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Preface

The propagator approach to a relativistic quantum theory pioneered
in 1949 by Feynman has provided a practical, as well as intuitively
appesaling, formulation of quantum electrodynamics and & fertile
approach to & broad class of problems in the theory of elementary
particles. The entire renormalization program, basie to the present
confidence of theorists in the predictions of quantuin electrodynamics,
is in fact dependent on a Feynman graph analysis, as is also con-
siderable progress in the proofs of analytic properties roquired to write
dispersion relations. Indeed, one may go so far as to adopt the
extreme view that the st of all Feynman graphs s the theory.

We do not advooate this view in this book nor in its companion

vil
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volume, “Relativistic Quantum Ficlds,” nor indeed do we advocate

any single view to the exclusion of others. The unsatisfactory status
of presont-day clementary particle theory does not allow one such a
luxury. In particular, we do not wish to minimize the importance of
the progross achioved in formal quantumn ficld theory nor the con-
siderable understanding of low-energy meson-nuclcon processes given
by dispersion theory. However, we give first cinphasis to the develop-
mont of the JFeynman rules, preceeding directly from a particle wave
equation for the Dirac clectron, integrated with hole-theory boundary
conditions.

Three main convictions guiding us in this approach wore the
primary motivation for undertaking this book (later to becomoe books):

1. The Feynman graphs and rules of calculation summariza
quantum field theory in a form in close contact with the experimental
numbers one wants to understand. Although the statement of the
theory in terms of graphs may imply perturbation thcory, usec of
graphical methods in the many-body problemn shows that this formal-
ism is floxible cnough to deal with phenomena of nonperturbative
character (for example, superconductivity and the hard-sphere Bose
gas8).

2. Some modification of the Feynman rules of caleulation may
well outlive the claborate mathematical structure of local canonical
quantum ficld theory, based as it is on such idcalizations as ficlds
defined at points in space-time. Thercfore, let us develop these rules
first, independontly of the ficld theory formalism which in time may
come to be viewed more as a superstructure than as a foundation.

3. Buch a deveolopment, more direct and less formal—if less com-
pelling—than a deductive ficld thcoretic approach, should bring
quantitative calculation, analysis, and understanding of Feynmean
graphs into the bag of tricks of a much larger community of physicista
than the specialized narrow one of second quantized theorists, In
particular, we have in mind our experimental colleagues and students
intcrested in particle physics. We beliove this would be a healthy
devclopment.

Our original idea of one book has grown in time to two volumes.
In the first book, ‘“Relativistic Quantum Mechanics,” we develop a
propagator theory of Dirac particles, photons, and Klein-Gordon
mesons and perform a serics of caloulations designed to illustrate
various uscful techniques and concepts in electromagnotic, weak, and
strong interactions, These include defining and implementing the
renormalization program and cvaluating effects of radiative correc-



ce ix

tions, such as the Lamb shift, in low-order calculations. The necessary
background for this book is provided by a course in nonrelativistic
quantum mcchanics at the general level of Schifi’s text ‘“Quantum
Mechanics,”

In the second book, “Relativistic Quantum Fields,”” we devclop
canonical field theory, and after constructing closed expressions for
propagators and for scattering amplitudes with the LS/ reduction
technique, rcturn to the Feynman graph expansion. The perturbation
expansion of the scattering amplitude constructed by canonieal ficld
theory is shown to be identical with the Feynman rules in the first
book, With further graph analysis we study analyticity properties of
Feynman amplitudes to arbitrary orders in the coupling parameter
and illustratc dispersion rclation methods. Finally, we prove the
finiteness of renormalized quantum electrodynmmca to each order of
the interaction.

Without dwelling further on what we do, we may list the major
topics we omit from discussion in these books. The development of
action principles and a formulation of quantum field theory from a
variational approach, spearhcaded largely by Schwinger, are on the
whole ignored. We refer to action variations only in scarch of sym-
metries. There is no detailed discussion of the powerful developments
in axiomatic field theory on the one hand and the purely S-matrix
approach, divorced from field theory, on the other. Aside from a
discussion of the Lamb shift and the hydrogen atom spectrum in the
first book, the bound-state problem is ignored. Dynamical applica-
tions of the dispersion relations are explored only minimally. A
formulation of a quantum field theory for massive vector mesons is not
given—nor is a formulation of any quantum ficld theory with deriva-
tive couplings. I‘inally, we have not prepared a bibliography of all
the significant original papers underlying many of the developments
recorded in these books. Among the following recent excellent books
or monographs is to be found the remedy for one or more of these
deficiencics:

Schweber, 8.: “An Introduction to Relativistic Quantum Field Thoory,” New
York, Harper & Row, Publishers, Inc., 1061,

Jauch, J. M., and F. Rohrlich: “The Theory of Photons and Electrons,” Cam-
bridge, Maass., Addison-Wesley Publishing Company, Inc., 1958.

Bogoliubov, N. N., and D. V. 8hirkov: “Introduction to the Theory of Quantized
Ficlds,” Now York, Interscionco Publishers, Ine., 1950.

Akhiezer, A., and V. B. Berostotaki: “Quantum Electrodynamics,” 2d od., New
York, John Wiloy & Sons, Ine., 1063.

Umezawa, H.: "Quantum Fiold Theory,” Amstordam, North Holland Publshing
Company, 1956,
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Hamilton, J.: “Thoory of Elementary Particles,”” London, Oxford Univoraity
Pross, 1959.

Mandl, F.: “Introduction to Quantum Field Theory,” New York, Interscience
Publishors, Ine., 1960.

Roman, P.: "Theory of Elementary Particles,”” Amsterdam, North Holland
Publishing Company, 1960,

Wentzol, G.: “Quantum Theory of Ficld,” New York, Intcrecience Publishers,
Ino., 1949.

Schwinger, 8.: “Quantum Electrodynamics,” New York, Dover Publications,
Ino., 1058,

Feynman, R. P.: “Quantum Electrodynamics,” New York, W. A. Benjamin,
Ino., 1962,

Klein, L. (0d.): “Dispersion Relations and the Abstract Approach to Ficld Theory,”
Now York, Gordon and Breach, Scionce Publishers, Ino., 1961.

Screaton, G. R. (cd.): "Dispersion Rolations; Scottish Universities SBummer
8chool,” New York, Interscionce Publishers, Ino., 1061.

Chew, G. F.: “B-Matrix Theory of Btrong Interactions,” New York, W. A.
Benjamin, Ine., 1062,

In conelusion, we owe thanks to the many students and colleagues
who have been invaluable eritics and sounding boards as our books
evolved from lectures into chapters, to Prof. Leonard 1. Schiff for
important initial encouragement and support to undertake the writing
of these books, and to Rosemarie Stampfel and Ellen Mann for
marvelously cooperative secretarial help.

James D. Bjorken
Sidney D. Drell
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1 Formulation of a Relativiatic Quantum Thcory

Since the principles of special relativity are generally accepted at this
time, & ocorrect quantum theory should satisfy the requirement of
rolativity: laws of motion valid in one inertial system must be true in
all inertial systems. Stated mathematically, relativistic quantum
theory must be formulated in a Lorentz covariant form,

In making the transition from nonrelativistic to relativistio
quantum mechanics, we shall endeavor to retain the principles under-
lying the nonrelativistic theory, We review them briefly:!

1. For a given physical system there exists a state function ¢ that
summarizes all that we can know about the system. In our initial
development of the relativistic one-particle theory, we usually deal
directly with a coordinate realization of the state function, the wave
funotion (g « + + ,8 - - - ,0). ¥(g,8¢) i8 & complex function of all
the classical degrees of freedom, ¢) * + - g, of the time ¢ and of any
additional degrees of freedom, such as spin &, which are intrinsically
quantum-mechanical. The wave function has no direct physical
interpretation; however, |¥(g1 * * * qn,81 - * * 85,0)|* 2 0 i8 intor-
proted as the probability of the system having values (g1 - * - 8.)
at time . Evidently this probability interpretation requires that
the sum of positive contributions |y|* for all values of ¢; - * - &, &t
time ¢ be finite for all physically acceptable wave functions .

-2. Every physical observable is represented by a linear hermitian
operator. In particular, for the canonical momentum p, the operator
correspondence in a coordinate realization is

Lhe
P 's'aq¢

3. A physical system is in an cigenstate of the operator Q if
Mn - wn‘bn (l.l)

where @, is the nth cigenstate corresponding to the eigenvalue w,,
For a hermitian operator, ws is real. In a coordinate realization the
equation corresponding to (1.1) is

- Q(Q)slt)'pn (9.3,‘) - w""l (stlt)

18ee, for oxample, W. Pauli, “Handbuch der Physik,” 2d ed., vol. 24, p. 1,
J. Springer, Berlin, 1033. L. I, SBohiff, “Quantum Mechanies,” 21 od., MeGraw-
Hill Book Company, Inc., New York, 1055, P. A, M, Dirae, “The Principles of
Quantum Mechanics,” 4th od,, Oxford University Press, London, 1958.



Dirac quation 3

4. The expansion postulate states that an arbitrary wave func-
tion, or state function, for a physical system can be expanded in &
complote orthonormal set of eigenfunctions ¥, of & complete sot of
commuting operators (2,). We write, then,

Y= Z Ga¥n
n
where the statement of orthonormality is

Yo Wi g g ) = b

laa|® records the probability that the system is in the nth eigenstate.

5. The result of a mensurement of a physical observable is any
one of its eigenvalues. In particular, for a physical system described
by the wave function ¢ = Zanp., with Oy, = w.ls, measurement of
a physical observable Q results in the cigenvalue w, with & probability
|aa|3. The average of many measurements of the observable £ on
identically prepared systems is given by

@ym ) [9sq e O e O )

6. The time development of a physical system is expressed by tho
Schrddinger equation

. Oy
msi = fIy (1.2)

where the hamiltonian /I is a linear hermitian operator. It has no
explicit time dependence for a eclosed physical system, that is,
dH /ot = 0, in which case its eigenvalues are the possible stationary
states of the system. A superposition principle follows from the
linearity of I and a statement of conservation of probability from the
hernmitian property of II:

3%2 [vrviaa - = ;Z [ (dar - ey —lw*(w)l
=0 (1.3)

We strive to maintain these familiar six principles as under-
pinnings of a rclativistic quantum theory.
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2 Early Attempts

The simplest physical system i8 that of an isolated free particle, for
which the nonrelativistic hamiltonian is

-7

I o (1.4)

The transition to quantum mechanics is achioved with the transcription
.

H - 3 (1.5)

A
pP—cV
which leads to the nonrelativistic Schrédinger equation

5 @l | —H
in D = S vt (1.6)

Equations (1.4) and (1.6) are noncovariant and therefore unsatis-
factory. The left- and right-hand sides transform differently under
Lorentz transformations. According to the theory of special rela-
tivity, the total encrgy E and momenta (p.,p,,ps) transform as com-
ponents of & contravariant four-vector

pr = (Pp'\pp") = (_lcg, p..p..p-)

of invariant length

3 K
Z PP’ ™ pp* = — — p-p = mict (L7)
n=0

m is the roat mass of the particle and ¢ the velocity of light in vacuo.

The covariant notation used throughout this book is discussed in more

detail in Appendix A. Here we only note that the operator tran-

scription (1.5) is Lorentz covariant, since it i8 a correspondence
between two contravariant four-vectors! p* — {A 8/0z,.

Following this it is natural to take as the hamiltonian of a relativ-
istio free particle

H = \/p'ed + mict (1.8)

1Wo dofine 2* = (cf,X) and ©* = 8/0z,.
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and to write for a relativistic quantum analogue of (1.8)

1”1 =/ =AW £ micty (1.9)

Immediately we are faced with the problem of interpreting the square-
root operator on the right in Eq. (1.9). If we expand it, we obtain an
equation containing all powers of the derivative operator and thereby
a nonlocal theory. Such theories are very difficult to handle and
prosent an unattractive version of the Schrddinger equation in which
the space and time coordinates appear in unsymmetrical form.,

In the interest of mathematical simplicity (though perhaps with
a lack of complete physical cogency) we remove the square-root
operator in (1.9), writing

HY = plet + mict (1.10)

Equivalently, iterating (1.9) and using the fact that! if [4,B] = 0,
Ay = By implics A% = B%, we have

—M T = (AT ity

This is recognized as the classical wave equation

(8]

whore Om (1.11)

6.7: azﬂ
Before lookmg further into (1.11), we note first that in squaring
the energy relation we have introduced an extraneous negative-encrgy
root
o II m — /P’ + mic*

In order to gain a gimple equation, we have sacrificed positive definite
energy and introduced the difficulty of ‘“‘extra” negative-encrgy
solutions, This difficulty is cventually surmounted (as we shall study
in Chap. 5), and the negative-energy solutions prove capable of
physical interpretation. In particular, they are associated with
antiparticics. and the existence of antiparticles in nature lends strong
oxperimental support for this procedure. So let us for & moment con-
sider Eq. (1.10) and the infcrred wave equation (1.11). Our first
task is to construct a conserved current, since (1.11) is a second-order

* Throughout, we use the notation [A,B]m AB ~ BA for commutator
brackets and {A,B} m AB 4 BA for anticommutator bracketa.
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wave cquation and is altered from the Schrodinger form (1.2) upon
which the probability interpretation in the nonrelativistic theory
is based. This we do in analogy with the Schrddinger equation,
taking ¢* times (1.11), ¢ times the complex conjugate equation, and
subtracting:

oo (3 oo+ (3 -

V(Y VW — YV) = 0

or
[2,,,,,--("" Y- )] + div & [*(v9) — (w9 =0 (L12)

aw t'N/‘

We would like to interpret (ih/2mc?) (-p‘ 3~V at ) 88 8
probability density p. However, this is impossible, since it is not a
positive definite expression. For this reason we follow the path of
history! and temporarily discard Eq. (1.11) in the hope of finding an
equation of first order in the time derivative which admits a straight-
forward probability interpretation as in the Schrddinger case, We
shall return to (1.11), however. Although we shall find a first-order
equation, it still proves impossible to retain a positive definite proba-
bility density for a single particle while at the same time providing a
physical interpretation of the negative-energy root of (1.10), There-
forc I'q. (1.11), also referred to frequently as the Klein-Gordon equa-
tion, remains an equally strong candidate for a relativistic quantum
mechanica as the one which we now discusa.

3 The Dirac Equation

We follow the historic path taken in 1928 by Dirac? in seeking a
relativistically covariant equation of the form (1.2) with positive
definite probability density. Sinee such an equation is linear in the
time derivative, it is natural to attempt to form a hamiltonian linear
in the space derivatives as well. Such an equation might assume a

form R
g - Tc( RN 5}:') + Bmc'y m Hy  (L.13)

¢ E, 8chrédinger, Ann, Physik, 81, 100 (1926); W. Gordon, Z. Physik, 40, 117
(1926); O. Klein, Z. Physik, 41, 407 (1927).

tP. A. M. Dirac, Proc. Roy. Soc. (London), A117, 610 (1028); shid., A118,
851 (1028); “The Prineiples of Quantum Mechanics,” op. cit.
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The coefficicnts a; here cannot simply be numbers, gince the equation
would not be invariant even under & spatial rotation. Also, if we
wish to proceed at this point within the framework stated in Sec. 1.1,
the wave function ¥ cannot be & simple scalar, In fact, the proba-
bility density p = ¢*¢ should be the time componcnt of a conserved
four-vector if its integral over all space, at fixed ¢, is to be an invariant.
To free (1.13) from these limitations, Dirac proposed that it be
considered as a matrix equation. ' The wave function ¥, in analogy
with the spin wave functions of nonrelativistic quantum mechanics,
is written as & column matrix with N eomponents
YR '{‘I

#; -
(2
and the constant cocflicicnts a;, 8 are N X N matrices. In effect
then, IJq (1.13) is replaced by N coupled first-order equations

N
2 3¢ 9
:; - —{'- (al'é? + alé? + al'—i) V’v + 'Zl Bnm.wr \\
N
- z ., (1.14)
r=]

Herceafter we adopt matrix notation and drop summation indices,
in which case Fq. (1.14) appears as (1.13), to be now interpreted as
a matrix equation,

If this equation is to serve as a satisfactory point of departure
first, it must give the correct energy-momentum relation

E’ - p’c’ + m!c‘

for a free particle, second, it must allow & continuity equation and a
probability interpretation for the wave function ¢, and third, it must
be Lorontz covariant. We now discuss the first two of theee
requirements.

In order that the correct energy-momentum relation enierge from
Eq. (1.13), each component ¥, of ¢y must satisfy the Klein-Gordon
second-order equation, or

-7 aaf;f = (—A%eV? 4 mdct)y, (1.15)
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Iterating Eq. (1.13), we find

3
oy + a0
fu=1
z (i + B Y, + prmtey

fw]
We may resurrect (1.15) if the foar matrices ay, 8 obey the algebra:

a4 ava; = 28y
afl + Ba; = 0 (1.16)
o =gt =1

What other properties do we require of these four matricee ay, 8, and
can we explicitly construct them? The & and # must be hermitian
matrices in order that the hamiltonian H,, in (1.14) be a hermitian
operator as desired according to the postulates of Sec. 1.1. Since, by
(1.16), a! = g3 = |, the cigenvalues of a; and 8 are 1. Also, it
follows from their anticommutation properties that the trace, that is,
the sum of the diagonal clements, of each ayand 8is zero. For example,

a; = —fBafl
and by the eyclic property of the trace

Tr AB = Tr BA
one has
Troag= 4+ Trpla;= 4+ Trpa3 = — Tray;=0

8Since the trace is just the sum of eigenvalues, the number of positive
and negative eigenvalues 11 must be equal, and the a«; and 8 must
therefore be even-dimensional matrices. The smallest even dimen-
sion, N = 2, is ruled out, since it can accommodate only the three
mutually anticommuting Pauli matrices o plus & unit matrix. The
smallest dimension in which the «; and 8 ean be realized is N = 4,
and that is the case we shall study. In a particular explicit repre-
sentation the matrices are

0 o - 1 0
a = [m 0] 8 [o -1] (1.17)
where the o, are the familiar 2 X 2 Pauli matrices and the unit entries
in § stand for 2 X 2 unit matrices.

To construet the differential law of current conservation, we first
introduce the hermitian conjugate wave functions ' = (¢ « -+ ¢
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and left-multiply (1.13) by ¢':

W'ﬂ - h_c z Vias 7 az Vv + meiI8y (1.18)

Next we form the hermitian conjugate of (1.13) and right-multiply
by ¢

8
—n %yl y ¥ ¥ + mtay (1.19)

b=l

where a! = ay, 8! = 8. Subtracting (1.19) from (1.18), we find

3
aduw= Y X9 )

or
Zo+div)=0 (1.20)

where we make the identification of probability density
4

o=ty = ) Vi, (1.21)

and of a probability current with three components

= cftary (1.22)

Integrating (1.20) over all space and using Green's theorem, we find
LA 'y -

5 f dizyty = 0 (1.23)

which encourages the tentative interpretation of p = 'y as a positive
definite probability density.

The notation (1.20) anticipates that the probability current j forms
a vector if (1.22) is to be invariant under three-dimensional space
rotations, We must actually show much more than this. The
density and eurrent in (1.20) must form a four-vector under Lorents
transformations in order to ensure the covariance of the continuity
equation and of the probability interpretation, Also, the Dirac
equation {1.13) muet be shown to be Lorentz covariant before we may
regard it as satisfactory.
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4 Nonrelativistic Corrcspondence

Before delving into the problem of establishing Lorents invarianco
of the Dirac theory, it is perhaps more urgent to see first that the
equation makes sense physically.

We may start simply by considering a free cleetron and counting
the number of solutions eorresponding to an electron at rest. Equa-
tion (1.13) then reduces to

a0
since the de Broglie wavelength is infinitely large and the wave fune-

tion is uniform over all space. In the specifiec representation of Eq.
{(1.17) for 8, we ecan write down by inspection four solutions:

17 0]
wl - g=(ime*iMy 0 A a—(ime*/hye 1

0 0

[0 [ 0

[0] [07] (1'2}0
4,: - e-!-(i-a'lln (l) 4" - e-o-(t-a'm: g

[ 0] [ 1]

the first two of which eorrespond to positive energy, and the second
two to negative energy. The extraneous negative-energy solutions
whiech result from the quadratic form of II* = pic? 4- m3¥c! are a major
difficulty, but one for which the resolution leads to an important tri-
umph in the form of antiparticles, We come to this point in Chap. 5.
Here we econfine ourselves to the “acceptable” positive-energy solu-
tions. In particular, we wish to show that they have a sensible
nonrelativistic reduction to the two-component Pauli spin theory.
To this end we introduce an interaction with an external electro-
magnetie field described by a four-potential

A#:(D,A)

The coupling is most simply introduced by means of the gauge-
invariant substitution

P - A (1.25)
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made in classical relativistic mechanies to deseribe the interaction of a
point charge e with an applied ficld. In the present case

p* — th 3/0x, m p*

according to (1.5), and (1.25) takes the Dirac equation (1.13) to
adt -(m-(p—zA)-I'-ﬂmc’-i-cd»)\!/ (1.26)

Equation (1.26) expresses the ‘‘minimal” interaction of a Dirae
particle, considered to be a point charge, with an applied clectro-
magnetie field. To emphasize its classical parallel, we write in (1.26)
H=JIlj+ H, with '’ = —¢a-A 4 eb. The matrix ca appears
here as the operator transcription of the velocity operator in the
classical expression for the interaction energy of a point charge:

[}
H:llnlul - -EV.A+8¢

This operator correspondence v,, = ca is again evident in Eq. (1.22)
for the probability current. It also follows if we make the relativistic
extension of the Ehrenfest relations:!

gir - i[II,r] = Cca W v,

and g} (n) = ;[11,1‘1 -¢ gi A

gz(a) -c[E+§v.,..xB] (1.27)

with = m p — (e/c)A the operator corresponding to the kinetis
momentum and
E--lgé—v¢ and B = curlA
c ot

the field strengths. Equation (1.27) is the operator equation of
motion for a point charge e. More general couplings in (1.26) would
lead to specifie dipole and higher multipole terms in analogy with the
classical development.

