic or molecular dimensions.

http://www.alaskanessences.com/gembig/Pyrite.jpg


◼ These ordered regions, or single crytal
regions, vary in size and orientation wrt one
another.

◼ These regions are called as grains (domain)
and are separated from one another by grain
boundaries. The atomic order can vary from
one domain to the next.

◼ The grains are usually 100 nm - 100 microns
in diameter.

◼ Polycrystals with grains that are <10 nm in
diameter are called nanocrystalline
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Amorphous Solid

• Amorphous (Non-crystalline) Solid is composed of randomly
orientated atoms , ions, or molecules that do not form defined
patterns or lattice structures.

• Amorphous materials have order only within a few atomic or molecular
dimensions.

• Amorphous solid have no sharp melting point.
• Amorphous materials do not have any long-range order, but they have

varying degrees of short-range order.
• Examples to amorphous materials include amorphous silicon, plastics,

and glasses.
• Amorphous silicon can be used in solar cells and thin film transistors.
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Departure From Perfect Crystal

• Strictly speaking, one cannot prepare a perfect crystal. For example,
even the surface of a crystal is a kind of imperfection because the
periodicity is interrupted there.

• Another example concerns the thermal vibrations of the atoms
around their equilibrium positions for any temperature T>0°K.

◼ As a third example, actual

crystal always contains some

foreign atoms, i.e., impurities.

These impurities spoils the

perfect crystal structure.
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CRYSTALLOGRAPHY

What is crystallography?

The branch of science that deals with the geometric 

description of crystals and their internal arrangement. 
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CRYSTAL LATTICE

What is crystal (space) lattice?

In crystallography, only the geometrical properties of the crystal
are of interest, therefore one replaces each atom by a
geometrical point located at the equilibrium position of that
atom.

Platinum Platinum surface Crystal lattice and 
structure of  Platinum(scanning tunneling microscope)
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• A basic knowledge of crystallography is essential for solid
state physicists;
– to specify any crystal structure and
– to classify the solids into different types according to the

symmetries they possess.

• Symmetry of a crystal can have a profound influence on
its properties.

• We will concern in this course with solids with simple
structures.

ELEMENTARY 

CRYSTALLOGRAPHY
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• An infinite array of 
points in space,

• Each point has
identical surroundings
to all others.

• Arrays are arranged 
exactly in a periodic 
manner.

Crystal Lattice

α

a

b

CB ED

O A

y

x
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Crystal Structure

• Crystal structure can be obtained by attaching
atoms, groups of atoms or molecules which are
called basis (motif) to the lattice sides of the
lattice point.
Crystal = Crystal Lattice + Basis

Structure



A two-dimensional Bravais lattice with 
different choices for the basis
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E

H
O A

CB

Fb G

D

x

y

a

α

a

b

CB ED

O A

y

x

b) Crystal lattice obtained by
identifying all the atoms in (a)

a) Situation of atoms at the
corners of regular hexagons

Basis [Motif]

▪ A group of atoms which describe crystal structure
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Crystal structure

• Don't mix up atoms with
lattice points

• Lattice points are infinitesimal
points in space

• Lattice points do not
necessarily lie at the centre of
atoms

Crystal = Crystal Lattice + Basis

Structure
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Crystal Lattice

Bravais Lattice (BL)

All atoms are of the same kind
All lattice points are equivalent

Non-Bravais Lattice (non-BL)

Atoms can be of different kind
Some lattice points are not
equivalent

A combination of two or more BL
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Types Of Crystal Lattices

1) Bravais lattice is an infinite array of discrete points with an
arrangement and orientation that appears exactly the same,
from whichever of the points the array is viewed. Lattice is
invariant under a translation.

Nb film 

http://www.sciencemag.org/cgi/content/full/274/5290/1167/F1


Crystal Structure 25

Types Of Crystal Lattices

• The red side has a neighbour to its
immediate left, the blue one instead has
a neighbour to its right.

• Red (and blue) sides are equivalent and
have the same appearance

• Red and blue sides are not equivalent.
Same appearance can be obtained
rotating blue side 180º.

2) Non-Bravais Lattice

Not only the arrangement but also the orientation must 

appear exactly the same from every point in a bravais lattice.

Honeycomb
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Translational Lattice Vectors – 2D

A space lattice is a set of points such that a
translation from any point in the lattice by
a vector;

Rn = n1 a + n2 b

locates an exactly equivalent point, i.e. a
point with the same environment as P .

