
 

 

PDF and Statistical Parameters of Continuous random variable 

 

 

Continuous random variable 

Examples of continuous RV are 

• Arrival time of phone call 

• Arrival time of customer at Petrol pump 

• Measuring of room temperature at certain time 

• Initial phase of sine wave generator 

Discrete random variable has finite sample space. Thus, each event can be described 

by a probability number. The sample space of continuous random variable is infinite. 

Thus, it is not possible to associate probability with each sample point as 0/1 = . 

Therefore, continuous random variable can better be explained by probability 

distribution function. An example of PDF of continuous random variable is 

 

There are three main parameters describing continuous RV 

• Mean 

• Variance 

• Distribution 

 

 

Gaussian distribution function 



 

Figure 1: Received Signal modeled as Guassian Distribution 

 

Figure 1.1 Gaussian PDF for mean ‘m=5’ 
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where m and 
2
Y  are mean and variance of random variable Y  respectively defined 

as: 
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For continuous random variable, we are interested in “what is the probability that a 

random variable Y is lying between certain range, say, y1 to y2. This probability is 

defined as 
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We note the following property of probability distribution function. 
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Cumulative distribution function (CDF) or simply distribution function is given as 
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Central-Limit theorem  
 This says that if we have n  independent and identically distributed random-

variable nXXX ,....., 21  
where n is very large and we define Y such that 

nXXXXY ++++= ......321  

then, Y will be Gaussian distributed. Note that we have not put any condition on the 

distribution of ......, 21 XX . We have only said that whatever distribution they have, all 

should have same distribution. For example, if one has a square distribution, then, 

other also should have square distribution. Hence, we can call ......, 21 XX as 

independent and identically distributed (iid). It is found that if distribution is square, 

then, distribution of summation converges fast towards Gaussian. 

 This theorem has very wide application. In communication, the noise at the 

input of the receiver is modeled as additive-white Gaussian noise (AWGN). It is 

because of the fact that the noise consists of infinite number of small but independent 



noise sources. Hence, it is the result of cumulative effect of the entire noise source 

and the resultant noise distribution tends towards Gaussian. 

 Let iX , ni ,...2,1=  being summed are statistically independent and identically 

distributed, each having a finite mean Xm  and finite variancec
2

X . Let us define iU  

such that 
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Hence, random variable iU has the mean value as 0 and variance as 1. 
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So, Y  will be Gaussian with zero mean & unit variance. 

 

 

 

 

 

 

 

Example: 

Figure 2 



In this problem, 𝑋1 and 𝑋2 are independent and having zero mean and 2 . Parameters 𝐶1 and 

𝐶2 are constant. Determine the mean and variance of 𝑌. 

Solution:    

  𝑌 = 𝑌1 + 𝑌2 = 𝐶1𝑋1 + 𝐶2𝑋2    

 ⇒     𝐸[𝑌] = 𝐸[𝐶1𝑋1 + 𝐶2𝑋2] 

= 𝐶1𝐸[𝑋1] + 𝐶2𝐸[𝑋2] 

= 0.   

𝜎𝑌
2 = 𝐸[(𝑌 − 𝑚𝑌)2] 

= 𝐸[(𝐶1𝑋1 + 𝐶2𝑋2 − 0)2] 

= 𝐸[𝐶1
2𝑋1

2 + 𝐶2
2𝑋2

2 + 2𝐶1𝐶2𝑋1𝑋2] 

= 𝐶1
2𝐸[𝑋1

2] + 𝐶2
2𝐸[𝑋2

2] + 2𝐶1𝐶2𝐸[𝑋1𝑋2] = 𝐶1
2𝜎𝑋1

2 + 𝐶2
2𝜎𝑋2

2 + 2𝐶1𝐶2𝐸[𝑋1]𝐸[𝑋2]  

= 𝐶1
2𝜎𝑋1

2 + 𝐶2
2𝜎𝑋2

2 = 𝜎𝑌1

2 + 𝜎𝑌2

2            𝑠𝑖𝑛𝑐𝑒 𝑋1 𝑎𝑛𝑑 𝑋2 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡.    

If 
1C and 

2C are assumed to be one, then,
1 2

2 2 2

Y X X  = + . 

Example:   Repeat the same above problem if 𝑋1 and 𝑋2 are having mean 𝑚𝑋1
, 𝑚𝑋2

 and 

varaiance as 𝜎𝑋1

2 , 𝜎𝑋2

2 . 

Solution: 

𝐸[𝑌] = 𝐶1𝑚𝑋1
+ 𝐶2𝑚𝑋2

 

𝜎𝑌
2 = 𝐸 [(𝐶1𝑋1 + 𝐶2𝑋2 − 𝐶1𝑚𝑋1

− 𝐶2𝑚𝑋2
)

2
] 

= 𝐸 [{𝐶1(𝑋1 − 𝑚𝑋1
) + 𝐶2(𝑋2 − 𝑚𝑋2

)}
2

] 

= C1
2E [(𝑋1 − 𝑚𝑋1

)
2

] + C2
2E [(𝑋2 − 𝑚𝑋2

)
2

] + 2𝐶1𝐶2E[(𝑋1 − 𝑚𝑋1
)(𝑋2 − 𝑚𝑋2

)] 

= 𝐶1
2𝜎𝑋1

2 + 𝐶2
2𝜎𝑋2

2 + 2𝐶1𝐶2I 

Let                                     I = E[(𝑋1 − 𝑚𝑋1
)(𝑋2 − 𝑚𝑋2

)] 

I = E[𝑋1𝑋2 − 𝑚𝑋2
𝑋1 − 𝑚𝑋1

𝑋2 + 𝑚𝑋1
𝑚𝑋2

] 

= E[𝑋1𝑋2] − 𝑚𝑋2
E[𝑋1] − 𝑚𝑋1

E[𝑋2] + 𝑚𝑋1
𝑚𝑋2

 

= 𝑚𝑋1
𝑚𝑋2

− 𝑚𝑋1
𝑚𝑋2

− 𝑚𝑋1
𝑚𝑋2

+ 𝑚𝑋1
𝑚𝑋2

 



= 0    

⇒ 𝜎𝑌
2 = 𝐶1

2𝜎𝑋1

2 + 𝐶2
2𝜎𝑋2

2     

if 𝐶1 = 𝐶2 = 1   

⇒ 𝜎𝑌
2 = 𝜎𝑋1

2 + 𝜎𝑋2

2  

Hence in general; if there are n random variable such that 𝑋 = 𝑋1 + 𝑋2 ⋯ + 𝑋𝑛 = ∑ Xi
n
i=1  

and each random variable has mean as 𝑚𝑋𝑖
 and variance as 𝜎𝑋𝑖

2 , then mean of 𝑋 is 𝑚𝑋 =

∑ 𝑚𝑋𝑖

n
i=1  and variance 𝜎𝑋

2 = 𝜎𝑋1

2 + 𝜎𝑋2

2 + ⋯ + 𝜎𝑋𝑛

2 =∑ 𝜎𝑋𝑖

2n
i=1 . It may be noted that this is true 

only under the condition that all the random variables are statistically independent. 

 