In taking the nonrelativistic limit of Eq. (1.26), it is convenient
to work in the specific representation of Eq. (1.17) and to express the

¢ Pauli, Sohiff, and Dirae, op. cit.
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wave function in terms of two-component column matrices ¢ and %:

v - [:] (1.28)
We then obtain for (1.26)

A E é] . [ ¢ ]

tha‘ 2] cd ﬂ[é] -+-‘e*lﬁ[2 + me —g
In the nonrelativistic limit the rest energy me? is the largest energy
in the problem and we write

[;] - gCimatih ["] (1.29)

X

where now ¢ and x are relatively slowly varying functions of time
which are solutions of the coupled equations

and "] -cdom ["] + e [“’] — 2me? [0] (1.30)
ol Lx ¢ X X
The second of Eqs. (1.30) may be approximated, for kinetic energies
and field interaction energics small in comparison with me?, to
'm

X=- m (1.31)
Equation (1.31) reveals x a8 the ‘“small”’ componoents of the wave
function y in comparison with the “large’”’ components . Relative to
#, x is reduced by ~v/c €1 in the nonrelativistic approximation.
Inserting (1.31) into the first of Fqs. (1.30), we obtain a two~component
spinor equation

5 Op G mdem
'h_ai - (——2Tn— + G¢)¢ (1.32)

This is further reduced by the identity for Pauli spin matrices

é'adbma-b+id-axb
or, here,
dxd amxl4idaXn
s
- oy ——c-d'B (1-33)

Then we have

ih%:f - [(E —2(5{c)A)' _ Eemicd. B+ eq.] ¢ (1.34)
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which is recognized! as the Pauli equation. Equation (1.34) gives us
confidence that we are on the right track in accepting Eqs. (1.13) and
(1.20) as a starting point in constructing a relativistic electron theory.
The two components of ¢ suflico to accomimodate the two spin degrees
of freedom of a spin onc-half electron; and the correct magnetic
moment of the clectron, corresponding to the gyromagnetic ratiog = 2,
automatically emerges. To sco this explicitly, we reduce (1.34)
further, keeping only first-order terms in the interaction with a weak
uniform magnetic field B = curt A; A = B x r:

p*
sh [2m 2mc (L + 28)- B] (1.35)
Here L = r X p is the orbital angular momentum, S = },A¢ is the
electron spin, with eigenvalues +4/2, and the coeflicient of the inter-
action of the spin with B ficld gives the correct magnetic moment
of the electron corresponding to a g value of 2,

Fortified by this successful nonrelativistic reduction of the
Dirac equation, we go on and establigh the Lorentz covariance of the
Dirac theory, as rcquired by special relativity. Next we muet inves-
tigate further physical consequences of this theory; especially we
must interpret those ‘‘negative-energy’’ solutions,

Problems

1. Write the Maxwell equations in Dirac form (1.13) in terma of a six-somponent
field amplitude. What are the matrices corrosponding to « and 87 {See H. E,
Mosce, Phys. Rev., 118, 1670 (1069).]

2. Verify that the matrices (1.17) satisfy the algebra of (1.10).
3. Verify (1.33).
4. Verify (1.27).

v 1bid.
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Lorentz
Covariance

of the Dirac Equation



1 Covariant Form of the Dirac Fquation

It is necessary that the Dirac equation and the continuity equa-
tion upon which its physical interpretation rests be covariant under
Lorentz transformations, Let us first review what is meant by
a Lorentz transformation.! Two obscrvers O and ¢’ who are in
different inertial rcference frames will describe the same physical
event with the differcent apa.ce-txme coordinates. The rule which
rclates the coordinates z» with which observer O describes the event
to the coordinates (z*)' used by observer O’ to describe the same
event i8 given by the Lorentsz transformation between the two sets of
coordinates:
3

@) = ) o m oo @1

»=0
It is a linear homogeneous transformation, and the coefficients a’,
depend only upon the relative velocities and spatial orientations of
the two refcrence frames of O and 0. The bagie invariant of the
Lorentz transformation is the proper time interval

ds? = g, dzs dz’* = dz» dz, ., (2.2)

This is derived from the physical observation that the velocity of light
in vacuo is the same in all Lorentz frames. Equations (2.1) and (2.2)
lead to the relation on the transformation coefficients

a,’a*, = §, (2.3)

Equations (2.1) and (2.3) serve as defining relations for both
proper and improper Lorents transformations. In the foriner case the
determinant of the transformation coefficients satisfiea the relation

det |o] = 41

Proper I orentz transformations can be built up by an infinite succes-
sion of infinitesimal transformations. They include transformations
to coordinates in relative motion along any spatial direction as well as
ordinary three-dimensional rotations. The improper Lorentz trans-
formations are the discrete transformations of space inversion and
of time inversion. They cannot be built up from a succession of
infinitesimal ones. Their transformation coefficients satisfly the

''W. Pauli, “Theory of Relativity,” Pergamon Press, New York, 1058.

“The Principle of Relativity,” collected papers of H. A. Lorents, A. Einstein,
H. Minkowski, and H. Weyl, Dover Publications, Inc., Now York, 1923 relssue.

16
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relation
det |a| = —1
in both cases.

Our task is to construct a correepundence rclating a given sot
of observations of & Dirac particle made by observers O and 0’ in their
respective reference frames. In other words, we seck a transformation
law relating the wave functions ¥(z) and y¥'(z’) used by observers O
and O, rospectively. This transformation law is a rule which allows
0’ to compute y'(z') if given ¢(x). According to the requirement of
Lorentz covariance, this transformation law must lead to wave fune-
tions which are solutions of Dirac equations of the same fonn in the
primed as well as unprimed rcference frame. This form invariance
of the Dirac equation expresses the Lorentz invariance of the under-
lying energy-momentum connection

pup* = mict

upon which the considerations of Chap. 1 were based.

In discussing covariance it i8 desirable to express the Dirac equa-
tion in a four~dimensional notation which preserves the synunetry
between ¢f and 2. To this end we multiply (1.13) by 8/¢ and intro-
duce the notation

Y=g ¥y = Bay t=1]123
This gives

f"(’“a—:«*“"% +1=5%,+1'5‘},-)¢-w-0 (24)

The new matrices 9* provide an eclogant restatement of the
commutation rclations (1.16)

Y+ e =21 (2.5)

where 1 is the 4 X 4 unit matrix and hereafter will not be explicitly
indicated. It i8 clear from their definition that the 4 are anti-
hermitian, with (y')* = —1, and that 9° is hermitian. In the repre-
sentation (1.17) they have the form

RN I ) R

It is convenient to introduce the Feynman dagger, or slash, notation:

A - -ylA. - g..-yﬂA' - -y(IAO - YOA
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and in particular

V=rm=~catr’
Equation (2.4) then abbreviates to
(shY — n‘w)gp =0 (2.7)
or, with p* = ¢} -—.
i (p —me)y =0 (2.8

Addition of the eloctroinagnetie interaction according to the
“minimal” substitution (1.25) gives

(p-—é-mc)w-ﬂ

\Thia in no way influences considerations of covariance, bocauso
both p* and A», and hence their difference, are four-vectors.}

Proof of Covariance

In order to cstablish Lorentz covariance of the Dirac equation,
we must satisfy two requirements. The first is that there must be an
explicit preseription which allows observer O', given the ¢(zx) of
observer 0O, to compute the ¢’(z’) which describee to (' the same
physical state. Second, according to the relativity principle, ¥'(z)
will be a solution of an equation which takes the form of (2.7) in the

primed system
N

(ih-i" = - mc) V() =0

The 4* satisfy the anticommutation relations (2.5); therefore 0 = 9
and 4* = — 4 as required for a hermitian hamiltonian. As may be
shown by a lengthy algebraic proof,! all such 4 X 4 matrices 4 are
equivalent up to a unitary transformation.U:

G- U*-y,U Ut = U~

18e0 R, Il Good, Jr., Rev. Mod. th 27, 187 (1066). eapecially Bec III,
p- 190,
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€ and 8o wo drop the distinction between 4* and 4* and write
(o' — me}¥/(z') = 0 (2.9)
with p =iy 8:"'

We ask that the transformation between ¢ and ¢/ be linear,
since both the Dirac equation and the Lorents transformation (2.1) of
the coordinates are themselves linear. 'We introduce it in the form

V(@) = ¥(az) = S(a)¥(z) = S(a)¥(a~'z") (2.10)

where S(a) is 8 4 X 4 matrix which operates upon the four-component
column vector y(x). It depcnde upon the relative velocities and
spatial oricntations of O and 0’. S nust have an inverse, so that if O
knows ¢'(z') which O’ uses to describe his observations of a given
physical state, he may construct his own wave function y(z)

¥(x) = 8-} a)y'(z') = S~}(a)¥(ax) (2.11)
We could equt-\lly well write, using (2.10),
¥(z) = S(a=")W'(az)
which provides the identification
S(a~!) = S-1(a)

The main problem is to find 8. It must satisfy (2.10) and (2.11).
If § eoxists, observer O/, given ¢(z) by O, may construet ¢/(x") using
(2.10).

By recxpressing the Dirac equation (2.7) of O in terms of ¢/(z%)
with the aid of (2.11), 0’ could then check whether ¢’(z’) satisfies
his own equation (2.9). -Ht would find after left-multiplieation by
S(a)

[ihS(a)'y"S"(a) aix_ - mc] V() = 0

Using (2.1) to write

‘ i_az_’:a =m g’ a
o drraxr "tz

the primed equation is found to be
[zﬂS(a)'y"S"(a)a 3o~ mc] V() =0

This is form-invariant, that is, identical with (2.9), provided an S can
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be found which has the property

S(a)y*S-'(a)a’, = "
or equivalently
» a’y* = 8~(a)r"S(a) (2.12)

Equation (2.12) is the fundamental relation determining S. In seck-
ing S we are secking a solution to (242). Once we show that (2.12)
has a solution and find it, the covariance of the Dirac equation is
established. By way of terminology, a wave function transforming
according to (2.10) and (2.12) is a four-commponent Lorents spinor.
We anticipate that S will present novel featurcs not found in tensor
calculus, since bilinear forms in ¢ such as the probability current (1.20)
are expected to form four-vectors,

We first construct S for an infinitcsimal proper Lorentz trans-
fornation

a’, = o\, + Aw’, (2.13a)
with Aw™ m — Aws? (2.13b)
aécording to Eq. (2.3) for anl invariant proper time interval. Each

of the six independent nonvanishing Aw** generates an infinitesimal
Lorentz transformation,

Aw® = AR

for a transformation to a coordinate system moving with a velocity
¢ AB along the z direction,

Awls = — Apit m Jp

for a rotation through an angle A¢ about the 2 axis, and so forth.
Expanding S in powers of 4w and keeping only the linear term
in the infinitesimal gencrators, we write

Sm] - ‘;0.. Aw* and S-im] +;i"u- Awr (2.14) -

with Opy ™ —0,,

by (2.13b). Eac.zh of the six coolljpients o,, is & 4 X 4 matrix, as are
the transformation S and the unit matrix 1. Inscrtingh(2.13) and
(2.14) into (2.12) and keeping first-order terms in Aw*’, we find

Ay = — % (8w)*(7v"0as — Oasy”’)
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From the antisymmetry of the generators Aw*’ there follows
26[0"avs — g"%a) = [v",00] € (2.15)

The problem of establishing proper Lorentz covarianee of the
Dirac equation is now rcduced to that of finding six matrices o.o
which satisfy (2.15). The simpleat guess to make is an antisymmnetric
product of two matrices, and directly we find, using (2.5), that

0w = 5 (1] 2.16)

is the desired matrix. According to (2.14), S for an infinitesimal
Lorentz transformation is given by

Sml+ %[-,,,-,.] Borr = 1 = 3o, dume 2.17)

We now complcte our task by constructing the finite proper

transformations by a succession of infinitesimal ones. First, to build
up (2.1) from (2.13), we write

Aw, = 8w(ln)’s (2.18)

where Aw i8 the infinitesimal parameter, or “anglc of rotation’ about
an axis in the direction labeled n, and 7, i8 the 4 X 4 (in space-time)
matrix of coofficicnts for a unit Lorents rotation about this axis.
» and g label row and column respectively.  Thus for a transformation
to a primed system in motion along the £ axis with an infinitesimal
velocity ¢ Aw = ¢ A8

I'y=

(2.19)

SO =D
S -
coce
coce

8o that
I = [lym % m - [10m —]

Using the algebraic property of I°,, that

1000
"'8(1)33 and I'=m 41,
0000

we can write the finite transformation for uniform reclative z-axis
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motion as

T G DACED
= (e*f),2*
= (cosh wf + sinh wl)"z*
= (1 — I*+ It cosh w 4 7 sinh w)"a*

For the individual components this gives

xv coshw —8nhw 0 0]]2°
zV — ginh w coshw 0 O] 2
o | " 0 0 1 of|la (2.20)
x¥ 0 0 0 1]l
or
z% = (cosh w)(z® — tanh w z?)
z" = (cosh w)(z' — tanh w z°)
v 2.21)
2V m g
¥ = g?
where tanhw = 8 and cosh w = i 1 )

rclate the Lorentz rotation angle w with the rclative velocity 8.

This result can be generalized to include motion along any direc-
tion or spatial rotation about any axis. The six matrices I*, gencr-
ating the six independent Lorents rotations are the four-dimensional
generalizations of the three-dimensional space rotations familiar in
the nonrelativistic theory.

Turning now to the construction of a finite spinor transformation
S, we have from (2.14) and (2.18)

V) = 8o = Jim (1= fpontr) vea
= oxp (-; iw..l:') ¥(z) (2.22)

Specializing again to the transformation (2.19) we have
V' (x') = e~y (x) (2.23)
wherc 2’ and z are related by (2.21).
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Similarly, for a rotation through an angle ¢ about the # axis,
J*a — /%= —]and

V(z') = ety (z) (2.24)
where
1. |7 0]
¢ [0 oy
in the representation (1.17), with
- [1 0]
= lo -1]

the Pauli 2 X 2 matrix. We recognize the similarity of (2.24) with the
form of rotation of a two-component Pauli spinor

¢'(a') = eWiNty(z) (2.25)

The covariant “‘angle” variables w** in (2.18) are agsociated with the
Lorentg transformation in the same sense that the rotation angle and
direction in w are for the three-dimensional rotation. The appearance
of half-angles in (2.24), as in (2.25), i8 an expression of the double-
valuedness of the spinor law of rotation; it takes a rotation of 4
radians to rcturn ¢(z) to its original value. Because of this, physical
observables in the Dirae theory must be bilinear, or an even power in
¥(z).

For spatial rotations, S = Sg is unitary, since the o;; are hermitian,
and

Sh m gttiitetiv, m g—(ii0tiuy m S7!
/

This is not true for transformations to a moving coordinate system
S = 8,;. For instance, for the transformation (2.23)

S;, m g6/ = g-wiVa, m S}. p Szl
Howcver, S does have the property
Sg' = ‘Yﬁ's;.‘h

found by expanding S, in a power serics. Since [vo,0*/] = 0, this can
be generalized to include rotations

81 = o8'y, (2.20)

The continuity equation is also covariant. " The probability
current (1.21) and (1.22), in the notation of (2.4), is

#(z) = o (z)v*v(x)
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and under (2.1) transforms to
M(z') = o (z") vy (2')
= oyt (x) Sty Sy (z)
= ot (z) 7S y+5¢(z)
= co' W (2)vor¥(z)
= g4, 5" () (2.27)

Evidently j#(x) is a Lorentz four-vector and the continuity equation
&(=) _
w0

is invariant. Also, the probability density 7°(z) = cp(z) transforms as
the time component of a conserved four-vector. This is the desired
result noted in Sec, 1.3 for an invariant probability.

Because the combination ¢'ve in (2.27) occurs so often, it is
dignified by a new notation

v(z) = Yy, (2.28)

where J(z) is known a8 the adjoint spinor. Its Lorentz transformation
property is given by
' V'(2') = §(z)S~! (2.29)

Space Reflection
~

We now expand our outlook to take into account the cxistence of
the improper Lorentz transformation of space reflection

x' = —x -y

Again covariance requircs a solution of (2.12), but in this case
we cannot build it up from the infinitesimal transformations. How-
ever, it i8 easy enough to solve (2.12) dircctly. The transformation
matrix is

1 0 0 0
Lol0 -1 0 of_
=10 0 -1 of=?" (2.30)
0 0 0 -1
Denoting S = P for the coordinate reflection, (2.12) becomes
]'D-l.yvp - gyt (2_31)

which is satisfied by
P = givy, (2.32)



The phase factor is of no physical interest here and may be narrowed
down to the four choices %1, %1 if we require that four reflcctions
return the spinor to itsclf in analogy with a rotation through 4»
radians. P in (2.32) evidently is unitary, P-! = P!, and satisfies
(2.26) as well. Equation (2.32) tells us that

V() = Y (—xt) = e'*vob(x,1) (2.33)

In the nonrelativistic limit ¥ approaches an eigenstate of P,
and by (1.24) and (2.0) the positive- and negative-cnergy states at rest
have oppositc eigenvalues, or snirinsic parilies.

The discussion of thce other improper transformations, such as
time reversal, is more involved; it is given in Chap. 5.

.4 Bilinear Covariants

By forming products of the ¥ matrices it i possiblc to construct
16 linearly independent 4 X 4 matriccs I'as which appear often in
applications of the Dirac thcory. These are

el F: -y, l‘z- "
I miylylydy? myymqyd T4 oy, (2.34)

By using the anticommutation relations (2.5) the I'* are readily
established to be linearly independent by the following argument:

1. For each I'», (I'")t = 1,
2. For each I'* except I'S, there exists a ' such that

I"[" = — o
From this it follows that the trace of I'* vanishes:
+ Trr* = Trro(I=) @ — TrI'"r*r= = — Tr I'"(I'"™) = 0
3. Given I and T, a 6 b, there exists a I'* g6 '8 such that
Ier® = »

This follows by direct inspection of the I's.
4. Suppose there exist numbecrs a, such that

T =0
g:a

Then multiply by T'™ » I'¥ and take thc trace; using (3), we find
Gn = 0. If ' = I8, we find a, = 0, and all cocfficicnts vanish.
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This establishea the linear independence of the I'". It follows
that any 4 X 4 matrix can be written in terms of the I'.

We may now write down the Lorentz transformation properties
of the bilinear forms §(x)I"™y(x) constructed from the 16 I', 'We need
only the observation that

Yvs+ vey* = 0 (2.35)
and therefore
[70,0;.'] =0
or
[S,ys] = 0 . (2.30)
for all proper Lorents transformations. As a special case of (2.35)
Pyy m —vP (2.37)

Carrying out calculations similar to (2.27) we find:
V(W (2) = U (z)¥(z)

a scalar

V(v () = J(2)8 ysS¥(z) = det |al¥(z)ved(x)
a pseudoscalar

V(x)rv @) = and(z) vy ()

8 vector

V(' )rsy'¥/ (') = det |ala”W(z)ver¥(z)

a pseudovceector

V' (z)ory/ (2) = araa’sd(x)o(z)

s second-rank tonsor (2.38)

Problems

1. Verify (2.26).
2, Vorify tho transformation laws given in (2.38).

8. Given a free-particle spinor u(p), construct u(p + ¢) for g, — 0, with p.g— 0,
in terme of u(p) by making a Lorents transformation.

4. Bhow that there exist four 4 X 4 matrices I'* such that
Relhs =0
"'mr-l - 2ﬂu-
[irge = m]v@ =0

that is, the Dirac equation is real.
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1 Planc-wave Solutions ‘'
A (1)
We have scen that the Dirac theory meets the requiremente of Lorentz
covariance and that the positive-encrgy solutions to the Dirac equa-
tion have a sensible nonrelativistic correspondence. 9

Further insight into the nature and interpretation of solutions of
the Dirac equation may be gained by considering the free-particle
oquation. The four solutions corresponding to a free pariicle at
rest were given in (1.24) and are written in the combined form

Vr(z) = wr(0)e—Geme'/An  y = 1,2 3 4 (3.1)
1 -] 2
with o™ + i '
-1 rw=3 4
The spinors are
| 0 0 0
wo =[3] wo=| | wo=|] o=
0 0 1
(3.2)

in this representation, Eq. (1.17), of the Dirac matrices. The first
two solutions describe the two spin degrees of freedom of a Schrédinger-
Pauli electron. The “negative-encrgy” solutions, r = 3 and 4,
remain to be interprcted. They are all eigenfunctions of o, = 13 with
eigenvalues +1 and —1. The Lorentz transformation (2.10) may
be used to build the free-particle solutions for an arbitrary velocity.
By transforming to a coordinate system moving with velocity —v
relative to that of the solutions at rest, we construct free-particle
wave functions for an electron with the observed veloeity +v.