This is translational symmetry.
The vectors a, b are known as lattice vectors

and (n1, n2) is a pair of integers whose
values depend on the lattice point.

P

Point D(n1, n2) = (0,2)

Point F (n1, n2) = (0,-1)
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• The two vectors a and b form
a set of lattice vectors for the
lattice.

• The choice of lattice vectors
is not unique. Thus one
could equally well take the
vectors a and b’ as a lattice
vectors.

Lattice Vectors – 2D
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Lattice Vectors – 3D

An ideal three dimensional crystal is described by 3
fundamental translation vectors a, b and c. If there is a lattice
point represented by the position vector R, there is then also a
lattice point represented by the position vector where u, v and
w are arbitrary integers.

R = u a + v b + w c
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Unit Cell in 2D

• The smallest component of the crystal (group of
atoms, ions or molecules), which when stacked
together with pure translational repetition
reproduces the whole crystal.

S

a

b

S

S

S

S

S

S

S

S

S

S

S

S

S

S



Crystal Structure 30

Unit Cell in 2D

• The smallest component of the crystal (group of
atoms, ions or molecules), which when stacked
together with pure translational repetition
reproduces the whole crystal.

S

S

The choice of 
unit cell 

is not unique.

a

Sb

S
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2D Unit Cell example -(NaCl)

We define lattice points ; these are points with identical 
environments
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Choice of origin is arbitrary - lattice points need not be 
atoms - but unit cell size should always be the same.



Crystal Structure 33

This is also a unit cell -
it doesn’t matter if you start from Na or Cl
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- or if you don’t start from an atom
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This is NOT a unit cell even though they are all the same 
- empty space is not allowed!
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Unit Cell in 3D
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Unit Cell in 3D
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Three common Unit Cell in 3D 
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• The unit cell and, consequently, the
entire lattice, is uniquely determined
by the six lattice constants: a, b, c, α,
β and γ.

• Only 1/8 of each lattice point in a
unit cell can actually be assigned to
that cell.

• Each unit cell in the figure can be
associated with 8 x 1/8 = 1 lattice
point.

Unit Cell
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• A primitive unit cell is made of primitive
translation vectors a1 ,a2, and a3 such that
there is no cell of smaller volume that can be
used as a building block for crystal structures.

• A primitive unit cell will fill space by
repetition of suitable crystal translation
vectors. This defined by the parallelpiped a1,
a2 and a3. The volume of a primitive unit cell
can be found by

• V = a1.(a2 x a3) (vector products)
Cubic cell volume = a3

Primitive Unit Cell and vectors
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◼ The primitive unit cell must have only one lattice point.

◼ There can be different choices for lattice vectors  , but the 

volumes of these primitive cells are all the same.

P = Primitive Unit Cell

NP = Non-Primitive Unit Cell

Primitive Unit Cell

1a
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• There are only seven different shapes of
unit cell which can be stacked together to
completely fill all space (in 3 dimensions)
without overlapping.

• This gives the seven crystal systems, in
which all crystal structures can be classified.

3D – 14 BRAVAIS LATTICES AND THE SEVEN 

CRYSTAL SYSTEM

TYPICAL CRYSTAL STRUCTURES



3D – 14 BRAVAIS LATTICES AND 

THE SEVEN CRYSTAL SYSTEM

• Cubic Crystal System (SC, BCC,FCC)
• Hexagonal Crystal System (S)
• Triclinic Crystal System (S)
• Monoclinic Crystal System (S, Base-C)
• Orthorhombic Crystal System (S, Base-C, BC,

FC)
• Tetragonal Crystal System (S, BC)
• Trigonal (Rhombohedral) Crystal System (S)
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Coordinatıon Number 

• Coordinatıon Number (CN) : The Bravais lattice points
closest to a given point are the nearest neighbours.

• Because the Bravais lattice is periodic, all points have
the same number of nearest neighbours or
coordination number. It is a property of the lattice.

➢ A simple cubic has coordination number 6;
➢A body-centered cubic lattice, 8; 
➢A face-centered cubic lattice,12.



Atomic Packing Factor

• Atomic Packing Factor (APF) is defined as the
volume of atoms within the unit cell divided by
the volume of the unit cell.
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1-CUBIC CRYSTAL SYSTEM

◼ Simple Cubic has one lattice point so its primitive cell.