In order to exhibit the gencral space-time coordinate variation,
we nced only express the exponent in (3.1) in invariant form:

\ exp( -i.,;";:_’.’ l) exp (—s’e' 2"%)2—‘) = oxXp (—ie. P«":—.) (3.3)

where x¥ = a*,2" and p* = g4, p"® = g¥gmc; our notation throughout
is such that p® m E/c = 4 +/p?+ m¥%*® > 0. The positive- and nega-
tive-energy solutions transform among themselves scparately and do
not 1nix with cach other under proper Lorentz transformations, as well
as under spatial inversions. This is seen to follow from (3.3), since
the four-momentum of a free particle is time-like, p*p, = mic? > 0.
Therefore, p, is within the light cones in p space. Undcr the trans-

28 .
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formations mentioned above, the future and past light cones, and hence
the positive- and negative-energy solutions, remain distinet.
We transforin the spinors with

S = g=($/Dwey (3.4)

according to (2.23), where for simplicity we have specified the velocity
to lie along the z axis. The Lorentz angle w in (3.4) is given by
w = tanh—! (—v/c) = — tanh=! (v/c) and differs by a minus sign from
(2.21), since we are transforming to a system moving in the z direc-
tion with velocity —v.

Applying the transformation (3.4) to the spinors (3.2), we find

w(p) = g~ tw!Venyyr(()) = (couh-;-’ — oy Binh g) uwr(0)

B W
1 — ot
0 0 tanh 2

. 0 1 - tanh g 0

= cosh 2 w wr(0)
0 — tanh -- 1 0
2
L- tanh g 0 0 1

(3.5)

From the form (3.2) for w(0), it is cloar that the rth column of this
transforination 1natrix is identically the column spinor corresponding
to w(p). We may reexpress it in terms of the energy and momentum
of the particle by using the trigonometric identitics,

— tanh Q- — tanh v - U/C - pe
2 14+ I—tanhtew 1+ 1= @) E+me
and cosh %’ - (Bt 2':1:':0’ 3.6)

Also, we may generalize (3.5) to the case of arbitrary direction of
the velocity v. In thiy case the matrix 7 in (2.19) is replaced by

0 —Co8a —COBfS — COBY

P - — CcOB & 0 0 0
g — co8 f 0 0 0
— con Yy 0 0 0

where cos a, cos 8, and cos v are the direction cosines of the velocity
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v, and in the transformation matrix

o’ = 2(0g1 cO8 @ + gos COB B 4 g3 COB Y) = —2i ‘_'I.éIY
This gives, with the aid of (3.0),
S = cxp 434
2
[ 0o pe_ _pe ]
E 4 me* E 4 mc?
1 P+C =P

E 4+ mct 0 E 4 met E 4 me?
- (3.7)
2mc? P p-£

E4md Btmd 0
D+C ot L
Ftme E+mo

0 1

where p, m p, + tp,. The general forin of a free-particle solution is
V(z) - wl‘(p)c—‘htﬁﬂl"ll) (3.8)

where the rth column of (3.7) gives the corresponding spinor wr(p)
in the representation of the ¥ matrices given by Eq. (1.17). :
The wr(p) satisfy the following useful relations:

(p — emc)w'(p) =0  D(p)(P — emec) = 0 (3.90)
0 (p)w(p) = Sover (3.9)

4
El trw;(P)'Da(P) - 80’ (3.90)
Equation (3.0a), obtained by applying the Dirac operator
(s¥ — m) to (3.8), states the Dirac equation for a free particle in
momentum space. Forr = 1 or2, ¢ = 41and (p — mo)u(p) = 0.
This is the equation for the two positive-energy solutions given by the
first two columns of (3.7). In this representation their third and
fourth components are the “small components” in a nonrelativistic
approximation, and they reduce to Eqs. (1.29) and (1.31) in the
absence of external fields. For the negative-encrgy solutions the
“large” and “small” components are interchanged in (3.7). We also
introduce the adjoint spinor according to the definition in (2.28):
0r(p). = wt(p)ve. It satisfios the adjoint wave equation

B (p)(p — emc) = 0 (3.10)
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which is obtained by taking the hermitian conjugate of (3.9a) and
multiplying from the right by 4° with the aid of the identities
(v)* = 41 and yoysty? = 4x

Equation (3.00) is a covariant normalization statement. The
bilinear form wr(p)w(p) is a Lorentz scalar as discussed in the pre-
ceding chapter [see Eq. (2.38)], and so we verify (3.90) simply by
returning to the rest solutions (3.2). The probability density
wt(p)w(p) will not be an invariant but transforms as the fourth
component of a vector according to (2.27). Calculating from the
columns of (3.7) we find

WP () = A 8y @.11)

This shows that the probability densily acquires the correct factor
E/mc* to compensate the Lorentz contraction of the volume element
along the direction of motion and to preserve thereby the normaliza-
tion of the invariant probability. Notice that (3.95) isan orthogonality
statement between a spinor and its adjoint of the same momentum
p, whereas in (3.11) the positive-energy spinor is orthogonal to its
hermitian conjugate spinor of negative energy and reversed momentuin.
Thus two plane-wave solutions of the same spatial momentum p but
of opposito cnergy are orthogonal in the sense that ¢rt(z)y*'(z) = 0
if r =1, 2and? = 3,4, or vice versa.

Equation (3.9¢) is a completenees statement applying to the four
Dirac spinors for a given momentum. It is clearly true for a free
particle at rest. To prove it for an arbitrary momentum, we can
make an appropriate Lorentz transformation to the rest systemn and
then use (3.2) to find

'21 pTECR) = ,21 o5 (- 1%) W, (0)25(0) S5 (- 7‘%)

- .-,8-,;8;}' = Sap

That  and not w' appears in the completeness relation is due to the
relation St = 498~14¢ derived in (2.26) and again reflects the fact that
the Lorentz transformation is not unitary.

By using the rotation operators

S - gli/Neem _
upon the solutions (3.2) for the electr(;n al rest and polarized in the

¢ direction, it is possible to form states which are polarized in any
arbitrary direction 8. In particular, the defining relation for such
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states is
B =

if the spinor w corresponds to a particle polarized along direction of
the unit vector 8. The specific form of these solutions is similar to
that of the two-~component Pauli theory owing to the structure of ¢
in (2.24).

In this deseription it is convenient to introduce a different nota-
tion. Let u(p,s) denote the spinor which is a positive-energy solution
of the Dirac equation with momentum p* and spin & Thus u(p,s)
gatisfies the equation

(p — me)aptis(p,8) = 0 (3.12)

The spin vector 8 is defined in terms of the polarization vector & in
the rest frame by & = a*,¥, where & = (0,8) and the a*, are the trans-
formation coefficients to the rest frame, that is, p* = g, ", whcre
P* = (m,0). Notice that s,¢» = —1 and that 3§, = 0 and therefore
78, = (). In the rest frame u satisfics

d- Bu(B,8) = u(,8) (3.13)
Similarly let v(p,s) denote a negative-energy solution
(® + me)o(p,s) = 0 (3.14)
with polarization —§ in the reat frame, that is,
- Bu(p8) = —2(38) (3.18)

The u(p,s) and v(p,s) are related to the wr(p) by
w'(p) = u(p,u,)
w(p) = u(p,—u), *
w(p) = v(p,—u)
w'(p) = v(p,u)
with u% a four-vector, shich in the rest frame takes the form
% = (0,4,) = (0,0,0,1)

An sarbitrary spinor is thus specified by the momentum p,, the
sign of the energy, and the polarization in the rest frame §,.

(3.16)

2 Projection Operators for Energy and Spin

In practical calculations, it is often convenient to have operators
which project out a spinor of given sign of energy and polarization.
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These projection operators are the four~dimensional analogues of the
nonrelativistic two-component operators

P _l:tﬂl

2

which project out of an arbitrary state the spin-up or spin-down
amplitude.

For the Dirac equation, we search for four operators which project
from a given plane-wave solution of momentum p the four independent
solutions corresponding to positive and negative energy and to spin up
and spin down along & given direction. We would like these operators
in & covariant formn so that we may transform with ease among
different Lorentz systems, as will prove useful in practical calculations.

The four projection operators are denoted by P.(p) = P(p,u,,e)
and are defined to satisfy the following properties:

P.(p)w'(p) = 8w (p)
or equivalently (3.17)
P (p)P,(p) = 8..P(p)

An operator which projects out positive- or negative-energy
cigenstates for a given p may be found directly from (3.9a), already in
covariant form. We denote it by

e&p 4 mc
Ar(p) - "’l,m—

or, alternatively,
+ +me

Ay(p) = ome (3.18)

By direct calculation, using pp = p* = mi?, we verify that

M) = TEA ) dmepe b o) | (Lb )

that is,

AL(p) = Ay(p)
Ai(p)A-(p) = 0
Also notice that
Av(p) + A(p) = 1

To exhibit the analogous operator for the spin, we go to the
rest frame, where the spin is most easily described, and try to find a
projection operator which may be cast into covariant form. The
natural candidate for a spin-up particle is (1 4 ¢,)/2. In the same
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way as the two-component nonrelativistie spin projection operator is
liberated from explicit dependence upon the 2 direction by rewriting
(1 4 0,)/2 a8 a sealar,
1 + d- ﬁn
2

we try to write the Dirac spin projection operator in scalar form by
using the four-vector %, that is

140, 14 verathlye _ 1+ vetlive
2 2 2

This may now be cast into covariant form by eliminating the «,.
Because we are in the rest frame, yo acting upon the Dirac spinor
becomes +1. With the conventions established in (3.14) and (3.15),
the covariant Dirac spin projection operator is finally

l+‘)‘s£.
2

2(y,) =
or for a general spin vector s#, with &#p, = 0,
2(s) = '—'*2"—2 (3.19)
Thus in the rest frame
2()w0) = L5 wi(0) = LE2 wi(0) = wi)  (320)
and Z(—4,)w(0) = w(0)
Similarly, for the ncgative-encrgy spinors

I(—t,)wi(0) = L:E'VL‘!: wH0) = l_"';_'_‘ﬁ' w{(0)

- l.iz'_‘.’_'wc(()) = wi(0) (3.21)

and Z(¥%,)w'(0) = w'(0)
In terms of the definitions (3.16) of the spinors u and v, these are
Z(uyu(p,u,) = u(p,u,)

Z (ul)v (P;‘U-) = y(p,u,)
Z(—u)u(pu,) = Z(—u)v(pu,) = 0

Because of the covariant form of the projection opemtol; Z, we may
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3.3

write for any polarization vector #*(s*p, = 0) that

Z(8)u(p,s) = u(p,s)
Z(s)v(p,8) = v(p,8) (3.22)
Z(—8)u(p,s) = Z(—8)u(p,8) = 0

With the four projection operators A, (p) and Z(+s) we can now
completely specify free-particle motion in terms of four-momentum p,,
sign of encrgy ¢, and polarization & with &p, = 0. In particular,
we construct from (3.18) and (3.19) the four projection operators

Py(p) = A(p)Z(u,)
Py(p) = Ar(P)2(—u,)
Py(p) = A_(P)Z(—u)
Py(p) = A-(p)Z(u)

Notice that [Z(s), A.(p)] = 0 for all vectors satisfying sp, = 0,
since p anticommutes with both 44 and 8. From this it follows that
these P,(p) satisfy the defining relations (3.17).

We shall rcly upon these projection operators very frequently
in developing rapid and efficient calculational techniques. They per-
mit us to use closure methods, thus avoiding the necessity of writing
out matrices and spinor solutions component by component.

In order to achieve an invariant formulation, we have introduced
negative-cenergy solutions of momentum p which, according to (3.8),
are eigenfunctions of the momentum operator p with eigenvalue —p.
Similarly, according to (3.19) and (3.21), the negative-energy solutions
representing spin-up and spin-down states reduce in their rest frames
to eigenfunctions of o, with eigenvalues —1 and <41, respectively.
The physieal motivation for this apparently backward association of
eigenvalues for the ncgative-energy solutions will appear when we
come to the hole theory in Chap. 5.

Physical Interpretation of Free-particle
Solutions and Packets

We may now superpose the plane-wave solutions at our dispoeal
to econstruet locelized packets. These packets are still solutions of the
free Dirae equation, as requircd by the superposition principle, since
the Dirac equation is linear, We study them to gain further insight
into the interpretation of the free-particle solutions.
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To begin, we form a packet by superposing positive-energy
solutions only:

v = [ ook P Zb(p.s)u(p.s)e-"»-m (3.23)

To normalize the expansion coeflicients b(p,8) to unit probability, we
call on the spinor orthogonality relations (3.11) and find?

[ v dz = [ % Y b*@abmant @ o)
TR 14

= [ @ Y ipalt = 1 (3.24)
s

The average current for such a packet is given by the expectation
value of the velocity oporator

JO - [yiteay diy (3.26)

In cvaluating this we use the following important relation betwoen
the three four-vectors that can be formed from frce-particlo solutions:

For ¢1(z) and ye(z) any two solutions to the Dirac equation,
(p — me)¥(z) = 0,

SHrrrr = o= Do = PN = o pllry)  (3.20)

To prove (3.26), we observe that if a* and U* are two arbitrary four-
vectors

A8 = b5y + ) + My — 1)
= avh, — irbro,, (3.27)
' We collect hore familiar propertios of tho Dirac 8 funotion used in deriving
(8.24):
- dz ¢ts=)? = 2xr8(s — a)

f ds 8(s — 0)/(s) = f(a)

interval
inocluding s = »

if f(s) han no singularities in the interval of intogration;
8(7) = kst o

The & function is mathematically respectable in the sense of distribution theory;
soe, for instance, M. J. Lighthill, ‘“Introduction to Fouricr Analysis and General-
izod Functions,” Cambridgo University Press, London, 1958.
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Then with the Dirac equation we construct

0 = $s(—p — me)ivr + Pa(p — oW
= —2mcdavs + VilaPp, — 0P, — P78, + ipPaT I
(J/; = p7*)

and (3.26) emerges as the coeflicient of an arbitrary vector a*,

This idontity is known as the Gordon decomposition.! It cx-
presses the Dirae current as the sum of a convection current similar
to the nonrclativistic one, and a spin current.

With the help of (3.26) for the special case ys = ¢, = ¢ and (3.23),
we now find for the current (3.25)

8y 37’ 2
I = [ @ [ SREE T L U@

X -2—1;‘ a4, &) (p: + p) + so(p), — p.)]u(p,8)
\

2
= [awP] ) kool (3.28)
is
According to the normalization (3.24), the current can be written
2
I = oy = {5F) = s (3.29)

where ( )4 denotes expectation valuc with respect to a positive-energy
packet. Thus the average current for an arbitrary packet formod of
positive-energy solutions is just the classical group velocity. The
corresponding statoment is familiar in the nonrelativistic Schrédinger
thoory.

Now we come to an important difference in the relativistic theory.
In the Schrddinger theory the volocity oporator appearing in the
current is just p/m and is a constant of the motion for frce particles.
The current is not, however, proportional to the momentumn in the
Dirac theory, and whercas the Ehrenfost relation (1.27) hasshown that

aP= 0 for free-particle motion, the velocity operator ca is not

constant, since [«,/{] »6 0. Indeed in constructing eigenfunctions of
ca we have to include both positive- and negative-cnergy solutions,
since the ecigenvelues of caf are +c¢ whereas |(ca)s| < ¢, according
to (3.20).

! W, Gordon, Z. Physik, 50, 630 (1928).
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Let us now enlarge our considerations to include the negative-
as well as positive-energy solutions in forming a packet from the
complete set of free-particle solutions. We generalize (3.23) to

wed = | e E 3. cpayutp e

+ d*(p,a)u(p,e)etra]  (3.30)

again normalized to unit probability. A short caleulation gives for
the probability

[ dzvtxovn = [ dp Y (bl + dmal =1
F 34
and for the current for such & packet!

7= [ {leb(za.a)l' + ol TE

+i ) bH(=p g )d*(p)ete it —p,)ou(p,s)
15,20

=i Y U-pa)ipae et (pa)otou-pa)|  (331)
EI¥ 14

In addition to the time-independent group velocity there now appear
eross terms between the positive- and negative-energy solutions which
oscillate rapidly in time with frequencies
g&c > g_m.g’ -2 x ")ll m—l
] )

This rapid oscillation, or ssiterbewegunyg,?® is proportional to the ampli-
tude of the negative-encrgy solutions in the packet. We have as
yet no physical interpretation of these solutions, but we may ask
when to expect them to be present in the packet with appreciable
amplitude, The general form of a free-particle solution (3.30) shows
explicitly by the time independence of b(p,s) that a packet initially
formed with positive-energy solutions only does not develop negative-
energy components in the absence of forces. However, a packet
formned to represent an electron somehow localizod initielly in a region

1 Despite a certain inconsistency, we denots hercafter
u(VP' + m,—p,s) w u(—p,)

with similar conventions for expansion coefficients b, d*, eto.
? E. Sohrddinger, Siteber, Preuss, Akad, Wiss. Physik-Math., 34, 418 (1030),
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of finite extent generally includes solutions of both signe of energy.
Consider, for example, the solution

W(r,0,8) = (wdt)~Me-Hriictyl(0) (3.32)

which corresponds to a Gaussian density distribution of half-width ~d
about the origin at time ¢ = 0. At a later time ¢ it can be expressed
as 8 packet (3.30) with the coefficients b and d* fixed by the initial
conditions, viz., at { = 0

/ (21|-h)~ﬁ \/mc z (b(p,8)u(p,s)e® A4 d*(p,8)v(p,s)e—trtih]

w (xd?)~Me-Hridy1(0)

Taking the Fourier transform and using

[ dir grtnstotthh w (2panyg-tten

we find
\/";;2 ;[b(p.a')u(p.a') + d*(=p,(=ps)] = (5:—,)“ e~ (0)
The orthogonality relation (3.11) gives
b(p,s) = \/EF"? (,%’-.)“ e P Mut(p,8)w'(0)

%
d*(—p,s) = \f%— (:'T’,) PNy —p,8)w'(0)

Thus the amplitude d* of the negative-energy solutions in the packet
(3.32) is nonzero. Relative to the positive-energy components b it is
reduced by the ratio of the upper, or small, eomponents of v to the
upper, or large, components of u, that is, by ~pc/(E 4+ me?). This
shows that the negative-energy amplitudea are appreciable for
momenta ~mc. We also soe in (3.33), however, that the packet is
composed predominantly of momenta p & %/d. Therefore, this
packet must be localized in & region of space eomparable with the elec-
tron Compton wavelength, that is, with d ~ #/me, before the negative-
energy solutions enter appreciably.!

1 For a discussion of the position coordinate of a positive-energy Dirac olectron
ses T. D. Nowton and E, P. Wigner, Rev. 2od. Phys,, 21, 400 (1949).

(3.33)
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V(s)

-

b’
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TaF g

Fig. 8-1 Potential barricr confining cloctron of cnergy
E in region I to the loft.

This result can be equally well inferred on dimensional groups
using Ap Ar ~ % without reference to the particular gaussian shape.
In discussing problems and interactions in which the electron is
“spread out” over distances large compared with its Compton wave-
length, we may simply ignore the existence of the uninterpreted
negative-cnergy solutions and hope to obtain physically sensible and
accurate results, This will not work, however, in situations which find
clectrons localized to distances comparable with %/me. The negative-
frequency amplitudes will then be appreeiable, the zitterbewegung
terms in the current important, and indeed we shall find oursclves
beset by paradoxca and dilemmas which defy interpretation within
the framework so far developed by the Dirac theory of an electron.
A colebrated example of these difficultics is the Klein paradox,!
illustrated by the following example,

In order to loealize electrons, we must introduce strong external
forces confining them to the desired region. Suppose, for example, we
want to confine & free clectron of energy £ to region I to the left of
the origin £ = 0 in the one-dimensional potential diagram of I'ig. 3.1.
If the clectron is not to be found more than a distance d to the right
of £ = 0, in region II, then V must rise sharply within an interval
z S d to a height Vo > E so that the solution in II falls off with a
characteristic width €d. This is a8 in the Schrddinger theory, until
the confining length d shrinks to ~#/mc and V, — E increases beyond
med.  To see what happens, let us consider an electrostatic potential
with a sharp boundary as in Fig. 3.2 and caleulate the reflected and
transmitted current for an electron of wave number k incident from
the left with spin up along the 2 direetion. The positive-energy
solutions for the incident and reflected waves in region I may be

10. Klein, Z. Physik, 83, 157 (1621).
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written
1
0
Vo= ae'™|  ckih (3.34)
E + mct
0
1 . 0
0 1
Vit = be~he ckih |+ Ve tte 0
" E + me* ckih
0 E 4+ me?

For the transmitted wave we need the solutions of the Dirac equa-
tion in the presence of & constant external potentinl e = V. These
differ from the free-particle solutions only by the substitution
po = (1/c)(E — Vo), so that in region I1

ol m (F = Vo)t — mict m (E — me? — Vo)(E + me® — Vo)

We therefore write the transmitted wave of positive energy £ > 0 as

1 0
: 1
Vieany = dethe chiky + d' B 0 (3.35)
E - Vo+ me? —chks
0 E = Vo + mct

The amplitudes d and d' are fixed by continuity of the solution at

4V(a)

%

1 I

Py
-5

Fig. 8- Flootrostatio potential idealizod with a sharp bound-
ary, with an incident frec clectron wave of energy E moving to
the right in region 1. For V4 > K + mc? the reflocted our-
rent from the potential oxcoeds the incident one; this is an
example of the Klein paradox.
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the potential boundary as required by eurrent conservation:

a+bmd
-kn E+1nc’
a—> Emd-rd (3.36)

b md =0 (there is no spin flip)

If Vo> 0 and |E — Vo] < me?, the wave number is imaginary,
ky = +1|ks|, and the solution in region Il is a decaying exponential
corresponding to damping in a distance d > %/mec. However, a8 we
inercase the height of the barrier beyond Vi, = E +4 me? in order to
further confine the electron, the transmitted wave becomes oscillatory.
The transmitted and reflected currents may be computed, and we find

oeans 4r et @ (L= 1)y Juam (597

il e T el o R R

Whereas the form of these results reminds us of the analogous pre-
dictions of the Bchrbdinger theory, we must now observe that, by
(3.36) and the above condition Vo > £ + mc?, r < 0, 8o we find in
(3.37) a result contradicting our ordinary reasoning by indicating a
negative transmitted current and a reflected current ezceeding the
incident one. What is the source of a current in region I1 moving left
in IFig. 3.2 into region I in this case of Vo > E 4 mc?? We inereased
the potential height Vo beyond E + me? in attempting to localize the
solution within one Compton wavelength %/me, but ended up with
undamped oscillatory solutions instcad. IHow do we understand
this? Only by understanding and interpreting the ncgative-energy
solutions, It is clear from the packet discussion that they enter
prominently in solutions localized within #/me. It i8 equally clear
from the above caleulation of the currents that our physical pieture
of what i going on also fails at these distances.

We shall tackle and resolve these questions starting in Chap. 6.
Before doing this let us look in the vast, if limited, domain of physieal
problems where the applied forces are weak and smoothly varying on
a scale whose energy unit is mc® and whose distance unit is %/me.
Here woe may expect to find fertile fields for application of the Dirac
equation and theory for positive-energy clectrons.

Problems

1. Dorive (8.11) in a ropresontation-free way directly from the Dirac
equation. .
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2. Prove that (3.9¢) is indepondent of the spocific roprosontation of the Dirnc
spinors.

3. Derive (8.81) for the eurrent in a general packet (3.30).
4. Verify (8.30) as the conditions for ocurront conservation.

8. Find the energy levels of & Dirac particle in a ono-dimensiona! box of depth
Ve and width a.

0. Verify the compietoness rolation
4

we D)D) = = b
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The
Foldy-Wouthuysen

Transformation



1 Introduction

Aside from the negative-energy problem, the Dirac equation appears
to provide a suitable description of the cleetron. It has a sensibl
nonrelativistic limit, and it automatically yiclds the correct magnetie
moment. We now investigate the interaction of the Dirac electron
with prescribed external potentials. In particular, we shall be prie
marily interested in low-energy properties, avoiding the difficultics
associated with the as yet uninterpreted negative-energy solutions,
which arc an essentially relativistic feature. We anticipate from our
discussions of the packet in the preceding chapter that in practice
they play a very minor role in a problem such as the hydrogen atom,
which finds the electron localized in Bohr orbits of radius! 1/am >> 1/m,

We shall see, in fact, that the stationary encrgy levels dedueed
from the Dirac equation for the hydrogen atom are in exceedingly
close agrecement with the observed eigenvalues, However, before
indicating the solution to the cigenvalue problem in the Coulomb
potential, it is instructive to cast the Dirae theory in & form which
displays the different interaction termis between the eleetron and an
applied ficld in & nonrelativistie and easily interpretable form.

We consider, then & systematic procedure deyeloped by Foldy
and Wouthuysen,? namely, a canonieal transformation whigch deconpl
the Dirac equation into two two-component equations: one reduees to
the Pauli deseription in the nonrelativistie limit; the other deseribes
the negative-encrgy states.

2 Free-particle Transformation

As a first illustration of the Foldy-Wouthuysen transformation we con-
gider the Dirae equation for a free particle, most conveniently—for
this purpose—written in hamiltonian form and with the « matrices in
the representation introduced in Eq. (1.17). Wae search for a unita
transformation’ Up which will remove from the equation all operator
such as a which couple the large to the small components. We call

1 Hencoforth we set & = ¢ = 1, The Compton wavolength of the clectron is
1/m = 3.86 X 10~11 om, and the rost enorgy m = 0.511 MeV. The dimensionl
fino-structure constant is a = ¢%/4r & }{g7.

1011 100
0.511 MeV = mem" - mm" -m

in theso units.
’L. L. Foldy and 8. A. Woutlwuyson, Phys. Rev., 78, 20 (1050).

46
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any such operator “odd”; operators which do not couple large and
small components are “even’’; thus e, v, vs, ete., are odd, and 1, 8, ¢,
cte., are even.

Writing Up = ¢+ with S hermitian and not explicitly time-
dependent, the unitary transformation is

v = oy

and t 6:‘{ m gHS[fY m gtiS[Ig~ %Y = 'Y/
H' is to contain no odd operators by econstruction.

Since H = a:p + pm with {a,f} = 0, our problem is quite
analogous to that of attempting to find a unitary transformation
which changes a two-component spin hamiltonian 3¢ = ¢.B, + 0,8,
into a form which contains only even operators (that is, 1 and o,).
Such a transformation is simply a rotation sbout the y axis and the

operator is e*WNah m gHhieedy with tan 6, = B,/B,. This suggests
that a good operator to try in our case would be

¢S m ofn286) m 008 |p|0 + ﬁ‘,';'l.‘.’ gin |p|0

where the right-hand side is cstablished by expansion of the ewential
in powers of 6.
With this choice /I’ beeomes:

o - (eos ploGe) + £572 sin |p|o<p>) (- p + Bm) (eos Ipl6
- &I';'I-P sin |p|0)
- (a-p + Bm) (cos lol @ — 8P sin |p|o)’
|p|
= (a-p + Bm) exp (—28« - pb)
= a - p(cos 2|p|0 — ,4';-} sin 2|p|6) 4 B(m cos 2p|0 + |p| sin 2|p|6)
In order to eliminate the odd operator, we choose

- ¢!
tan 2|p|0 ™
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and the traneformed hamiltonian is
H =g/ m Fp (4.1)

a8 may be vorified with the aid of the triangle conatruction of Fig. 4.1,
The new hamiltonian is just the onc rejected in Chep. 1, with the
important change that now the negative energics are also accepted.
The negative enorgies and four-component wave functions are the
price we must pay in order to have a factorization of H’ in (4.1) intoa
linear Dirac equation,

3 The General Transformation

We turn now to the more general case of an clectron in a prescribed
extornal eloctromagnetic ficld and scarch for the corresponding trans-
formation 8. The hamiltonian is

Heoa:(p—ch)+pm+ ed
=-pm+ 0+ 8 (4.2)

with @ = - (p — ¢A) and § = ¢d; as before, 8O = — 08 and
f8 = 488

The ficlds appearing in (4.2) and hence the hamiltonian itself
mey be time-dependent. In the general case the transformeation S is
algo time-dependent and it is not possible to construct an S which
removes the odd operators from H'’ to all orders, as was achieved in
{(4.1). Therefore, wo content oursclves with a nonrelativistic expansion
of the transformed hamiltonian in 8 power series in 1/m, keeping tcrins
only through order (kinetic oncrgy/m)* and (kinetic onergy)(field
cnergy)/ms,

Jp'em’

P Fig. 4-1 Foldy-Wouthuysen triangle construction.

21ple
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Again we introduce the transformation by
vV omel¥y
finding
6#" _
s—r‘-’w m = H S =S4 + AP Vv

ol
i"g - [e‘" (H - z'gi) e""] V o=y

Since S is cxpanded in powers of 1/m and is therefore “small” in the
ponrelativistic limit, we cxpo.nd the quantity in brackets in a serics
of multiple commutators, usmg the relation!

Thus

evisties = H + i8] + 8V (815,H]) + -
@rlsls CASH) ] 4
Sinco 8 = O(1/m), to the desired order of accuracy we have
0 = H o+ A8, H] = §IS[8,H]) - 3 1S(SIS.H])
+ 2l4 [S,I8,(8,(8,6m]ll — 8 — 5 [S 8+ 2 [S.[S.Sll '

To start constructing S, we consider just the terms through order
unity:

I' m fm + & + 0 + 4[S,6]m 4.3)

We require that the odd term in (4.3) vanish; and taking our cue from
the behavior in the free-particle case, we choose S = —if0/2m.

! This may be verified by considering

FQ) = ¢P2[le~M = z (g;f roo (@)

It follows that

o m (8, Hlo
and thus
' 0 F A -04
= ¢ A(5,(8, « ¢« [S,H] + « ‘]le
from which the ldenmy follows upon setting A = 1 in (a). b l }
[ ]
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We then find, to the order of accuracy desired,

AS.H] = —0 + 2% [0,8] + = get

# got 1 1,
FISISHN = = 5 — 25 0,10,8] — 55 0

3| (SIS IS,HI] = e_m“‘ﬂe
,lS (5,(8,(8,1]]]] = »——

s+'ﬁ°‘

— 318,81 = — g1 10,0)
Collecting everything together,
' - 1 R
1" =8 (m+ g 8m,)+s g [0l08ll - g3 (0]

+ 2 [0,8] - + ‘” -gm+ 6+ (4.4)

The odd terms now appear in (4.4) only in order 1/m. To reduco
them furthor, we apply & second Foldy-Wouthuysen transformation
using the same prescription:

! - :_'. ’ 18 180
8 om O ( 7 108 = 3m’ + 2m)

Under this transformation we find

H' = gis’ (H’ - igl)e“" = fm + & + B [0 8+ 5= 'Bo'
- ﬂm + 6' + 0"
where ©” is now O(1/m3%). Finally, by a third canonical transformation

—180"

S m
m
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this term may also be climinated in the same way, the end result being

H" = ¢is" (H" - .gt) 18" = fm + &

o! o* 1 g .
- ﬂ(m + om rﬂl') + 8 - W[Q,[G,S]] ~ 8 [0,0]
Evaluating the operator products to the desired order of accuracy, we

find

O _(a-(p—eA)) _(p—eA) ¢
2m 2m 2m 2m

¢*B
1 - . . Y
8—-"',([0,8]-{-‘10)-ge—-m.(—m~7¢—w-A)-8L-:‘.a-E
[G,S%;ﬂn-E]-g%![a-p,a-E]
-5::—"’2&;“,-( al‘ + d EXp
-8——,dwE+8 5 90° curlE+ ,d ‘Exp

and thus the reduced hamiltonian is to this order

Hlu-p(m_‘_(P-CA)’ p.’)-{-e‘b-eé%ﬂd'n

2m

-g%,d-curlE-E%-,d-Exp— divE (4.5)

8 Rom?
The individual terms in (4.5) have a direct physical interprota-
tion. The terms in tho first bracket give the expansion of

V{p — AV + mb

to the dcsired order, showing the relativistic mass increase. The
second and third terms are tho clectrostatic and magnetie dipole
encrgics. The noxt pair of terms which taken together are hermitian
comprise the spin-orbit cnergy, and they have a very familiar form
in a spherically symmetrie static potential. In this case curl E = 0,

= 1V

1oV
d‘EXp-—;—a-;d°l'Xp-——"—.";d -L

and this term reduces to

/]
Hylgeoniy = Zg'j % "é‘—: dé'L (4.6)
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Equation (4.6) is in agreemont with the classical result obtained by
considering the magnetic field B’ = ~v X E experienced by the mov-
ing electron. The interaction energy one would expect is thus

—._’_d.B'- e

2m gm ' (P X E)

However, this is reduced by a factor of 2 owing to the Thomas pre-
cession offect and indicates that the orbital moment of the electron
has the standard gyromagnetic ratio of g, = 1.

The last term—known as the Darwin term—may be attributed to
the zitterbewogung. Because the electron coordinate fluctuates.over
distances &r = 1/m, it sces 8 somewhat smeared out Coulomb poten-
tial; the corroection is

V) = (Ve + 1) — (v = (or S + 2 g bty 2

Lispwwa -l o
S 4 VIV o o, Y 4.7

in qualitative accord with the sign, form, and magnitude of the Darwin
term. '

4 The Ilydrogen Atom! ’

We turn to & discussion of the bound-state solutions of the Dirac
equation, considering in particuler the energy levels of the clectron
in & Coulomb field. For this problem the Dirac equation is

HYymia-p+pm+ V()Y = EY (4.8)

with V = —Za/r, In order to separate variables, wo tako advantage
of the fact that the angular momentum of a particle in a central field
is conserved. Evidently J = L + S = r X p 4 144 commutes with
the hamiltonian (4.8) and therefore we mey construct simultancous
eigenfunctions of /I, J%, and J,. To do this, we call on experience
with the Psuli matrices, observing that in the representation of
'The eigensolutions in the Coulomib potential were first given by C. C.
Darwin, Proc. Roy. Soc. (London), A118, 654 (1928), and W. Gordon, Z. Phyerk,
48,11 (1928). For a complete discussion and references of the atomic applications
of the Dirac equation see H. A. Bethe and E. E. Salpeter, “Quantum Mechanics
“of One- and Two-electron Atoms,” Academie Press Inc, New York, 1057, and
M. E. Rose, ‘‘Relativistic Electron Theory,” John Wiley & Sons, Inc., New York,
1901. - —eeemt—
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o= 5 ¢]

is diagonal in terms of 2 X 2 Pauli spin matrices. Therefore, if we
construct ¢ in terms of two-component spinors

v=[z]

the angular separation for the solutions of ¢ and x is precisely that
of the Pauli two-component theory. The two-component angular
solutions are eigenfunctions of J3, J,, L3, and 8% and are of two typea:

Chap. 3

Forj m [ 4 4 .
‘_l+%+myn—n
(2] 2l+1 ! 4.9
Pim ™ \[m”y--m (4.9a)
2+1 !
Forjmil—14

’l +-m yrH
- 20+ 1
) - 4.90
(27 f_‘ T % +m y..-o-u ( )
2041

The spherical harmonics here are written with the convention
Y}, m (=)"Y._m and the solution ¢t exists only for ! > 0. The
two solutions above satisfy the eigenvalue equations

T = 5+ 1em

L. dpld = (J2 = I} = )i
- - (l + “)¢jn

‘_’—a+1>-—(j+m i=l+
H= G+ =i

For a given j they are of opposite parity, since their | values differ
by 1, and can be formed from each other by a scalar operator of edd
parity. This operator will be & linear combination of Y7(6,¢) since
it must change the ! value by 1, and is therefore proportional to r.
Dotting with ¢, the only pseudovector at our disposal, we form the-

and

with
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pseudoscalar ¢ - r/r and find with the above sign convention
Ofr) - 1—— ofn (4.10)

The general solution to the eentral field problem for & given jm is
G, 07
—L g 4 —L o2
r r
r- (+)

Vim ™
g i_'z (-)+
r

We may finally break this down into two solutions each of definite
parity. - Since V(r) is invariant under reflection of coordinates, we
know that the energy eigenfunctions can be classificd into parity
eigenstates along with (j,m); and thercforec we form the even and
edd solutions, which have the property under the transformation
X = —x

V(z') = BY(z) = Ly(z') (4.11)
These are given by
!Uu
- ¢}n
Vim = Fud or (4.12)
—_ ¢;.
ror

where as 8 common notation we have introdueed

G i=l+4 Fj- jm=il+4
Gy - . Fiym - ,
Gy J=1l-14% Fy jmil-1
; ‘«»rm i=l+Y
¢jn - — .
Vm J=ml-M%
and have made use of (4.10). The parity of these solutions is (—)*

by the convention (4.11). With the aid of the following identities we
can now find the radial equations following from (4.8):

"‘Pf‘(':)w'-'d—'ar(d'rd'p)f(—')«’}..
- s 1 f(r)
(‘. 2 tia L) an

’-ﬂ

[i:rj(:) il + )f(')]( - )«os..
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The radial equations are then
(E - m+ﬁ‘)0.,(r) - - 2D 2 p)

(4.13)
(B+m+2)rn = + L0 4 200
The bound-state solutions of these equations may be found by standard
methods;! we quote only some of the results.
The energy eigenvalucs are

Za )-#
Eymm l+( - —)] (4.14)
[ n— G+ X +Vi+1) -2
where the quantum number n m 1, 2, . , , , o is a positive integer

and the angular-momentum eigenvalues range from 0 to j + 34 < n,
with the restriction 0 ! £ n — 1. Expanding (4.14) in powers of
(Za)?, we seo that n corresponds to the principal quantum number of
the nonrelativistic theory

E. ™ m ’l - %%‘;" 1 LZ.;?X (J_-I-l_}; 4")] * 0((Z°‘)‘)l (4.15)

The ground-state energy is, with n = 1, 7 = 14,
E, m mA1= 2% xm —WZ%'m — YZ'%'m +

The corresponding spin-up and spin-down normalized eigenfunctions
are

V=l jmls, 1 (r, 0'¢)

1 -
- 0
-gzln_za)r _..l.'_-I;‘_y__. 1g=mZar '.:(_l_._—") 050
Vi I+ 29) (2mZar)r e~ . Za ) c
W=7 . ot
T 8in 0 |
Vel jolh, l (riai¢)
0 m
1
_ (@mZa)¥ f L4900 705 r1g-nTer S0 =) i pmiv
Vér 2r(1+%)(m ar)Tle Za
————_'(l ~ 7)- cos @
Za .

! Darwin, Gordon, Bethe and Salpeter, and Rose, op. cit.
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with v = v/T = Z%*. In the nonrelativistic limit y— 1 and
(1 = 9)/Za— 0, and they reduce to the 8chrédinger wave functions
multiplied by two-component Pauli spinors. In the relativistic
case we soo that as r— 0, ¥ exhibits a mild singularity of order
(2mZar)~®'a"!? which becomes important only at distances

e A a?

mZo

For Za 2 1, v is imaginary and the solutions exhibit an oscillatory
Yehavior reminiscent of that found in the Klein paradox. In this
case there is no longer a gap between the positive- and negative-encrgy
spectra, and again we lack a physical interpretation of the solution.

In classifying the energy levels (4.14) it is customary to denote
them by their nonrelativistic labels, that is, by the orbital angular
momentum ! appearing in ¥4, and by the total 7. In the following
table we list a few of the first terms:

WSy |1 0 3 mA1-2a

Wy |2 1 3 %'\/4-2-..'

The 28y and 2P, states arc degencrate, being the two cigenstates
of opposite parity corresponding to the same n and j. The 2Py
state is higher in energy than the 2Py state; the energy diffcrence,
[m(Za)4/32](1 + 0(Zax)? 4 - - ), is the fine-structure splitting due to
the spin-orbit interaction, (4.6). In general, the state of larger j,
for a given n, lies higher in energy according to (4.15).

How do these predictions agree with observations for the H atom?
Prior to 1047 the agreement was completely satisfactory after the
above predictions were modified to take into account the hyperfine
splitting of each level due to coupling between the electron and proton
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Lamb shift

11 . (triplet)
18
=x_ (singlat) ]—Hyporﬂm splitting
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P

Fig. 4-2 Low-lying nergy levels of atomic hydrogen. The dlagram is
not drawn to ncale,

spins. In 1947 the I amb-Retherford measurements! of the H-atom
fine structure confirmed an earlier suspicion of a shift of the 28, levels
upward rolative to the 2Py lines. This “Lamnb shift,” breaking the
degencracy of levels with the same n and j but differing [, arises
from the interaction of the electrons with the fluctuations of the
quantized radiation field. Both the hyperfine structurs splitting
and the Lamb shift have been measured and calculated to a very high
precision with good agreement.?

The hyperfine structure results from the interaction of the proton
with the electron magnetic moment.? This has the effect of splitting
all lines into doublets corresponding to the two possible states of
total angular momentum compounded from the j of the electron

1W, E. Lamb, Jr., and R. C, Retherford, Phys. Rev., 73, 241 (1957). For
reforcnces to subsoquent work sco Bethe and Balpeter, op. cit.; soc also W, E,
Lamb, Jr.,, R pts. Progr. Phys., 14, 19 (1051).

* For a reviow of the ourrent situation, see R. P. Foynman, Proc. 1901 Sclvay
Con/., Intorscience, New York, 1062.

LE. Fermi, Z. Phyaik, 60, 320 (1930); sce also Bethe and Salpoter, op. cil.,
p. 163.
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systom and the half-integer spin of the proton. Let us compute the
magnitude of this effect for s states. For our purpose a nonrelativistio
description of the electron suffices. The interaction is of the form

’- e .
1 +%-,1na3

1
and B =g v [ d o)V x A x V) p—

Here I is the proton spin operator (I, = +14) and p(r’) is the mag-
netic moment density of the proton, owing to the fact it is not g
point particle. Using the relations v x (I X V) = IV? — (I ¥)¥
and taking the angular average for spherically symmetric wave func-
tions so that
V.'V; = %&;V’
we find
2 8 , . 1 2
B = Sangay | 4% oMV (i) = S 0n oy 1ot

The energy shift is then given, in nonrelativistic theory, by

2 ﬂp" d 1 { / d¥ w:‘(r)p(f)%(")

AE, = (V’nHIV’n) - 33ImM

~ %—""—a I|a(O)?