◼ In the unit cell on the left, the atoms at the corners are cut
because only a portion (in this case 1/8) belongs to that cell. The
rest of the atom belongs to neighboring cells.

◼ Coordinatination number of simple cubic is 6.

a- Simple Cubic (SC)

a

b
c

http://www.kings.edu/~chemlab/vrml/simcubun.wrl


Atomic Radius for SC

• It is half the distance between any 
two nearest neighbors in the 
given crystal structure.

• It is expressed in terms of cube 
edge a

a = 2r, 

r = a/2

Atomic Radius, r = 0.5a a
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Atomic Packing Factor of SC



• APF = 0.52

• That means that the percentage of packing is 
52%

• Thus, 52% of the volume of the simple cubic 
unit cell is occupied by atoms and the 
remaining 48% volume of unit cell is vacant or 
void space.
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b-Body Centered Cubic (BCC)

a

b c

➢ BCC structure has 8 corner atoms and 
1 body centre atom.
➢Each corner atom is shared by 8 unit 
cells.
➢The center atom is not shared by any of 
the unit cells.
➢So the

Number of atoms per unit cell

n = (1/8)x8 +1 = 2
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b-Body Centered Cubic (BCC)

◼ BCC has two lattice points so BCC is a
non-primitive cell.

◼ BCC has eight nearest neighbors. Each
atom is in contact with its neighbors
only along the body-diagonal
directions.

◼ Hence, the coordination no. for
BCC unit cell is 8

◼ Many metals (Fe,Li,Na..etc), including
the alkalis and several transition
elements choose the BCC structure.

a

b c



Atomic Radius for BCC unit cell

r =a x (3)1/2/4 



Crystal Structure 54

0.68  =  
V

V
  =  APF            

3

R 4
  =  a

cell unit

atoms
BCC

2 (0,433a)

Atomic Packing Factor of BCC



➢ The percentage of packing for BCC structure is 68%

➢Thus , 68% of the volume of body centered cubic cell     is 
occupied by atoms and the remaining 32% of the volume is 
vacant or void space



c- Face Centered Cubic (FCC)

➢ FCC structure has 8 corner atoms 
and 6 face centre atoms.
➢ Each corner atom is shared by 8 
unit cells.
➢ Each face centered atom is shared 
by 2 unit cells.
➢ So the 

Number of atoms present in unit cell 
is

n = (1/8 x8) + (1/2 x 6)
= 1 + 3 
= 4
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• Co ordination Number
• The corner atom in its own plane touches 4 face centred atoms.
• In the plane just above, the corner atom has another 4 face centered

atoms as its nearest neighbours
• Similarly, in the plane just below it has 4 more face centered atoms as

its nearest neighbours
• Therefore the no. of nearest neighbours are :

4 + 4 + 4 = 12

Many of common metals (Cu,Ni,Pb..etc) crystallize in FCC 
structure.



Atomic Radius for FCC 

r = a x (2)1/2/4
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4 (0.353a)

0.68  =  
V

V
  =  APF            

3

R 4
  =  a

cell unit

atoms
BCCFCC

0.74

Atomic Packing Factor of FCC
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Atoms Shared Between: Each atom counts:
corner 8 cells 1/8
face centre 2 cells 1/2
body centre 1 cell 1

lattice type cell contents
P 1   [=8 x 1/8]
I 2   [=(8 x 1/8) + (1 x 1)]
F 4  [=(8 x 1/8) + (6 x 1/2)]

Unit cell contents

Counting the number of atoms within the unit cell
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Crystal Directions

Fig. Shows 

[111] direction

• We choose one lattice point on the line as an
origin, say the point O. Choice of origin is
completely arbitrary, since every lattice point is
identical.

• Then we choose the lattice vector joining O to
any point on the line, say point T. This vector
can be written as;

R = n1 a + n2 b + n3c

• To distinguish a lattice direction from a lattice
point, the triple is enclosed in square brackets [
...] is used.[n1n2n3]

• [n1n2n3] is the smallest integer of the same
relative ratios.
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210

X = 1 , Y = ½ , Z = 0

[1 ½ 0] [2 1 0]

X = ½  , Y = ½ , Z = 1

[½ ½ 1]     [1 1 2]

Examples
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Negative directions

• When we write the

direction [n1n2n3] depend

on the origin, negative
directions can be written
as

• R = n1 a + n2 b + n3c

Direction must be 

smallest integers.