-%ma [:g,zn‘:’(m—)d I]

+34 triplet states
-3 singlet state

with

g:] m

The splitting 8, of the nth s-state lovel is thus
n STt 30 T \ M,

and is reduced by the mass ratio m/M, reclative to the fine structure.
Welton! has given a simple qualitative description of the Lamb

shift by considering the interaction of an electron, treated nonrela-

tivistically, with the vacuum fluctuations of the olectromagnetic field.

Since the dynamics of a normal mode of the electromagnetic field is

equivalent to that of a harmonic oscillator, each mode upon quantiza-

tion acquires a zero-point energy of w/2. As a result of this quantum
1'T. A. Welton, Phys. Rev., 74, 1157 (1948).
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effect there arc now fluctuating clectromagnetic fields even when no
oxtornal ficlds are applied. Although the avorage field strengths
are zero, their mean-square values are nonvanishing, and this leads to a
mean-square fluctuation in tho electron’s position coordinate due to its
coupling with the field. 1t is the amplitude of this jiggling of a bound
olectron in the hydrogen atom that we ostimate. It implies, as we
saw in our discussion of the origin of the Darwin term, (4.7), an
additional interaction energy 16{(8r)%)V?V from the smearing out of
the Coulomb potential V(r) secen by the clectron. To lowest ordor,
tho change in the energy level for the electron due to this is then

AE,(Lamb) = 3§((3r)) Y27V (r)¥s d*r
= 2 Zo{(t)HYa(O) (4.16)

To estimate ((§r)?), wo treat the electron classically and non-
relativistically as a charged particle. Its equation of motion for

oscillation about its equilibrium coordinate in the atom is 8t = %E,

whore E is the fluctuating electromagnetic field. For the wth Fourior
amplitude we have

- — eE,
éra Py

and hence for its mean-square amplitude

() = KBS

and (Gr) = f L &y @4.17)

To calculate the mean-aquare ficld strength, we consider the total
vacuum ficld enorgy

1 . v !
Efd'z(E + BY) ‘2122“’

where the two values of A rofer to the two states of transverse polariza-
tion and the sum extonds over all modes in a large box of volume

L'-/d'z Z-;(?%-,fdak

Since [ d’xz E* = [ d'z B? and w = |k| for free electromagnetic waves,
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tho mean-square field strength in vacuo is
- — - . -
(E?) /Fd:c 2(2),[“5 /wdw [ de (B2

Inserting in (4.17), we find

3
((ry = oo [ % (4.18)
where the frequency integral extends from 0 to . Bocause of the
crudity of our approximate treatment of the clectron, the integral
divergoes at both ends. This is not the case for an accurate relativistic
treatmont of the clectron localized in a hydrogen atom. Wavelengths
larger than the Bohr radius ~(Zam)-! will not be effective, since thoro
must be a minimum frequency for the induced oscillations correspond-
ing to this typical atomic size; thorefore, wmin ~ mZa. Theroisalsoa
high-frequency cutoff at distances ~ the electron Compton wave-
length 1/m coming from the relativistic structure of the electron.
This structure corresponding to the zitterbewegung amplitude suggests
that frequencies higher than wma.x ~ m will not be cffective in jiggling
the electron. Honce we approximate [ dw/w~In (1/Z«) and find
for the mean-square amplitude of the oscillations in the vacuum ficld,

by (4.18),
(&) = (?’;‘i‘ In ‘a) G‘) @1
The resulting energy shift is by (4.16)

o, = 22 (1)1 L o

8 Za®
[-hr "‘: (ll )] (3a’m) i
£ 1,000 me/sec forn = 2, Z = 1, } = 0

This accounts for most of the measured shift of the 25y lovel in the
hydrogen atom; for the p and higher I states the shifts are not pre-
cisely zero but are much smaller because the wave functione at the
origin are zero. By way of comparison with the ordinary fine struc-
ture wo see by looking back at the hamiltonian (4.5) that the ratio of
the Lamb torm to the Darwin term is (8a/3r)(In (1/Za)] corresponding
to the ratio of the mean-square fluctuation amplitude (4.19) to the
gitterbewegung structure o~(1/m)3,
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Problems

1. Derive (4.10).

2. The Dirac equation describing the interaction of a proton or neutron with an
applied electromagnctic field will have an additional magnetic moment internction
reprosenting their observed anomalous magnetic momentas:

(fV - A + 4'—'::';“ oufi*r — M() vE) =0

where

- pn = D
e dzy Ar ozy ar

represents the field strengths as defined in Appondix 1.

a. For the proton, s = p, e, = |¢|; for the neutron ¢ m n, , = (0. Verify that the
choice of x;, = 1.70 and x4, = =1.01 corresponds to the observed magnetic moments
and check that the additional interaction doee not disturb the Lorontz covariance
of the equntion. Check also that the Dirac haniltonian is hermitian and that
probability is conserved in the prescnce of the additional internction.

b. Make a Foldy-Wouthuysen transformation for the ncutron, keeping torms to
the accuracy of (4.5), and give a physical intorpretation of the individual terme.
Calculate the cross ecction for the scattering of a slow neutron by an applied
clectrostatic field. How might this be nicasurcd? ([See L. L. Foldy, Rev. Mod.
Phys., 80, 471 (1068).] .

3. Solve for the exact energy eigenvalues and eigenfunctions of a Dirac clootron in
a uniform static magnetic fleld. [Seo L. 1). Hufl, Phys. Rev,, 88, 501 (1931);
M. H. Johnson and B, A. Lippman, Phys. Rev., 77, 702 (1060).]

4. Caleulatoe to loweat order in af the first-order Zceman cffect for an electron in a
hydrogen atom. If the electron gyromagnetic ratio diffors from g = 2, how are the
Zoeman levels altered (to first order in the difference g — 2)7

5. Disouss the procession of the spin of a charged Dirac particle with an anomalous
magnetic moment « in an applied atatic magnetic ficld. Show in particular that
the difference in the spin and orbital precession froquenciee is proportiona! to
¢ = 2,or x. How doee it depend upon the mass of the particle? Boe:

H. A. Tolhoek and 8. R. de Groot, Physica, 17, 17 (1061).

K. M. Caso, Phys. Rev., 106, 1731, (1957).

H. Mendlowits and IX. M. Case, Phys. Rev., 97, 33 (1955).

M. Carrassl, Nuovo Cimento, 7, 524 (1068),

V. Bargmann, L. Michel, and V. L, Tologdi, Phys. Rev. Lelters, 2, 435 (1969).
Louisell, Pidd, and Crane, Phys. Rev., 94, 7 (1954).

Sohupp, Pidd, and Crane, Phys. Rev,, 121, 1 (1961).

Charpak, Farley, Garwin, Muller, Bens, Telegdi, and Zichichi, Phys. Rev. Letters, 6,
128 (1901.)
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6. Construct an additional interaction torm to represent a possible anomalous eleo.
tric dipole moment of a Dirac particle. What happens to the parity transforma.
tion? What is the effect of such a torm on the hydrogen-atom cnergy lovelsp
{8ee G. Feinberg, PAys. Rev., 113, 1637 (1988); E. E. Balpeter, Phys. K ., 113,
1642 (1960).]

7. Owing to meson effects (disoussed in Chap. 10), the proton charge is distributed
over a small rogion of spatial extent ~10-1 em. Compute the cffeot on the
hydrogen-atom encrgy lovels of such a charge distribution with moan square
radius r @ 0.8 X 10~P cm. Compare tho result with the Lamb shift.
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1 The Problem of Negative-energy Solutions

The negative-energy solutions of the Dirae equation have been
touched on in some of our earlicr discussions, and their presence in the
construction of & localized packet, for example, has been computed,
However, we have so far managed to avoid coming to grips with the
problems of intorpreting thom and of understanding their implica-
tions.! Let us now face up to these questions.

By thoir very cxistence the ncgative-energy solutions require a
maasive reinterpretation of the Dirac theory in order to provent atomio
electrons from making radiative transitions into ncgative-energy
states and cascading down to oblivion. This is no problem if we come
pletely noglect interaction of the electrons with the radiation field,
We may then calculato stationary solutions as in the preceding chapte
and find energy eigenvalues and transition amplitudes which agree in
general very well with experiment. Ilowever, the problem of keeping
the olectron from tumbling into & negative-encrgy state cxists in
principle, a8 well as in practice, if we wish to calculate atomic properties
to such great accuracy as requires inclusion of the radiation interaction.
The transition rate for an electron in the ground state of a hydrogen
atom to fall into a negative-cnorgy state may be calculated by apply-
ing scmiclassical radintion theory and using the wave functions found
in Chap. 4. Tho rate for the electron to make a transition into the
onergy interval —mc? to —2me? is

~ 2a® mc? 8 apc-!
= T::lO sac

and it blows up if all the ncgative-cnergy states are included. This i
clearly nonsensel

Wo must find some treatment of the negative-onergy states other
than that suggosted by the one-particle Schrédinger theory if the Dirac
equation is to survive. Dirac did this for us in 1930, He formulated
the ““hole theory,” which resolves the dilemma posed by the nogative-
onergy solutions simply by filling up the ncgative-enorgy lovels with
olectrons, in accord with the Pauli exclusion principle. The vacuum
state is then one with all nogative-encrgy electron lovels filled and all
positive-enorgy levels empty. The stability of the hydrogen-atom
ground state, for example, is now assured, since no more electrons ean
be accommodated in the ncgative-energy sea by the Pauli principle.

There are mnany consequonces of this ncw assumption of a filled

1P, A. M. Dirac, Proc. Roy. Soc. (London), A126, 360 (1930). Secalso J. R.
Oppenheimer, Phys. Rev., 86, 939 (1930).
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Unoccupled Electron
states

Fig. 8-1 Tair production: a necgative-
cncrgy clectron is excited to a positive-

encrgy state by radiation. Radletion

Occupled states Hels

sce of negative-enorgy electrons. It is possible for a nogative-cnergy
electron to absorb radiation and be excited into a positive-encrgy
state, as shown schematically in Fig. 6.1. If this occurs, we observe
an electron of charge —|e] and energy 4 E and in addition a hole in
the negative-enorgy sea. The hole registers the absence of an electron
of charge — |¢| and cnergy — E and would be interpreted by an observer
relative to the vacuum as the presenee of a particle of charge 4 |¢| and
energy +I; that is, the positron. This ia the basis of the hole-theory
interpretation of pair production. Correspondingly, & hole in the
negative-energy sea, or a positron, is a trap for a positive-energy
electron and leads to electron-position pair annihilation with emission
of radiation, as shown in Fig. 5.2.

We recognize that with the hole theory we transit to a many-
particlo theory describing particles of both signs of charge. No longer
does the wave function have the simple probability interpretation of
the one-particle theory, since it nust now also record the production
or annihilation of electron-positron pairs,

Recall, however, that the Klein-Gordon equation was discarded
and the development of the Dirac equation was motivated by the

Electron

Fig. 5-#2 Dair annihilation: a positive-
energy clectron falls into a nogative-energy
hole emitting radiation.

Radlation
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desire to establish a one-particle theory, Thorefore, we may ask,
why not abandon the Dirac equation too? We are reluctant to
discard it for the simple rcason that by now we have uncovered an
iinpressive body of “truth” in the Dirac equation—it predicts the
corroct hydrogen-atoin energy spectrum and g value of the electron to
high accuracy. Moroover, positrons as first predicted by the theory
have been observed.

Thus the historical path of reasoning mapped out originally by
Dirac has led to the desired cquation for an electron, though we have
now reinterpreted the theory and thereby renounced the motivation
that started the development. The history of physics has numerous
other examples of this pattern of progress. Therefore, we shall retain
the Dirac equation and the hole-theory interpretation and reject
instead the one-particle probability interpretation which we originally
set out to achieve. Wo note here that it should also be possible to
return to the second-order Klein-Gordon equation and rescue it by a
suitable reinterpretation of the wave function there too.

The advantage of the Dirac over the Klein-Gordon equation is
that it correctly describes electrons of spin 14 withg = 2, The Klein-
Gordon equation applies for spinless particles such as pions, as will be
discussed in Chap. 9. For both equations we have the invariant,
quadratic energy-nomentum relation for free particles p,p* = m3,
In both cases we must rcinterpret the negative-energy solutions in
order to sccure stable ground states, and this lcads unavoidably to
the oxistence of antiparticles as well as particles. The particles are
described by positive-energy solutione—for the Dirae equation, elec-
trons of mass m and charge —|e|; the antiparticles are described by
the reinterpreted negative-onergy solutions and, in the presont
instance, are positrons of mass m and charge +|e|.

2 Charge Conjugation

There thus emerges froin the hole theory a fundamental new sym-
metry in naturc: to cach particle there is an antiparticle and, in par-
ticular, the oxistence of electrons implics the existence of positrons,
We seek now a forinal expression of this syminetry which we use to
formn directly the wave function of & positron from that of the missing
negative-energy electron to which it corresponds.

By our physical picture a hole in the negative-energy sea record-
ing the abs nce of an energy — E(E > 0), and the absence of a charge e
(for an elcciron ¢ < 0), is equivalent to the presence of a positron of
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positive energy +E and charge —e., Wo thus have a one-to-one
correspondenee between the negative-energy solutions of the Dirac
equation

GV —ed —myy =0 (5.1)

and the positron eigenfunctions, Since by their interpretation
positrons appear a8 positively charged electrons, the positron wave
function y, will be a positive-energy solution of the equation

(i + e — m)y. = 0 (5.2)

Conversely and with historical hindsight we could equally well
start with the Dirac equation (5.2) for positrons. N owhere in our con-
sidorations has the sign of the charge e played an essontial role. Elec-
trons will then emerge from the hole theory reinterpretation as the
absence of the negative-cncrgy solutions of (5.2). We have thereby
a one-to-one correspondence between solutions of (5.1) and (5.2) for
both signs of charge and are led to construct an operator transforming
the two equations into cach other.

First wo observe that it is necessary to change the rclative sign
between the two terms 4% and A in transforming from (5.1) to (5.2).
We aceomnplish this most readily simply by taking the complex
conjugate: £3/9x* = —(id/02%)* and A, = +A}. Upon doing this,
we find that (5.1) becomes

) .
(i + ea) » +m]ve =0 (53)
If we can now find a nonsingular mnatrix, denoted Cv®, with the algebra
(CY)r " (CrO)~! = —o* (5.4)

we shall have the desired form

(19 + e — m)(Cy%¥*) = 0
with
CyW* = CYT =y, (5.5)

the positron wave function. That thero exists such a matrix C may be
verified by explicit construction, Let us exhibit it in our represcnta-
tion of (2.6), according to which 4%y#'y® m 447 go that (5.4) becomes
Cy*TC-' m —as or

C—l.yuc - _T'T

In this representation C must commute with v, and ¥, and anti-
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commute with 4o and 44, and a suitable choice is
Cumiyy'm —C-lm —=Clm (T (5.6)

It suffices to be able to construct a matrix C in any given representa~-
tion; the unitary transformation to any other one when applied to this
C will give a matrix appropriate to the new representation. We note
also that there is a phase arbitrariness in our definition of C in (5.6);
the similar circumstance for the parity transformation was discussed
earlicr. In the present considerations the phase of a wave function is
of no physical intcrest and we do not pursue this question.

Let usexaminein detail what the transformationy, = CyT = g43*
does to a negative-energy free-particle eigenfunction. TFor a negative-
energy clectron at rest with spin down we have the wave function

0
A 1 0 gtim
@m0
1
The corresponding positron solution is then
0 0 0 -—i|fo
. . ] O 0 $ 010 1
L A b — im
w¥E=tl o i o oflo|@mT
-4 0 0 0JL1
1
10
- '(-2-;'),, 0 g™ m .7
0

That is, the absence of o spin-down negative-energy electron at rest is
equivalent to the presence of a spin-up positive-energy positron at rest.
In the ficld-free case there is no difference between an clectron and
positron, and we ace by (5.7) that the transformation (5.5) has formed
just another clectron solution.

] Applying the same transformation to an arbitrary spin-momen-
tum cigenstate, we find, using [C,ys) = 0 and 4] = 45 = 4,

Ve = CUT = Cyop* = Cyo (" s "’)' (1 "'2"")' v

2m

- (er"z-lm- m) (l —2%0") b

- (_—e2 "-:- m) (1 -I; -m) v (5.8)
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Again wo see that the operation of (take the complex conjugate) X
(matrix multiplication with Cyo = 44?) has yielded fromn a negative-
energy solution described by four-momentum p, and polarization s, a
positive-energy solution described by the same p, and 8,. In terms of
free-particle spinors, (5.5) reads

clO(!.l)v(p") - C’a"(p,ﬂ)
c‘“""ﬂ(?,‘) - CDT(P,‘)

showing that v(p,s) and u(p,s) are charge-conjugate spinors, within a
phase factor ¢(p,s).
Recall that the solutions were constructed such that

Po=+Ap+mi=mE>O

Also notice that s does not change sign under charge conjugation but
the spin does reverse as we saw in (5.7). As discussed in Sec. 3.2, this
difference lics in the fact that the spin-projection operator has the forin
(1 4 ¢4 - 8/2) in the rest system where 8» = (0,8), and the sign change
eones from the v mnatrix.

The operator in (5.5) explicitly constructs the wave function of a
positron. We may develop from it an invariance operation for the
Dirac equation by defining the additional operator which changes the
sign of the electromagnetic field. Then the sequence of instructions
(1) take complex conjugate, (2) multiply by Cv,, and (3) replace all
A, by — A, is a formal symmetry operation of the Dirac thcory. It
transforms Eq. (5.1) [(5.2)] for the elcctron [positron] into the same
equation for the positron [electron] and is called the charge conjuge-
tion transformation, denoted by ©. The physical contont of the
transfornation of charge conjugation is that for each physically
realizable state containing an electron in a potential A,.(z) there cor-
responds a physically realizable state of a positron in the potential
—A,(z). Thus € changes spin-up elcctrons of positive encrgy to
spin-up positrons of positive encrgy by transforining a positive-energy
solution of (6.1) to a negative-cncrgy solution of the same equation,
that is, to a positron according to the hole theory.

That the dynamics of a positron in a field — A4, is exactly the
same ad that of an electron in a field 4- A, is not at all surprising to us
from classical considerations. The surprising and new result to which
we have been led by the hole theory is that if there exist electrons of
mases m and charge e, there necessarily must also exist pomtrons of the
same mass m but of opposite charge —e.
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It is indeed one of the strongest votes of confidence in at least
the partial validity of relativistic quantum theory that electrons of
both signs of charge and of the saine mass are observed in nature.

Vacuum Polarization

The hole theory, while removing the noegative-energy difficulty, leads
to now fundamental barriers to be surmounted and new physical
predictions to be verified by oxperiment. Ior example, consider the
influcnce of the vacuum on the definition of the charge of the clectron
and upon the interaction between two charges. A positive-energy
electron electrostatically repels the clectrons in the negativo-energy
sea. It thoreby polarizes the vacuum in its vicinity, and the charge
density of the clectron, po(r), plus polarized vacuum, p,(r), measured
relative to the vacuum, is schematically shown in Fig. 5.3. The
charge of the electron as seen by & macroscopic applied field, or by a
test charge at a large distance, is [ d®r[po(r) + py(r)] = 6, the “physi-
cal” charge. However, for a test charge probing at distances ro < R,
the apparent charge is more negative until, as ro— 0, the charge
becomes [ d*r po(r) = &, the “bare” charge, with |eo] > |e|]. This
phenomenon is observed in the hydrogen-atom spectrum. The elec-
tronic & levels are lowered relative to those with angular momentum
1 » 0, since the { = 0 wave functions bring clcctrons close to the
protons. This effcet of vacuum polarization, calculated in Chap. 8,
reduces the Lamb shift slightly. We also take up there the question
of how to connect the ‘‘bare” charge of an isolated electron with its
obsorved value at large distances.

(AY) PotP,

R R o

/

Fig. 86-8 Effeot of vacuum polarization on the elestron’s charge
deneity. po is the charge density of the *‘bare” electron and p, that
of the induced polarization ‘‘cloud” of virtual elestron-positron palrs.
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Another question arises from the hole thcory: What is the mean-
ing of the infinite ncgative total charge in the vacuum as we have
defined it? For the present we sidestep this question, remarking that
there is no preferred dircetion in which an electric ficld from such a
distribution could point. Only inhomogeneitics in this distribution
due to vacuum polarization are observable.?

4 Timo Roversal and Other Symmeotrics

Let us turn now to the parity and the time-rcversal transformations.
Theso are symmetry operations which are not included in the discus-
sion of proper Lorentz invariance of the theory. The additional sym-
metry of electromagnetic gauge invariance is evident from the form
of the coupling, p, — eA,, as remarked in Chap. 1. 1t is verified in
just the same way as in the Schrédinger theory.

Recall that the parity, or space reflection, transformation was
found in Sec. 2.3 to be expressed by

Py(x,t) m '(x',1) = g*y0(x,0) forx' m —x (56.9)

V' (x',t) is readily interpreted as the space-reflected eolution. For
plane-wave solutions the parity transformation (5.9) inverts the
momenta and lcaves the spins unchanged as we classically cxpect.
This transformation on the wave function coupled with the familiar
one for the voctor potentials, exproessing their scalar and vector nature

Pd(x,l) = &'(x',l) = ®(x,l)
PA(x,f) = A’(x',1) m —A(x,0) forx' m —x

leaves the Dirac equation and all physical observables unchanged.
The physical content of the parity invariance of the Dirac theory
may be expressed simply in terms of a sct of observations on a state
described by a wave function y(x,f). We record these observations
on motion-picture film, aiming our camera at a plane mirror forming
an image of the cxperimental setup. We say that the dynamics
underlying our observations is invariant under parity if thc movie we
make of the mirror image describes a sequence of physically realizable
observations, that is, if we cannot tcll from the sequence of eventa
observed in the film whether we are looking at & mirror image or not.
For this purpose a mirror image is all that need be considered, although

1 This question is discussed again in J. D. Bjorken and 8. D. Drell, “Relativis-
tic Quantum Ficlds,” MoGraw-Hill Book Company, Inc., in prese.

(5.10)
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it is not identical with spatial reflection. A mirror inverts only the
coordinates normal to its plane; this must be followed by a rotation
through » about the normal for the parity transformation. Such a
rotation is already included, however, in our discussion of proper
Lorentz invariance.

Turning next to time-rcversal invariance, its physical content
may be illustrated again in terms of the motion-picture film which we
use to record & sct of observations on a state described by y(z). Let
us now run the movie backward. We say that the dynamics under-
lying the set of observations is invariant under time reversal if the
backward-run movie describes a set of physically realizable obscrva-
tions. This invariance will be guaranteed if we may changc ¢ to
' m —{and carry out a transformation which reproduces the form of
the Dirac equation with the same rules for its interpretation. The
transformed wave function will describe the original elcetron running
backward in time and will be physically realizable, since it satisfics the
Dirac equation.

To construct the desired time-reversal transformation, we write
the Dirac equation in hamiltonian form

i‘i‘%‘ﬁl - Iy = [+ (—iV — cA) + Bm + eBl(x,0) (5.11)

and dcfine the transformation 3 such that if ¢ = —¢, ¢/(t') = (1),
Then (5.11) becomes!

a—"t. G (F) = —3HIW(1) (5.12)

and time-reversal invariance requires that cither 3H()3~! = — H(('), or
53 m =4

To inveatigate the behavior of  under 3, we must specify the behavior
of the elecctromagnetic potentials A, when we let ¢ = —¢, Since A
is generatod by currents which reverse sign when the scnse of time is
roversed, we require

A'(t') = —A(D)

Similarly,

(') = +0(1) (5.13)
since it is generated by charges; also ¥’ = 4 ¥, sincex’ = +x. To
restore (5.12) to the original form, it is clear then that transformations
with 3 « « « 3! must change ¢ to —1; hence, 3 may be written in the

1 The inessontinl dependenoe on x is suppressed here,



theory 3

form (take complex conjugate) X (multiply afterward by a 4 X 4
constant matrix T):

V() = TY*(t) (5.14)
This gives
i20D o (=T T =iV = ene)]
+ (TB*T""Y)n + &' (1) W' (1)
In our ususal representation (1.17), this means T must commute with
a3 and 8 and anticommute with a; and as; thus
T = —‘ia)aa - +1"1l7’ (5.15)

is eatisfactory; the phase factor is again arbitrary.

To show that the transformation 3 corresponds to what we mean
classically by time reversal, we apply (5.14) and (5.15) to a plane-wave
solution for a free particle of positive energy:

5 (1 ;;n m) (1 -I-2 m) v,

-7 (’-’—"'l‘) -7 (1—"-'121‘—‘3) T-/(x,)

2m

- (”' + "‘) (‘ "'2'“") v (x,t) (5.16)

2m

where p’ = (po,—p) and &' = (8,—8) projcct a free-particle solution
with reversed direction of space momnentum p and spin 8. This opera-
tion, known as the Wigner time reversal, was first introduced in 1932.!

Since the space and time coordinate inversions P and 3 are invari-
ance operations of the theory, we may just as well include them, if we
wish, in constructing the positron wave function. Combining (5.9),
(6.14), and (5.15) with (5.5), we find & simple corrcspondence between
& positron wave function

Yrecr(z') m PCyo(3¢(z))* = PCIY(z) = ie*yu(z)
with z, = —z, (5.17)

and an electron wave function multiplied by fe*ys and moving back-
ward in space-time. For a free-particle spin-momentum eigenstate
¥(z) characterized by (%) and ¢« = —1, we soe that

1E. P, Wigner, Golinger Nachr., 81, 546 (1032).
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bren(e) = ivmps () (L1 i)

m

- (v + m) (1 —21.¢) Vror(z') (5.18)

2m

Equation (5.18) differs from (5.8) only in the direction of spin and
tells us, therefore, that we may picture a positron wave funetion of
positive energy as a negative-cnergy electron wave function multiplied
by ie‘*y, and moving backward in space-time.

For an arbitrary solution in the presence of electromagnetic forces
we may explicitly verify this interpretation by returning to the nega-
tive-onergy eigenvalue equation

(@ (—i¥ — eA) 4 8m + ¢d)y = —Ey (5.19)

and carrying out the transformation (5.17). Evidently, by (5.10)
and (5.13), A, (') = 4+ A,(z) under space-time coordinate inversion,
z, m —z,; then (5.10) takes the desired form

[@: (=¥ + eA'(2')) + Bm — e¥'(z')¥pcr(z’) = +Eyper(z’)

The interpretation of positrons as negative-energy electrons running
backward in space-time forms the basis of the Stuckelberg-I'eynman
form of positron theory.! We shall use it often in the following chap-
ters in developing scattering theory, and we shall find that it offers
groat advantages there.

In conclusion, we must notice that the structure of the interaction
of electrons with the electromagnetic field was dictated by experience
with both the classical and the nonrelativistic limit of the eleetro-
dynamics of electrons. The existences of the symmetries we have
discussed are depcndent upon the form of interaction. For instance,
an anomalous momnent interaction of the type discussed in the problems
for Chap. 4 for protons and neutrons adds a term of the form ¢,.F*"y to
the Dirac equation. Its presence affects none of the above sym=
metries. In extending the Dirac theory to other particles of spin 34
such as x meson or nuclcons, and to other familiar interactions, it is
very natural to assume that these symmetries of 3, @, P aro still
preserved.

It was the great contribution of Lee and Yang? to realize that
this is really an assumption to be verified by experiment and to suggest
that intcractions such as 8 decay violate the symmetries of P and €.

LE. C. G. Stuckelborg, Helv. Phys. Acla, 14, 32L, 888 (1941); R. P. Feynman,

Phys. B ., 76, 749, 700 (1949).
T. D. Lee and C. N. Yang, Phys. Rev., 105, 1671 (1957).
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Iowever, the symmetry under the operation 3CP is guaranteed by
the much weaker assumptions of proper Lorentz invariance and the
usual connection between spin and statistics.

Problems

1. Show that the rate for an electron in the hydrogen-atom ground statoe to radiate
end fall into empty negative-enorgy states (treated in Born approximation) in
the energy intorval —me? to —2me? is approximatoly 2a%mct/xh s 108 poo~1,

2. Reinterpret and resolve the Klein paradox of Chap. 3 by using hole-theory
idoas.

3. Show that if v, and v, are two representations of the y matrices related by a
unitary tran formation U so that - U U=, then €' = (UN)™ICU, where €
and €’ are the corresponding matrices of the chnrgc-comugahon transformation,
Are relations (5.6) valld for C'?

In a similar way, free (5.15) from the representation (1.17) of the 4 matrices.

4. In order that 3 be a symmetry operation of the Dirno theory, the rules of
Intorpretation of the wave function ¢’(1’) must be tho same an those of ¢(1). This
moans that observables compoued of forma bilinear in ¢’ and ¢’t must have the
samo interpretation (within a sign, appropriate lo the observable) as those of ¢.
a. Verify that thin is 8o for the current:

5u(@) = j#(z)

Y =@  (pY = ={(p)

b. Repoat these oaleulations for the charge-conjugation transformation C. In
particular, show

and also

Po(@) v¥e(z) = +H(2)7vu0(2)
and interpret using the hole theory.
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1 Introduction

We turn to a general discussion of scattering processes. Our aim is
to be able to ealculate transition rates and cross scetions with the
Dirac theory of electrons and positrons—in principle, exactly; in
practice, to low orders of expansion in the interaction parameters.
The possibility of altering the numbers of particles in such processes as
electron-positron pair production or annihilation carries us beyond
the seope of the discussions in nonrclativistic theory. However, we
shall delay as long as possible the enormous task of doveloping the
formalism of quantized field theory in order to accommodate this
production and annihilation of particles.

To this end we follow Feynman! in developing the propagator
approach. The scattering process is doscribed in torms of integral
equations. The boundary conditions for their solutions incorporate
the Stickelberg-Feynman physical interpretation of positrons as
nogative-cnorgy electrons running backward in time. From this
formulation & working theory with unambiguous rules of calculation
for nll physical processes emerges.? To begin, we reviow the propaga-
tor approach to the nonrelativistic Schrédinger equation.

2 The Nonrclativistic Propagator

In scattering problems our attention is focused upon wave solutions
which develop in time from initial conditions imposed in the remote
past rather than on stationary energy eigenfunctions, that is, standing
waves. Characteristically, givon o wave packet which in the remote
past represents a partiole approaching a potential, one asks what the
wave will look like in the remote future.

We turn to Huygens' principle for a convenient way of viewing
this process. If the wave function ¥(x,t) is known at one particular
time ¢, it may be found at any later time ¢’ by considering at time ¢ each
point of space x as a source of spherical waves which propagate outward
from x. The strongth of the wave amplitude arriving at point x’ at
time ¢’ from the point x will be proportional to the original wave
amplitude y(x,f). If we dcnote the constant of proportionality by
iG(xX’ t':x,0), the total wave arriving at the point x’ at time ¢’ will, by

1 R. P. Feynmen, Phys. Rev., 76, 749, 709 (1949).

* The quantum field thooretic basis for these rules is provided in J. D. Bjorken
end 8. D. Drell, “Relativistic Quantum Fields,” MeGraw-Hill-Book Company,
Ine., in press.

78
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IIuygeng’ principle, be!
v, U) = if d*z G(x' U’ ;x,8)¢(x,0) >t (6.1)

G(x',t';x,t) is known as the Greon's function or propagator, and it
doescribes to us according to Huygens' principle the influence tpon
(x",') of the magnitude of ¢ at x at time ¢, Xnowledge of G enables
us to construct the physical state which developa in time from any
given initial state, and thus is equivalent to a complete solution of the
Schrédinger equation.

We must still give a complete formal definition of G. So far
wo have only claimmod its oxistence on the basis of physical arguments.
Let us pursue theso arguments further in order to dovelop a botter
understanding of the propagator approach. Consider first a free-wave
solution. The motion of a free particle is completely known, and it
should not come as a surprise that the corresponding free-particle
Green's function Gy can be constructed explicitly. If we now intro-
duce a potential, G, will be nodified. Let V(x,,;) represont an inter-
action potential which is “turned on" for a very brief interval of time
Aty nbout ;. For times earlier than {;, the wave function will be
that of a free wave ¢, and the corresponding propagator will be G,.
However, V(x,,}) acts a8 a source of new waves according to the
Schrédinger equation

(‘i'a%' - Ho) v(xyt) = V(x,L)¥(xy,t) ©.2)

The right-hand side differs from zero in the interval Af,. It
produces an additional change in ¢ during At, above that taking place
in the absence of V. This additional wave Ay(x,,!,) is found by inte-
grating (6.2) to first order in At,.

A\P(anl) - _"V(xhtl)¢(xhtl) Al (6'3)

This added wave, by IIuygens’ principle and (6.1), loads at a
future time ¢’ to a new contribution to ¢(x',t'), which is

AY(x' ) = [ dz, Go(x' .t %0, 11) V(X3 th) (X0, 11) ALy (6.4)
Thus the wave ¢ developing from an arbitrary packet ¢ in the remote
past is
V(X' l') = o(x,t') + [ d?zi Go(x',t'3x3,ts) V(s ) (x1,01) Aty
= f dz [Go(xX',1';x,0)
+ [ d¥z Al Go(X',t' %1, 00) V (X3, 61) Go(x,t15x,0)](x,f)  (6.5)

' The applicability of Huygens’ principle without KirchhofM's modification
is due to the fact that the Schrédinger equation is first-order in the time derivative.
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Comparing with (6.1), we see that the Green's function here is given by
aQ(x',¢;x,0) = Go(x',U';x,0)
+ [ d%; &ty Go(x', ' xy,0,) V(x4 0)Go(Xy,l15x,0)  (6.6)

It may be illustrated by the space-time diagram shown in Fig. 6.1,
The first term (Iig. 6.1a) represents the propagation from (x,f) to
(x',t') a8 a free pariicle; Fig, 0.1b represenis frece propagation from
(x,0) to (x,t1), & scattering at (x,t), and free propagation from (x,,t)
to (x',t).

If we turn on another potential V(x,f) for an interval Af; at
time {43 > (,, the additional contribution to y(x',t') for ¢’ > {3 is, in
aualogy to (0.4),

Ay(z') = [ dzs Go(z';2) V(2)W(2) Aty
m §f d3% d¥%s Aly Go(2';2) V(2)
X [Go(2;2) + [ d¥z, AL Go(2;1) V(1)Go(1;2))e(x) (8.7)

in an abbreviated notation whose meaning should be clear. The first
term is illustrated in the diagram (Fig. 6.1c) and represcnts single

¢
(x,¢) e
Gy (x/,tix,8) Vo)~ y e
(x,t)
(x,t)
- > X
(a) %)
At ’
(x',¢’) 7
(x,.85)
(Xr ‘3) (x|-‘|)
=0 . (x,¢t) =
(© (d)

Fig. 6-1 Space-time diagrams for propagation from (x,f) to (x',t’) as (a)
& free particle, (V) with one scattering by potential V(x4,1)) at (x),41), (¢)
with single scattoring at (xs,4), and (d) with double scattering.



scattering at {3; tho seeond torm is a double scattering correction
illustrated in Fig. 6.1d.

The total wave arriving at (x',t') is then built up by inserting
(6.5) for ¥(2) in tho right-hand side of (6.7) and adding the rosulting
Ay to (6.6):

W(z') = o(z') + [ d’x, AL Go(z";1)V(1)e(1)
+ [ d%3 Aty Go(z';2) V(2)(2)
+ [ &%, Al dz; Aty Go(z';2) V(2)Go(2;1) V(1) (1)  (6.8)

Without further ado, if there are n such time intervals when the
potential V is turned on, the wave arriving at (x',t') will be

W) = o@) + ), [ &5 8L G m)V @)e(z)

+ Y [ d%atdis 066y w0V @)Guziz) V (ze()
WS

+ f ddz; Aty &%, Al dzy Al
> h>u)

X Qo2 ,20) V(2)Go(ze;z) V() Golzssza) V(zn)o(zy) + - - - (6.9)

By comparison with (6.5) and (6.6) the corresponding expression for
the Green’s function G will be

G@'2) = Go('sa) + ), [ d'a Al ol o) V (Xt Golxytiv)

+ Z [ dt: At doz; a4 Gl ) V(xotl)
1)
(>t

X Go(xi,tiix,,L) V(x3,,)Go(x,,832) + < - - (6.10)

We may lift the time-ordering restrictions ¢ > ¢, ote., if we define
Go(x',t';x,t) = 0 for ¢’ < t. With this boundary condition of prop-
agating waves forward in time only, Go is known as the retarded
propagator. Physically this just means that no Huygens wavelots Ay
from the sth iteration (at time &) appear until after 4.

In the limit of & continuous interaction the sums over time inter-
vals may be replaced by integrals over dt with the result

G(z';x) = Go(z';z) + [ d*%:1 Go(z'21) V(21)Go(z1:2)
+ [ d\zy dzy Go(z' i0) V(21)Go(z1:22) V(2s)Go(zai2) + + » - (6.11)
where diz m diz dzo ~ diz dl
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This multiple scattering series (6.11) is assumed to converget
and may be summed formally to yield

G(z';z) = Go(z';z) + [ &'z Go(z" ;1) V (x1)G (21 52) (6.12)

We notice that not only Go(x’;x) but also G(z’';zr) vanishes for
¢ < i, as demanded by our elementary concept of causality.

Equation (6.11) gives us an iteration procedure for finding @
in terms of V and G, and hence for constructing the wave function
¥(z',t') if it is known at an earlier time. In particular, to solve the
scattering problem, wo must know the wave in the remote future,
given a wave packot ¢(x,f) representing a particle in the remoto past
approaching the interaction region. In order to define proporly the
scattering problem, there should be no interaction at this initial time,
8o that ¢ is a solution of the free-particle equation which incorporates
the required initial conditions.

A nmiathomatically convenient way of accomplishing this ia to
localize the interaction in time? by adiabatically turning off V(x,f)
as ! — — o ; the exact solution y then approaches ¢ in the remote past
and there is no scattered wave. In the future the wave ¢(x',t') is
given by (6.1)

v(x'f) = lim if d G(x',t'ix, ) o(x,0) (6.13)

Expresging G in terms of G¢ by (6.12), we sce
v(x'\l) = '_l.il_p. if dz [Go(x',' x,0)
+ [ d'z: Go(x' ;1) V(1)G(1 x,0) Je(x,0)
= o(x',l') + [ d*zi Go(x',t' %1, 00) V(X0 L)Y (X, 10) (6.14)

We have really not solved anything, since the unknown ¢ appears
under the integral on the right. Howover, we do have & formulation
which includes the desired boundary conditions and which affords
an immediate approximation procedure if the perturbing potential ¥
is weak,

We are primarily interested in the forin of the scattored wave as
f = o, In this limit the particle emerges from the interaction region
and again ¢ becomes & solution of the free-particle equation. As
before, we adiabatically turn off the interaction as ' —» 4 o in order
to ensure this condition. All information about the scattered wave

1 We ignore here the possibility of bound states in the potential V.,

3 We might oqually well build wave packets localized in space snd initially
romote from the interaction region.
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6.3

may be obtained from the probability amplitudes for the particle to
arrive in various final free atates ¢,

pr(x',t) = mlﬁe"f"‘-"f" (6.15)

as I'— + o from a given incident wave ¢; in particular, we may
work with plane waves.! The probability amplitude for a given pair
(f,%) is an eloment of the S, or scattering, matrix and is given by

Sp = lim fof (x,)FP(x',t) da’

t—s e
= lim J &2 o} (' ,)lelx',b')
+ [d'z Go(x', 0 x,0) V(x,0¢:F(x,0)
= 80y — k) + lim [ d%’ d' o (x,0)Ga(x', ¥ i)
X V(x,0¢iY(x,0) (6.16)
"

where ¢{¥(x,0) is that solution of the wave equation (6.14) which
reduces to & planc wave of momentum k;as{— — . By the short-
hand ¢t — £ « we mean {— any large finite time for which the par-
ticles are not in the interaction region (or alternatively when V is
turned off); in particular, {— + o may mean the times when the
particlo is produced and detected.

We may expand ¢ in & multiple scattering series by itcration
of (6.14) and thus express the S matrix in a multiple scattering series,
the terms of which correspond to the diagrams of Fig. 6.1.

Formal Definitions and Properties of Green's Functions

We have unearthed the physical ingredients for solving a scattering

problem. We now build the formal mathematical machinery tomanu-

facture these solutions, Our goal is to investigate the differential

equation which defines @, and in particular to solve for G, explicitly,
! The plane-wave solutions are normalized in the continuum language in

(6.15). Altornatively, the box normalization convention may be used, with

(2x)~H = V¥
where V is the volume of the box in which the physical intcraction is confined.

With the box convention the Dirac 8 function in (6.16) is replaced by a Kronecker
& funoction

1 if ky = ke

O,k ™
ok ’o i ky ok
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so that the expansion of G we have outlined can be explicitly carried
out. Wae start with Eq. (6.1), valid for ¢ > ¢, and rewrite it in a form
valid for all times:

ot — Oy(z') = if d*z G(z';z)y(x) (6.17)
6(t’ — 1) is the unit step function defined by
' — 1) = { ! " > (6.18)
0 <t
and has the following very useful integral representation:
. =1 re dwe '
o) = lim o [ o (.10

It is evaluated a8 a contour integral in the complex w plane as shown
in Fig. 6.2. For r > 0 the contour may be closed along an infinite
semicircle below the real axis in order to ensure exponential damping of
the integrand, and the value of the integral is 1 by Cauchy’s thcoren.
For r <0, the contour is closed above and the integral venishes
because the polc at —4e now lies outside the contour. Since 6(r)
takes a unit jump at r = 0, its derivative is a & function:

‘!-_3_(:_) = 8(r) = o [ du et (6.20)

We now attempt to find the equation and formal properties of
G(z';x) from (6.17). We know only that ¢(z’) satisfics the Schrédinger

equation; we are therefore led to apply [i 5")&7 -H (z’)] to (6.17):
[ia—‘:, -H (z’)] o — DY(z') = §8(1 — y(z")
-i [ [aai’t- - H(z’)] G'z(z) (6.21)

Aimw

r<0

»Re w

>0

Fig. 6-8 Contour in the complex « plane for
intograting the unit step function 0(r).
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Since (8.21) is valid for all solutions ¢ we can cxtract from it the
Green’s funetion equation of the Schrédinger theory

[ aat' Hx )]G(.t z) m 8(x' —x)8(t' — ) = $z' — 1) (6.22)
Together with the boundary condition of a forward propagation in

time, that is,
Gia'x) =m0 fort <1t (6.23)

Eq. (6.22) defines the retarded Green’s function or propagator appro-
priate for (6.17).