Y direction

(origin) O

- Y direction

X direction

- X direction

Z direction

- Z direction

][ 321 nnn

][ 321 nnn
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X = -1  , Y = -1 , Z = 0        [110]

Examples of crystal directions

X = 1 , Y = 0 , Z = 0            [1 0 0]
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Examples

X =-1   , Y = 1  , Z = -1/6

[-1 1 -1/6]              [6 6 1]

We can move vector to the origin.



Symmetry Element of a Crystalline 
Solids

• Axis of symmetry

• Plane of Symmetry

• Centre of Symmetry



There are 13 axes of symmetry for a 
cube

• Three axes have four fold symmetry know as 
tetrad. These axes pass through opposite face 
centres.

• Four axes have three fold symmetry know as 
triad. These axes pass through diagonally 
opposite corners.

• Six axes have two fold symmetry know as 
diad. These axes pass through the centers of 
opposite edges.



SYMMETRY ELEMENT OF A CRYSTALLINE SOLID

Axis of Symmetry

➢ 3 axes have four-fold symmetry known as tetrad. These axes pass

through opposite face centres.

➢ 4 axes have three-fold symmetry known as triad. These axes pass

through diagonally opposite corners.

➢ 6 axes have two-fold symmetry known as diad. These axes pass

through the centres of opposite edges.



Planes of Symmetry

• If a plane is able to cut a crystal into two halves in such
a way that one half becomes the mirror image of the
other half then the plane is known as plane of
symmetry.

• There are 9 such planes

• 3 are parallel to the faces of the cube.

• 6 are diagonal planes passing through diagonally
opposite parallel edges.



Planes of Symmetry

➢If a plane is able to cut a crystal into two halves in such a way that one

half becomes the mirror image of the other half, then that plane is known

as the plane of symmetry.

➢There are 9 planes—3 are parallel to the face of the cube and 6 are

diagonal planes passing through diagonally opposite parallel edges.



Centre of Symmetry

• It is defined as a point in a crystal such that if a line is

drawn from any point in the crystal through the point

and an equal distance is produced on the other side of

this central point, then it meets an identical point.

There is only one centre of symmetry for cube

system.
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• Each of the unit cells of the 14 Bravais lattices has one or
more types of symmetry properties, such as inversion,
reflection or rotation,etc.

SYMMETRY

INVERSION REFLECTION ROTATION

ELEMENTS OF SYMMETRY
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Lattice goes into itself  through 

Symmetry without translation

Operation Element

Inversion Point

Reflection Plane

Rotation Axis

Rotoinversion Axes



Crystal Structure 74

Crystal Planes

• Within a crystal lattice it is possible to identify sets of equally spaced
parallel planes. These are called lattice planes.

• In the figure density of lattice points on each plane of a set is the
same and all lattice points are contained on each set of planes.

b

a

b

a

The set of

planes in

2D lattice.
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Miller Indices

Miller Indices are a symbolic vector representation for the orientation of an
atomic plane in a crystal lattice and are defined as the reciprocals of the
fractional intercepts which the plane makes with the crystallographic axes.

To determine Miller indices of a plane, take the following steps;
1. Choose a system of three coordinate axes , preferabally along the 
crstallographic axes.
2.  Determine the intercepts of the plane along each of the three 
crystallographic directions usually along the coordinate axes x,y,z.

3. Express these intercepts  in the terms of axial unit.
4. Take the reciprocals of the intercepts.

5. Taking LCM of numerical values of above intercepts , reduce them to the 
smallest three  integers which have same ratio. 