We can solve explicitly for the free-particle propagator when
Ho(z') m — Q:_{; Va. In this case Go(z';z) can depend only upon the

difference of the coordinates (x',') and (x,). This is because the
wave at (x',!') emerging from a unit source at x which is turned on at ¢
depends only on the interval (x' — x, ¢’ — ), and G(2’;z) is precisely
the amplitude of this wave, We consider its Fourier transforin

Go(z';z) = Go(z' — 1)

/ dT ?1:7?_‘2 e (F~n)g=u (¢~ (p, w) (6.24)

In terms of Go(p,w), (6.22) is

d*p dw

=D +ip(a'—=2)
(2x)¢

and hence for w » p*/2m

Go(p,w) = o= (6.25)

A rule for handling the singularity in the denomninator is necessary to
complete the expression in (6.25). This is deterinined by the retarded
boundary condition (6.23). Recalling the discussion of the 8 function
(6.19), we add a positive infinitesimal imaginary part to the denomina-~
tor and carry out the w integration in (6.24) first. The singularity
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> I > > Re w

Fig. 6-8 Singularity in Gy(p,w).

then lies below the real axis as indicated in Fig. 6.3, and we obtain
- [ 8P pwn [ o €0
) / G e e T
= =i [ ks TR R e — g
= —ib(¢' = 1) [ d' o'l (6:26)

where the last form uses the notation of (6.15). It is—for the special
case of plane waves—an example of a useful expression for the Green's
function as a sum over a complcte set of cigenfunctions of the cor-
responding differential equation.! In general, if we can construct a
complete set of normalized solutions to the Schrddinger equation
which satisfy a completeness statement of the form

Jvn yn(x,) = 83(x — x) (6.27)

where E is & generalized sum and integral over the spectrum of quan-

tum numbers n, then, as is readily verified,
Gx'iz) = —28(' = ) E Va(z Wi (z) (6.28)

satisfies (0.22) with the desired boundary condition. The special

case (6.26) for G, is established by the connection z—» / d®p when
n
integrating over the continuous momentum spectrum,

t The free-particle Green's function in (6.26) may be expreesed in closed form
. » Y L | ]
Go(x'\¥;x)t) = =i (W@_—ﬁ) {OXP [ '-’;l(:,-—_—sl-]} o - t)

Thin is reminiscent of an expression in the theory of brownian motion for the
probability that a particle which was at position x at time ¢ and which moves under
the infiuence of random disturbances will arrive at x’ at time ¢. Indeed, the only
change that needs to be made is the replacoment of (4¢) by (—it,—it’). This
same change transforms the Schrédinger equation into the diffusion equation.
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From the form of (6.26) and (6.28) it follows that the same Green’s
function which propagates a solution of the Schridinger equation
forward in time propagates ita complex conjugate backward in time.
Multiplying (6.28) by ¢m(z), integrating over all x, and invoking
orthogonality and normalization of the eigenfunctions, we reproduce
(6.17)

i [ 426 @n() = 6 = ) Y va(@) [ dzv2@at)

= 0(' = ¥m(z)

Repeating this operation, only multiplying instead by ¢A(z') and
integrating over all x’, we obtain the indicated result:

if &'’ V()G (z'iz) = 6 — yn(z) (6.29)

We now use thcse relations to construct various useful forms for the
S matrix.

From (6.17) and the defining equation (6.16) we can write a com-
pact form for the S-matrix elements in terms of the cxact propagator:

Sp= ¢ lim lim [d% d%z o} (2')G(2' ;x)pi(Z) (6.30)

Pt (= —wn

This is not yet useful beeause in general we cannot solve directly
for the exact propagator. Asis evident in (6.28) there is an enorious
amount of information contained in G(z';z). All the solutions of the
Schrddinger equation, including the bound states as required in the
completeness relation (6.27), appear with equal weight. It is no
wonder that G is difficult to compute.

We proceed, as in our ecarlier intuitive considerations leading to
(6.11), by constructing an iteration proceduro starting with the free-
particle Green's function,

Regrouping terms in (6.22), we write, with / = [Fo 4 V,

[ibi:-; - ﬂo(z’)]G(z’;z) = §4(z' - z) + V(z")X(z'52)
- /d‘z” 8z’ — z')[8%(z" — z) + V(z'")G(z";x)] (6.31)

where we have expressed the interaction term on the right-hand side
as a superposition of -function sources. The integral of (6.31) with
the desired boundary conditions is just the corresponding superposition
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of free propagators:

G(x';z) = [d%” Go(x"z")[84x"" — 2) + V(z")G(2"' ;z)]
= Go(2';z) + [d'z" Go(z';2"") V(2" )G(z"" ;z) (6.32)

which agrees with (6.12). Inserting (6.32) into (6.30) and making u
of (6.17) and (6.29) for free particles, we arrive at

Sy = [ d% o} (z)eil(z) + ..'.if’. [ dz1d% o} (z) V(2))G(2152) 0i(2)

= 8y = if d'zi o] (1)V(De(1) = if diz1d'za 7 (1) V(1)
X Go(1,2)V(2)ei(2) — if d'z1 d'za d'zy 07 (1) V(1)
X Go(1,2)V(2)Go(2,3) V(B)eu(3) + * - - (6.33)

This multiple-scattering series coincides term by term with that devels
oped from (6.16). It may also be finally summed up in terms of
solution of the exact Schrédinger equation asin (6.16). T'o do this, wo
note in the first line of (6.33) that we can write

Jim [ dz G@"z)ez) = Jim J &%z G(z" ;x)u(2)
= —i(z")

if we refer to (6.17) and turn off V as we did earlier. Equation (6.33)
becomes

Spi = 8y — of diz”’ o} (") V(2" WM (") (6.34)

where the superseript (+) is now appended to ¥ to indicate a solution
which reduces to & free wave as i — — o [gee (6.14)]

viP@E") = az”) + [Golz" ) V(@ (2) d'

Equation (6.34) with expansion (6.14) and (6.30) with (6.32) are
equivalent forins for the 8 matrix; both lead to the multiple-scatterin
series (6.33).

In practice we shall usually calculate only the first or first two
nonvanishing contributions to the S matrix for a given interaction in
(6.33). The validity of this procedure depends on the weakness of
the interaction V and the rapid convergence of this series in powers of
the interaction strength.

A general property of the S matrix which results from the con-
servation of probability is the property of unitarity. We recall from
the introductory remarks of Chap. 1 that hermiticity of the hamilto-
nian implies conservation of probability and thereby the result that the
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inner product of two solutions is independent of time. We can write,
therefore,

[ B2y EYE = lim [ d% @)
- ‘_13'_11. [ d% o} (2)es(z) = 8 (6.35)

In the particular examnple of a plane-wave representation
O = 83(k; — k)

We may also projcet this inner produet into the remote future in which
case, by (6.16) and the completeness relation (6.27) for the ¢'s, we can
expand the solutions ¢{" into planc-wave states with the S-matrix
clements as the expansion coefficients:

lim ¥{(z) = 3 on(z')Su (6.36)
t'— 4w "y

(Z - / d% for a plane-wave rcpresentntion.)
Inserting (6.36) into the left-hand side of (6.35), we find
E SneSay = 8 0.37)

or in natrix notation S'S = 1. If the ¢{¥, like the ¢, in (6.306), forin
& complete set, St = S-! and we conclude that S is & unitary matrix.!

6.4 The Propagator in Positron Theory

We generalize our propagator development of the nonrelativistie
theory and apply it to the relativistic electron thcory. Our starting
point is provided by the picture of the nonrelativistic G(z';z) as the
probability amplitude for & particle wave originating at z to propagate
to 2. This amplitude, given in (6.11), is a sum of amplitudes, the
nth such terin being a product of factors corresponding to the diagram
of Fig. 6.4. Each line in Fig. 6.4 represents the amplitude Go(zijri-))
that a particle wave originating at z._; propagates freely to z.. At the
point z; (represented by a ©) it is scattered with probability amplitude
per unit space-time volume V(z;) to 8 new wave propagating forward
in time with amplitude Go(z1;2;) to the next interaction. This
amplitude is then summed over all space-time points in which the

LIf bound statos ocour, the completeness sum in (6.27) must also include the
bound-state spectrum. This does not alter the proof of unitarity.
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Fug. 6-4 nth order contribution to G(z,z’).

interactions can occur. One may say the intcraction at the 4th
point, or vertox, destroys the particle propagating up to z; and creates
a particle which propagates on to 2:41 with &y 2 1.

It is this picture which we will keep in the Dirac hole thoory.
It is well suited to a relativistic theory because of its emphasis on
the overall space-time viow of the scattering process, in contrast to
a hamiltonian formalism with its emphasis upon the time. The aim is
to construct by analogy with the nonrclativistic propagator theory
rules for calculating scattering processes in Dirac hole theory. How-
ever, the cxistence of pair production and annihilation processes,
which we must also describe, complicates mattors. The ground rules
which we shall adopt in dealing with this situation are simply that the
instructions for caleculating with the propagator must be consistent
with the dynainics of the Dirac cquation and with the general postu-
lates pronounced in Chap. 1 and amended by our discussion of posi-
trons in Chap, 5. Wo shall lean heavily on intuitive arguments at
the exponse of rigor in our devclopments in this and the following
chapters.!

Lot us look at pietures of typical processes which must be
described in positron theory. There not only are scattering procosses
of the type illustrated in Fig. 6.4 but also the pair production and
annihilation processes illustrated in Fig. 6.5. Diagram 6.5a shows the
production of an electron-positron pair by a potential acting at point 1;
the two particles of the pair then propagate to points z and z’, respec-

! These rules find their justification in the systomatic but painful formal
exposition of quantum field theory given in Bjorken and Drell, op. cit.
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tively. Diagram 6.50 shows an clectron originating at z and ending
up at ’.  Along the way, a pair is produced by a potential acting at 1;
tho positron of the pair annihilates the initial clectron in the ficld at 3;
the clectron of the pair propagates up to point 2, where it is destroyed
by the potential. This potential at 2 creates the electron which
propagates to z’. Diagram 6.5¢ shows a pair produced at 1, prop-
agating up to 3, and being destroyed in the field there.

Wo see from these diagrams that we need not only the amplitude
for an clectron to be created, say, at 1, to propagate from 1 to 2, and
to be destroycd at 2 as in the nonrelativistic case, but also the ampli-
tude for a positron to be created, to propagate, and to be destroyed.
If this positron amplitude is found, we may then attempt to associate
a probability amplitude with each process of the type illustrated in
Fig. 6.5 and to construct the total amnplitude for any particular process,
by summing, or integrating, over all intermediate paths which can
contribute to the process, Thus for a scattering event paths of both
types shown in Fig. 6.4 and Fig. 6.5 occur.

We must determine the positron amplitude in accordance with
the hole theory formulated in the preceding chapter. Since tho
existence of & positron is associated with the absonce of a nogative-

(¢)

Pig. 6-8 Examples of space-time diagrams in positron theory for (a)
pair production, (b) scattering, and (¢} a closed loop.
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energy electron from the filled sea, we may view the destruction of g
positron at 3 in Fig. 6.5 as oquivalent to the creation of & negative.
energy electron there. This suggests the possibility that the ampli.
tude for creating the positron at 1 and destroying it at 3 is related to
the amplitude for creating a nogative-energy cloctron at 3 and destroy
ing it at 1. The diagrams of Fig. 6.5 would be interpreted in terms of
electrons propagating forward in time with positive energy and back-
ward in time with negative onergy. Diagram 6.5a, which describes
pair production, may be considered in terms of a negative-encrgy
electron originating at z’, propagating backward in time to 1, where it is
destroyed, and a positive-onergy electron propagating forward to
space-time point z. In a scattoring process the electron propagating
up to point 3 has the option of being scattered by the potential for-
ward in space-time a8 in Fig. 6.4 and propagating on with positive
energy or of scattering backward to 1 as in Fig. 6.5b with ncgative
enorgy.

In addition to eleotron paths which zigzag forward and backward
in time, there is also tho possibility of closed loops as illustrated in
Fig. 6.5¢c. In hole theory one says the potential at 1 scatters an
eleotron in the sea into & positive-energy state; it then scatters back
into the sea at 3. In propagator language, the electron created at 1
is scattored back in titne from 3 to destroy itself at 1. Processes such
a8 these may not simply boe ignored. The formalism requires them,
and, as we shall also sce, experilnont vorifies their existence.

As the first step in our prograin we construct s Green’s function to
describe the propagation of electrons and positrons, Wo shall be
guided by the discussion of positron theory in Chap. 5 and by th
preceding discussion of propagators in the nonrolativistic theory.

The relativistic propagator, Sp(z';z), is defined to satisfy &
Green’s function equation in analogy with the nonrelativistic definition
(6.22):

4
3 a - '} - ! - !
3 [# (i - ea@) = m] s, 00 = burw — 0y 039
As defined here, the propagator is & 4 X 4 matrix eorresponding to the
dimensionality of the v matrices. In matrix notation with indices
supprosscd, (6.38) becomes

@V — eA' — m)Sp(2',z) = 84z’ — z) (6.39)
Anothor change from (6.22) is that the operator ¢ /9’ — H(z') is

multiplied by 4° in (6.38) in order to form the covariant opcrator
@V — ed’ — m).
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We can compute the free-particle propagator
5V’ — m)Sp(2',x) = 8(z' — 2) (6.40)

by Fourier transforming to momentum space. As in the nonrcla-
tivistic case (6.24), Sr(2',z) depends only on the interval (z — 2),
so that!

Sr@z) = Spla = 2) = [ ("2—:’;—. e W-0Sp(p)  (6.41)

Inserting into (6.40) gives
4

;2.21 (® — M)arSr,,(p) = bas

Solving for the Fourier amplitude Sr(p) and reverting to matrix
shorthand, we find

+m 1

_mi-'_m

Sp(p) = 7 for p? & m? (6.42)
Instructions on how to handle the singularities at p? = m3, that is, at

spom + A/p'+ m! = +E, are needod to complote the dofinition.
As we recall from the nonrelativistic theory, the answer to this question
comes from the boundary conditions put on Sy(z’ — z) in integrating
(6.41).

The interpretation given to the Green’s function Sy(z’ — z) is
that it represents the wave produced at the point z’ by a unit source
located at the point z. The Fourier components of such a localized
point source contain many momenta largor than m, the reciprocal of the
clectron Compton wavelength, and we expect that positrons as well as
clectrons inay be created at z by the source. Ilowever, & necessary
physical requirement of hole theory is that the wave propagating from
z into the future consist only of positive-energy electron and positron
components. Since positive-energy positrons and clectrons are repre-
sented by wave functions with positive frequency time bohavior [for
example,

y(z) = Co(p)Te—tre
4;(4-)(3) - u(p)r‘ﬂ'l

are (unnormalized) wave functions of positrons and electrons, respec-
tivoly, of momentum p* with p°® > 0] Sp(z’ — z) can contain in the
future, zo > o, only posilive-frequency components.

1 Henceforth, we employ the four-dimensiona! notation

Px = pud = pd —p-x

(6.43)
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In order to accomplish this, we return to the Fourier expansion
Sr(z’ — z) in (6.41) and (6.42) and perform the dp, integration alog
the contour in the complex po plane shown in Fig. 6.6. For ¢’ ~
the contour is closed in the lower half-plane and includes the positi
froquency polo at po = 4 +/p? + m? = E only. This gives

Sp(x’ — z) = / (%:‘-1)25 eirix=mn /c‘%%-;:—% (» +m)

- —f / (%:g_‘ afptr'=m) g~ EW'~1) Evyo — gE"\’ +m ¢>
(6.44)

so that the wave at (x',’) contains positive-frequency componen(
only. Fort <, the contour can be closed above, including the pole
at po = — +/p?* + m%. This gives

Sp(z' — z) = ._1'/ (42%7’? eI —E) g 4=t (=Ev _2’P‘;' x+ m)
U <t (645

showing tho propagator to consist of negative-frequency waves fo
V<t

These negative-cnorgy waves, absent in thc nonrclativisti
theory, are unavoidable hore. Any other choice of contour C i
(6.44) leads to negative-enorgy waves propagating into the future
positive-encrgy waves into the past. Moreover, these negativ
energy waves propagating into the past are welcome; they are the
positive-energy positrons, as we discussed in the preceding section.
This will become more apparent whon we apply the propagator formal-
ism to scattering problems. The origin of the nogative-energy wav
is the pole at po = — +/p? 4 m3, which was not present in the no -
relativistic theory.

4lm 5,
-— Jp’+m’--3 P
3 o —— i = =Rep
po"”"'m =5 °

Pig. 0.0 dingularitios of an integration contour for Sp(p).
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The choice of the contour C is summarized by adding a small posi-
tive imaginary part to the denominator in (6.42), or simply taking
m? — m? — d¢, where the limit « — 0* is understood:

_ - dlp ‘-lp-(n'—:)
Sp(z' — z) R L e (p + m) (6.46)
The forms (6.44) and (6.45) are combined by introducing projection
operators (3.18) and changing p to —p in the negative-frequency part:

+ A(p)ee-mo(t — 1')]  (6.47)
with po = K > 0. Equivalently, writing

Vi(z) = \[ 7 @r) M (p)etore

for normalized plane-wave solutions, we find

2
SK@ = 2) = =6 — 1) [ d'p ) ¥(@) @)

rm]

4
+ioe—t) [ @ ) G Wi (648)
r=l
and verify with the aid of (3.11) that Sy(z’ — z) carries the posi-

tive-cnergy solutions ¢+ forward in time and the negative-energy ones
v backward:

0" = OYH(z") = $fSp(z' — )y M(z) d'z (6.49)
6(t — W) (z') = —ifSp(z’ — )y (2) d’z (6.50)

Sp(z’ — z) as defined here is known as the Feynman propagator.
It was first introduced into positron theory in 1942 by Stiickelberg
and independently in 1948 by Feynman, who applied it extensively to
physical calculations,

From the free propagator Sx(z’ — z) we may forinally construct
the complete Green's function and the S-matrix elements, that is, the
amplitudes for various scattering processes of electrons and positrons
in the presence of force fields. To accomplish this, we paraphrase the
nonrelativistic treatment,

The exact Foynman propagator Sp(z’';z) satisfies (6.39) and, in
parallel with (6.31) and (6.32), can be expressed in terms of a super-
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position of free Feynman propagators; that is
(Ve — m)Sp(z'iz) = [ d'y 82’ — y)[8'(y — 2) + eAW)Sp(yi2)]
which integrates to
Sp(z',z) = Sp(z’ — z) + ef d'y S¥(z' — PAW)Se(y,z) (6.51)

In annlogy with (6.14), the exact solution of the Dirac equation

(¥ — M)W (z) = ed(z)¥(2) (6.52)
with the Feynmman boundary conditions, is
¥ (z) = ¥(z) + ¢f d'y Sr(z — VAWY W) (6.53)

The scattered wave in (6.53) contains only positive frequencies in the
future and negative frequencies in the past according to (6.48):

2
¥@) -y - [ & 3 v@l-ie [ a9 AGF)
ast— + o (6.54)

4
¥(@) - v [ d'p ¥ @+ [ ay BuAw¥ )
a8 t— — o (6,55)

Wa thus have a formulation of the scattering problem in (6.54) which is
in accord with the requirement from hole theory that electrons cannot
fall into the negative-energy sca after scattering by an applied field
Ax(y); only the unfilled positive-energy stutes are available. Equation
(6.55) shows that the wavoes scattered backward to earlior times have
negative encrgies,

From (6.54) and (6.55) we identify the S-matrix elaments as the
coeflicients of the free-wave solutions yr(z), that is,

Sy = 8y — deesf dy VW AW)¥ily) (6.56)

where ,(y) is the final free wave emerging with quantum numbers f
and with ¢, = 41 for positive-frequency solutions in the future and
—1 for negative-frequeney ones in the past, respectively; W.(y) is
the incident wave which reduces at ye — —  to an incident positive-
frequency wave y¢y) with quantum numbers ¢ or at yo— -+ to an
incident negative-frequency wave propagating into the past, according
to the Feynman boundary condition on the solution (6.53).
Equations (6.56) and (6.53) contain the rules for calculating the
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pair production and annihilation amplitudes, shown in Fig. 6.5, as well
as for the “‘ordinary’ scattering process of Fig. 6.4.

Consider first the ordinary proceas of electron scattering. For
this proceas W,(y) reduces to an incident plane wava of positive energy
viP(y) at yo— — © and the nth order contribution to (6.56) is

—ieoffdyr *  * Y W) AWa)Sr(Yn — Ya-dA ) -
X Sr(ys — y) AW (1) (6.57)

Graphs such as Fig. 6.4 as well as I'ig. 6.50 are contained in the series
(6.57).