6. Enclose the result of obtain in step-5  in the parentheses (hkl), which are 
known as Miller indices of the crystal plane.
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Axis X Y Z

Intercept 

points 1 ∞ ∞

Reciprocals 1/1 1/ ∞ 1/ ∞
Smallest 

Ratio 1 0 0

Miller İndices    (100)

Example-1

(1,0,0)
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Axis X Y Z

Intercept 

points 1 1 ∞

Reciprocals 1/1 1/ 1 1/ ∞
Smallest 

Ratio 1 1 0

Miller İndices    (110)

Example-2

(1,0,0)

(0,1,0)
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Axis X Y Z

Intercept 

points 1 1 1

Reciprocals 1/1 1/ 1 1/ 1
Smallest 

Ratio 1 1 1

Miller İndices    (111)(1,0,0)

(0,1,0)

(0,0,1)

Example-3
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Axis X Y Z

Intercept 

points 1/2 1 ∞

Reciprocals 1/(½) 1/ 1 1/ ∞
Smallest 

Ratio 2 1 0

Miller İndices    (210)
(1/2, 0, 0)

(0,1,0)

Example-4
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Axis a b c

Intercept 

points 1 ∞ ½

Reciprocals 1/1 1/ ∞ 1/(½)

Smallest 

Ratio 1 0 2

Miller İndices    (102)

Example-5
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Axis a b c

Intercept 

points -1 ∞ ½

Reciprocals 1/-1 1/ ∞ 1/(½)

Smallest 

Ratio -1 0 2

Miller İndices    (102)

Example-6
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Miller Indices

Reciprocal numbers are: 
2

1
 ,

2

1
 ,

3

1

Plane intercepts axes at  cba 2 ,2 ,3

Indices of the plane (Miller): (2,3,3)

(100)

(200)

(110)
(111)

(100)

Indices of the direction: [2,3,3]a

3

2

2

b
c

[2,3,3]
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Example-7
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THE MOST IMPORTANT 
CRYSTAL STRUCTURES

• Sodium Chloride Structure Na+Cl-

• Cesium Chloride Structure Cs+Cl-

• Hexagonal Closed-Packed Structure

• Diamond Structure

• Zinc Blende
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1 – Sodium Chloride Structure

• Sodium chloride also crystallizes in a
cubic lattice, but with a different unit
cell.

• Sodium chloride structure consists of
equal numbers of sodium and
chlorine ions placed at alternate
points of a simple cubic lattice.

• Each ion has six of the other kind of
ions as its nearest neighbours.
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Sodium Chloride Structure

• If we take the NaCl unit cell and remove all the red Cl ions, we are left
with only the blue Na. If we compare this with the fcc unit cell, it is clear
that they are identical. Thus, the Na is in a fcc sublattice.

http://www.kings.edu/~chemlab/vrml/naclun.wrl


Sodium Chloride Structure

• This structure can be considered
as a face-centered-cubic Bravais
lattice with a basis consisting of a
sodium ion at 0 and a chlorine ion
at the center of the conventional
cell,

• LiF,NaBr,KCl,LiI,etc

• The lattice constants are in the 
order of 4-7 angstroms.

)(2/
→→→

++ zyxa



4 - Diamond Structure

• The coordination number of diamond 
structure is 4.

• The diamond lattice is not a Bravais lattice.

• Si, Ge and C crystallizes in diamond 
structure.
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4 - Diamond Structure

• The diamond lattice is consist of two interpenetrating face
centered bravais lattices.

• There are eight atom in the structure of diamond.

• Each atom bonds covalently to 4 others equally spread about 
atom in 3d.



Reciprocal Lattice

❑ The concepts of reciprocal lattice, structure factor calculations (and sometimes Ewald

sphere construction) often ‘strike terror’ in the hearts of students.

❑ However, these concepts are not too difficult if the fundamentals are understood in 1D and 

then extended to 3D.



❑ A crystal resides in real space. The diffraction pattern# resides in Reciprocal Space. 

❑ In a diffraction experiment (powder diffraction using X-rays, selected area diffraction in a 

TEM), a part of this reciprocal space is usually sampled.

❑ The diffraction pattern from a crystal (in Fraunhofer diffraction geometry), consists of a 

periodic array of spots (sharp peaks of intensity). 

❑ From the real lattice the reciprocal lattice can be geometrically constructed☺. The 

properties of the reciprocal lattice are ‘inverse’ of the real lattice → planes ‘far away’ in 

the real crystal are closer to the origin in the reciprocal lattice.

❑ As a real crystal can be thought of as decoration of a lattice with motif; a reciprocal crystal 

can be visualized as a Reciprocal Lattice decorated with a motif* of Intensities.

➢ Reciprocal Crystal = Reciprocal Lattice + Intensities as Motif*

❑ The reciprocal of the ‘reciprocal lattice’ is nothing but the real lattice!

❑ Planes in real lattice become points in reciprocal lattice and vice-versa.

Reciprocal Lattice and Reciprocal Crystals

☺ I.e. the information needed is the geometry of the lattice.

* Clearly, this is not the crystal motif- but a motif consisting of “Intensities”.

# The complete diffraction pattern (not the one observed in an experiment)

Why study reciprocal lattices?

Often the concepts related to reciprocal lattice strikes terror in the minds of students. As we shall see this is not too difficult if concepts are first 

understood in 1D.



We will construct reciprocal lattices in 1D and 2D 

before taking up a formal definition in 3D

Let us start with a one dimensional lattice and construct the reciprocal lattice

Reciprocal Lattice

Real Lattice

▪ The periodic array of points with lattice parameter ‘a’ is transformed to a reciprocal lattice with 

periodicity of ‘1/a’. 

▪ The reciprocal lattice point at a distance of 1/a from the origin (O), represents the whole set of 

points (at a, 2a, 3a, 4a,….) in real space.

▪ The reciprocal lattice point at ‘2/a’ comes from a set of points with fractional lattice spacing a/2

(i.e. with periodicity of a/2). The lattice with periodicity of ‘a’ is a subset of this lattice with 

periodicity of a/2. (Refer next slide).

O



What do the various points (with indices 1, 2, 3, 4… etc.) represent in real space?Funda Check

0

‘1’ represents these set of planes in reciprocal space (interplanar spacing ‘a’)

‘2’ represents these set of planes in reciprocal space (interplanar spacing a/2)

‘4’ represents these set of planes in reciprocal space (interplanar spacing a/4)

‘3’ represents these set of planes in reciprocal space (interplanar spacing a/3)

Reciprocal Lattice

Note again: in 1D planes are points and have Miller indices of single digit (they have been extended into the second dimension (as lines) for better visibility and for the reason stated before).

‘1’ represents these set of planes in reciprocal space (interplanar spacing ‘a’)

a
Real Lattice

Real Lattice

Real Lattice



Reciprocal Lattice

(01)

(10)
(11)

(21)

10 20

11

221202

01 21

00

The reciprocal lattice has an origin!

1a


2a


1a

1

1
a

*

11g *

21g*b2



*b1



Each one of these points correspond to a set 

of ‘planes’ in real space

2

1
a

Note that vectors in reciprocal 

space are perpendicular to planes 

in real space (as constructed!)

But do not measure distances from the figure!

Overlay of real and 

reciprocal lattices

g vectors connect 

origin to reciprocal 

lattice points

Now let us construct some 2D reciprocal lattices

Example-1 Square lattice
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Note that vectors in reciprocal space 

are perpendicular to planes in real 

space (as constructed!)

The reciprocal lattice

Example-2

But do not measure distances from the figure!

Oblique lattice (parallogram)



Reciprocal Lattice (3D) Properties are reciprocal to the crystal lattice
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The reciprocal lattice is created by interplanar spacings
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▪ To get the reciprocal lattice in 3D, we need 3 basis vectors.

▪ These are defined using the basis vectors of the crystal as below, where V is the volume of the 

unit cell.

▪ The magnitude of the reciprocal lattice basis vector is (1/corresponding interplanar spacing).



▪ A reciprocal lattice vector is ⊥ to the corresponding real lattice plane
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▪ The length of a reciprocal lattice vector is the reciprocal of the spacing of the 

corresponding real lattice plane

▪ Planes in the crystal become lattice points in the reciprocal lattice 

➢ Note that this is an alternate geometrical construction of the real lattice.

▪ Reciprocal lattice point represents the orientation and spacing of a set of planes.

Some properties of the reciprocal lattice and its relation to the real lattice



Examples of 3D Reciprocal Lattices weighed in with scattering power (|F|2)
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Selection rule: All (hkl) allowed

In ‘simple’ cubic crystals there are No missing 

reflections
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Figures NOT to Scale
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BCC crystal 

Reciprocal Crystal = FCC
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100 missing reflection (F = 0)

22 4 fF =

Weighing factor for each point “motif”

FCC lattice with Intensities as the motif

Selection rule BCC: (h+k+l) even allowed

In BCC 100, 111, 210, etc. go missing

Important note:

▪ The 100, 111, 210, etc. points in the 

reciprocal lattice exist (as the corresponding 

real lattice planes exist), however the 

intensity decorating these points is zero.
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Figures NOT to Scale
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