To calculate pair production, we insert for ¥(y) in (6.56) a solu-
tion which reduces as t — - « to a frec plane wave of negative energy.
Specifically, for production of an electron-positron pair with quantum
numbers (p_,s-) and (p,,s4), respectively (where po,, > 0), we insert
for ¥(y) in (6.56) the solution of (6.53), which reduces as { — +
to a negative-energy plane wave with quantuin numbers (4p4,+84,
em —=1);1ie,

vi(y) = % (2m)~Mu(py a4 )etiere

For ¥; we take a positive-energy solution labeled by (p-, 6-, « = 1).
By the ground rules of our discussion of hole theory, it is the absenee of
a negative-cnergy electron with four-momentum —p, and spin —3&,
that we record as the presence of a positron with four-momentum p.
and polarization s;. In the propagator formulation we have identified
the amplitude for producing the positron at z and propagating it for-
ward in space-time out of the interaction volume and into n given
plane-wave state (ps,8,) at 2’ with the amplitude for a negative-energy
clectron with four-momentum —p, and spin —s, to propugate from
z’ hack into the interaction volume and be destroyed at 2. We thus
associate a transition amplitude with the pair-production process by
tracing the path of a negative-energy clectron backward in time into
the interaction region where it scatters in the field and emerges in a
positive-energy state propagating forward in time. The two lowest-
order Feynman diagrams are shown in Fig. 6.7, and the second-order
amplitude is further decomposed by time ordering of the two scatter-
ings a8 indicated.

In & similar way, to calculate the pair annihilation amplitude,
wo insert for W,(y) a solution of (6.53) which reduces to ¢{"(y) at
y— —c. This positive-energy electron propagates forward in time
into the interaction to be scattered backward in time and emerge in a
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A ¢

v

Fig. 6-7 Bpace-time Feynman diagrams of pair production to first and
socond orderd. The second-order contribution is further decomposed by
time ordering of the two scatterings.

- >
x ® X E 4

negative-energy state. The nth-order amplitude that the electron
scatters into a given “final” state ¢;~ labeled by quantum numbers
(P+,84se = —1) is

senf diyr * + ¢ dYs U W) AWn)Sr(Un = Ya—1) * *
X AP () (6.58)

In hole-theory language this is the nth-order amplitude that
an electron scatters into a negative-energy state of momentum —p,.
and spin —s,. This state at ¢ = — o must have been empty;
that is, there must have been a hole, or positron, present with four-
momentum p, and spin, or polarization, s,.

Finally, in order to describe positron scattering, the ‘‘incident”
positive-frequency wave in (6.56) and (6.58) is replaced by a negative-
frequency solution with quantum numbers (p),s:,e = —1). This
ropresents the outgoing positron with momentum and spin (p;.,s4).

Problems

1. Bhow that 8pr(z’,z) reducos to the froe-particle retarded propagator for the
Schradinger equation in the nonrelativistio limit.

2. Verify (6.48) explicitly.

3. Verify (0.49) and (6.50) and derive analogous relations for the adjoint solutions
¢ and J=,

4. Caloulate Sy(x) explicitly. Iow does it behaveasz — «, an z — 0, and on the
light cone?

6. Suppose in our formalism we replace the vacuum by a Fermi gas with Fermi
momentum kp. How is the Feynman propagator modified? Compute the change
in Sy in the low-density limit.
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Applications
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/
1 Coulomb Seattering of Flectrons

In this chapter we apply the propagator formalism just developed to
various practical calculations. As we gain experience with these
propagator amplitudes we shall extend them in a natural and plausible
fashion to include interactions between several particles. Our pro-
gram is the same as that of the original Feynman papera:! to establish
rules for calculuting transition rates and cross sections for general
processcs of physical interest before resorting to the formal manip-
ulations of quantum field theory.

We shall begin with Rutherford scattering of an electron from a
fixed Coulomb potential. The transition matrix element for this
process, as given by (0.56),

Sy = —ief diz ¥, (2)A(@)Pz)  (f 8 9) (7.1

must now be translated into plain English; here e < 0 is the electron
charge. In lowest order ¥,(x) reduces to the incident plane wave
Vi(z) deseribing an electron of momentum p, and spin &:

Vi(z) = \/E?V u(p,s)eioes (7.2)

where we normalize J(z) to unit probability in a box of volume V.
In the same way

U@ = \[ g Apsapenrs )

The Coulomb potential is given by
—Ze

Ag(x) = x|

for a point charge —Ze > 0; thus

A(z) = 0

. 3 4
Sy = '_4?'1‘1, '" ' 2(ps,87)7°u(py, &) f ‘]l;’f eteroa> (7.4)

The integration over the time coordinate yields 2x3(E; — E,) and
expresses cnergy conscrvation betwoen initial and finnl states in a
static potential. The space integral is the Fourier transforin of the
Coulomb potential, well known to be

[ R -
1R, P. Foynman, Phys. Rev., 76, 749, 709 (1049).
100
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where ¢ = p; — pr.  Our S-matrix clement becomes

Sp = iZe' gy \/ —':"—‘ ﬂqul;l(-ﬁ'i‘) o8(E; — E)  (1.5)

The number of final states in momentum interval d¥%, is
V d*p,/(2x)?, and thus the transition probability per particle into
these states is

s V. A%y  Z%(4wa)’m® |[4(p,,8,)y u(pusd)|* d%p
R L A T =2
X [2x8(E; — E))* (7.6)

The square of the & function requires some explanation. Were we to
consider transitions in a given time interval (— 7/2,7/2), the energy
8 function would be smeared out; that is

gin (T/2)(E; — E))
E, = E

2rd(E, — E/) = / _’r’:, At eXErBot m 2 (7.7)

From (7.7) wc see that for large but finite T,

sin? (T/2)(E; — EJ)

(2r8(E; — B = 4 == o

Considered as a function of E;, the area under such a curve is 2T,
so that we may identify

[2x8(E; — E))* = (2r8(0))2x8(E; — E,) = 2xT3E; — E) (7.8)

or gimply?
2r8(0) = T (7.9)

A heuristic way of seeing this is froin the definition

773
2r8(E; — E‘):r:.) / gy e BN
hence
ord©) = [TV dtmT

(T—ew)

1 If packets are constructed to represent the incident and cmerging particles,
poorly defined mathemation! expressions in which there appear squares of &
functions are avoided. The identification (7.9) can be made on a sound basis,
Beo F. Low, Brandeis Univ. Summer School, 1959,
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Returning to (7.6) and dividing out the time, we find the number
R of transitions per unit time into momentum interval d*p, to be

- 4Zﬂaﬂmﬂ a(p,,a,)‘yo“( ‘pai)l’ E’p’ 0, - J
R : | . 1._2__ £, 8(E; — EJ)

A cross section is defined a8 the transition rate R divided by the flux
of incident particles, J§, = V.(z)v*i(z), where a denotes the vector
component along the incident velocity v; = p,/E. With the nor-
malization adopted in (7.2) the flux is |[Vin = [v{|/V. Thus the dif-
forential cross section de per unit solid angle dQ is

de _ [ 42Z%'m" |a(pse)r ulpus)* P’ d  , n
da /|V¢|E'4 lqf* g, B —E) (1.10)

Using the identity
prdp; = E,dE,
we finally obtain

do _ 4Z%'m!

&~ [a(ps,0,)v%u(pi8) I* (7.11)

which agrees with Rutherford in the nonrelativistic limit.

In general one doce not observe the polarization of the final
particle and one does not know the initial polarizations. If the
incident beam has net polarization, there is usually a good reason
why; and the experimentalist eventually will discover it, as in the
case of polarizod electrons from g8 decay. In the absence of such
information one assigns equal a priori probabilities to the different
initial polarization states. This means that the actual cross section
observed will be a sum of (7.11) over final spin states and an average
over initial states, that is,

de  4Z%*m?
= [ 18(ps,87)7 u(p080) |* (7.12)
an 2[q *Zn 1384 4

This spin sum can be rewritten as follows:

z Ta(D1,87)7 s (D1, 8) Ul (D08 VbV S0t4e (P1,8)
Tar.0

= ) Al 7 St (pu )P0 Y St (p1,80)

T a0
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7.2

with, as usual, sums over repeated indices implied. This is a special
case of the general form which we shall often encounter:

[@(NHTu(E)|? = [@()Tu(E))a6E) M) (7.13)
where I' = 4199, and in particular,
F - -yll
z—? -'1'15
e R
W=y

The spin sums can now be reduced to traces if we use the energy
projection opcrators from (3.18):

and

z Un (i &) Or(Diy8) ™ Z e, wi(pa) s (pe) (l‘;,:,_m)

X re=l "

- (2", = el

The spin sum in (7.12) becomes

2; z Qu(ps)8s) (‘V" n;;‘m 1")“ s(p1,87)

10
- $+m Ps+ m
;(70 Zm To)-a ( 2m )a-
where again we use the same technique. This last expression is the
trace, that is, the sum of the diagonal elements, of the matrix

+m) (p; + m)
m "7 Im

‘Yo(‘

Thercfore, (7.12) may be written as

ds - 4Z%*m? p+m (pr+m)
R oL L e Ll

(7.14)

Some Trace Theorems; the Spin-averaged Coulomb
Cross Section

We must now digress and establish useful properties of traces of Dirac
matrices, These properties will allow us to calculate cross sections
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without ever looking directly at a Dirac matrix. They are derived
from the commutation algebra of the ’s and are valid independently
of the choice of representations for the 4’s. We summarize these
properties in & series of theorems:

Theorem 1
The trace of an odd number of v matrices is zero.

Proof. For n odd
Trdy o« da=Trd - daveve = Travh © © - dame

where we have used the cyclic property of the trace, namely
Tr AB = Tr BA. Moving the first vy, to the right, we pick up n
minus signs from v,7: + 77, = 0 and obtain

Tregy - - dam (=)Trd - daysrs =0 (7.15)

for n odd.
Theorem 2
Trl =4
Trdp = Trd m 3 Tr (g5 + §f) m ab Tr 1 (7.16)
= 4a-b
Theorem 3

Tréi - - - da = 0arrasTrds -+ - o — aras Trduds - - - da

+ ot araaTrs - - - da (7.17)
In particular

Tr didaftsds = 4{a1'as Goras + 01764 ax'Gy — G1°ap Gy-ay]

Proof. Using d,fd; = —did, + 26,03, we move ¢, to the right of
fa, that iB,

Trdds » -« gy = 2a10a3 Trdy -+ fo — Trifadafs © - © fa
Continuing the process, we obtain

Tr“l o s e ‘" - 2al-a”l‘r¢' [P “n_ « o
+ 2000, Tr gy » * * oy = Trds - « - duh

Finally, we use the cyclic property of the trace to get ¢, back on the
left of the other v matrices; the theorem then follows.
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This last theorem is exceedingly useful in order to reduce a com-
plicated trace, although for any n > 6 it pays if possible to use some
subtlety to avoid an avalanche of terms.

Theorem 4
Trye=0
Tryutp = 0 (7.18)
Tr vedbgd = dieappaaclicd®

where easys is +1 for (a,8,7,8), an even permutation of (0,1,2,3); is
—1 for an odd permutation; and is 0 if two indices are the same.

Proof. Bince 45 = iv%y'y%y?, the first two identities are immedi-
ate. The third follows by looking at the components. For a non-
vanishing contribution all components of a, b, ¢, d must be different
and the total contribution is the sum of the various combinations of
components multiplied by the sign of the pennutation. To fix the
overall sign take

Tr ysvey17sYs6®hictd® = feqizaatbic’d® Tr +}
= 41e0125a%'cd?
Theorem §
Y =4
vy = —2¢
vuffy* = 4ab (7.19)
Vusifigrr = —24d
vubfdyn = 2(dap¢ + ¢¥dd)

Although this is not strictly a trace theorem, it is often used in con-
junetion with trace calculations, and it is included here for convenience.
The proof is a straightforward exercise.

Theorem 6
Trdy -« fon = Tres - - da (7.20)

Proof. From the charge conjugation discussion of Chap. 5,
recall that there exists a matrix C such that Cy,C~' = —4T. Then

Trdy « » + faa = Tr Cd,C-'ChsC? -+ + CanC?
= (=) Trdld} - - - di.
-Tr[ﬂ,. [T ;‘.]"-Tr;‘.. [T “l
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Returning to our problem of Coulomb scattering, and using
Theorem 1, (7.14) becomes
Zl 2
S = Zo LTy Vopeyy + it T (1

Using"l‘heorem 3 and Theorem 2, the final answer is obtained:

2.3
% - Fo (BEEy — 4peps + ) (7.21)

The differential cross section can be put in terms of the scattering
energy E = E; = E; and scattering angle 6, using the kinematical
relations

pepy = B — ptcos 6 m m?  282K" sin’g and 1q]? = 4p* ain’-g
We find

de Z%? , .0

& " T Ene (6/2) (1 = B ain? i) (7.22)

This is the Mott cross section!; it reduces to the Rutherford formula
08 88— 0,

3 Coulomb Scattering of Positrons

Turning next to the scattering of positrons in a Coulomb field, we
note that to lowest order in « the croas section is identical to electron
scattering. This is moet simply seen by writing down the matrix
element. From (6.56) and the discussion following it,

Sy = ief d'z ¥s(z) A(x)¥{7(z) (7.23)

ITere the incoming state is in thc future and is to be interpreted as a
negative-energy electron of four-momentum — p; running backward in
time as drawn in Fig. 7.1. Putting in plane waves to lowest order, the
wave function is

V(@) = gy veran)eer (7.24)

Similarly, the outgoing state in (7.23) is the ncgative-energy clectron
running backward into the past. Its wave function is

Vs(z) = \/ "n‘ v(pos)etives (7.25)
1 N. . Mott, Proc. Roy. Soc. (London), A124, 428 (1929).
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Fig. 7-1 Coulomb scattering of positrons.

representing the incident positron with momentum p, and polarization
& before the scattering. Introducing (7.24) and (7.25) into the
S matrix, we have

Sym 2L [m
’ ir VNE,
in analogy with (7.4).

Because of charge conjugation invariance, we could equally well
write for (7.23) to this order in e

Sy m +ief A% Yui(2) A¥es (7)
- —ief d'z YT(z)C- ACY] (=)
= +ief d'z ¥s(z) A¥i(z)
which leads to the samo results as before. In this picture the positron
runs forward in time and Y. (z) = Cy%; (z) is the wave function of
the initial positron.

By the same calculation as leading to (7.12) we find the differential
cross section

‘”(m,a;)'y“v(p;,a,) / %;Tx Kpr—pis

(gs";) - ?g[';aﬁ"nj z B(pi,8)v°v(pr,8)? (7.26)

Lor.0

Again the spin sum may be reduced to a trace, using the relation
for positron spinors [see (3.9)]

zv-(m&)ﬁa(%&) - (.—_1%'_").‘

+¢ m
so that
3,13
(). = 5 e 0 = min*py — m

This is the same a8 (7.14) with m replaced by —m. 8ince our answer
for electron scattering was even in m, this confirms that the positron
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" \
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Fig. 7-8 Coulomb seattering of electrons.

scattering cross section is equal to the clectron scattering cross section
in lowest order of a. Wo could have anticipated this result from
charge conjugation invariance. We saw in Chap. 5 that to each
solution of an electron in a potential A, there is a corresponding solu-
tion of the positron in the potential — A,, that is, the scattering of an
eleetron from the potential —e/4rr is the same as that of a positron
from potential +-e/4xr; however, since the calculated cross scction
depends only on e4, the sign of A* does not matter. This is not true
for the e® corrections which come from the product of the first- and
second-order scattering amplitudes in Fig. 7.2 and which have oppomte
signs for electrons and positrons.

We may also observe that the positron cross section is obtained
from that of the electron by replacing p; +» — p;,;thisisageneral fcature
of positron theory called the ‘“‘substitution rule,” which is closely
related to the propagator picture we have developed. We shall see
more examples of this rule as we go along,

4 Elcctron Secattering from a Dirac Proton

\

Now suppose that we consider electron scattering from a free, live
proton instead of from a fixed Coulomb field. (Temporarily we shall
treat the proton as a structureless Dirac particle.) Ilow would our
result be modified?

If we know the current of the proton J#(z), we can calculate by
Maxwell's equations the ficld it generates. The S matrix (7.1) gives
the amplitude for scattering of the electron in this ficld and leads to
the transition rate and scattering cross section to lowest order in «
if we follow the diecussion of the preceding example.

Our first step is to find the electromagnetie field produced by the
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proton. The potential is calculated from
OA*(z) = Jo(z) (7.27)

where for convenience we have chosen to work in the Lorentz gauge,
In order to integrate (7.27) for A*(z), we introduce a Green's function,
or propagator, just a8 in the case of the electron. The propagator
Dp(z — y) is dcfined by the equation

ODs(z — y) = 8z — ) (7.28)
and has the Fourier representation

Drlz = 1) = [ gzeewm (g

where Dp(g?) = —1/q2 for ¢ » 0,

As in the Fennion case, we must decide what happens at the pole
in Dpat g2 = 0, Inanalogy with the discussion of the Dirac props-
gator in Chap. 6 we append an infinitesimally small positive imaginary
part to ¢%; this is equivalent to adding & small negative imaginary mass
a8 done in (6.40):

DHe) = g (7.29)
This prescription for handling the pole cnsurcs only positive-frequency,
or -energy, radiation propagating forward in time. 'When we consider
the scattoring of radiation by matter, pcrhaps the rofraction of light in
passing through a bubble chamber, we must make certain that positive-
frequency waves—representing positive-energy quanta—emerge unac-
companied by negative frequencies. The Fcynman propagator for
clectromagnetic radiation is then given by

d4 -1
Di(z — y) = / 12_’3_‘ aie s~y (q’ - z,.) (7.30)
and the solution for the potential according to (7.27) is
A¥(z) = [d'y De(z — y)J*(y) (7.31)

Introducing this into the S-matrix element (7.1) along with plane-
wave electron solutions gives

Sy = —if dzd'yle} (@)@ De(z = y)J*@)  (7.32)

Our problem now is to decide what to choose for the proton cur-
rent J*(y). A physically appealing choice suggested by the cor-
respondence principle is the transition matrix element of the current

Jr(y) = e} W)y I(y) (7.33)
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where e, = —¢ > 0 is the proton charge and ¢(y) and ¢%(y) represeng
initial and final plane-wave solutions for froe protons. They are of thy
same form as (7.2) and (7.3), differing only in the substitution of
P¢ and P, for the initial and final proton four-momenta and of A
for its mass. With this choice the current is

A2
) = = JIB & werrovapyspvulPs) (34

Equations (7.31) and (7.33) define what is usually referred to as the
Mgller potential® of a Dirac proton. In the nonrelativistic approxima.
tion, this choice of the transition matrix element of the current as the
source of A*(x) was adopted by Ileisenberg and applied to the electron
transitions in his calculations of radiation from atoms with matrix
mechanics.? Introducing (7.34) into (7.32) and using (7.30), we
readily compute the integrals, and the S-matrix element is

Sn = P OnsP; = Pt = ) [ e
/" _VT 4 ' ps B F;E.' é;f{

X Py 1u(pusd) iy, (P18 Pu(PASI) (7.38)

The symmetric form of this result in electron and proton variable
bolsters our faith in the choice (7.33). Had we started this calculation
by applying (7.1) for the scattoring amplitude of & proton in the field
generated by the electron current and making the guess (7.33) for the
electron current, we should have come to the same result.

Comparison with (7.5) shows that tho difference betweon scatter-
ing an electron from & Coulomb field and from a proton is contained in
replacement of the factors Zv%/|q|? by

( =1 )J-"-’-’a(ﬁ S)v(P4S)
Y m E;E¢ 1111y 6

(2r)%83(P; — P; + ps — pi)

expressing momentum conservation.

Equation (7.35) gives the electron-proton scattering amplitude
to lowest order in «; higher-order interaction effects which distort
the plane waves that were inserted in the currents have been ignored.

8 C. Mgller, Ann, Phys., 14, 831 (1932).

2 See, for example, W. Pauli In 8. Fltigge (ed.), Handbuch der Physik, vol. V
part 1, Springer-Verlag, Berlin, 1958; L. 1. Schiff, “Quantum Mechanics,”
ed., MoGraw-Hill Book Company, Ino., Now York, 1958.

and V by
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We may conveniently represent this expression by a Feynman graph,
Fig. 7.3. A solid line with an arrow pointing toward positive time
ropresents the electron and a double line the proton. The wavy line
ropresents the influence of the electromagnetic interaction, which is
expressed in the matrix element by the reciprocal of the square of the
moinentum transfer, or the inverse of the d’Alembertian of (7.27) in
momentumn epace, We refer to this line as representing a “virtual
photon’’ exchanging four-momentum ¢ = p; — p; = P; — P; between
the electron and proton. The amplitude for the virtual photon to
propagate betwoen the two currcnts is —(¢? + 7¢)~!. At the points—
or vertices—on which the photon lande thcre operate factors ey*
sandwiched between spinors v/m/E u(p,s) representing the free, real
incident and outgoing particles. For each line and intersection of
the graph there corresponds a unique factor in the S matrix. In
addition, Sy always contains a four-dimensional 8 function expressing
overall energy-momentum conservation.

Returning to Fig. 7.3 and I°q. (7.35) to calculate a cross soction,
we firat form a transition rate pcr unit volume by dividing |S.|* by
the time interval of observation 7' and by the spatial volume of the
interaction region. This gives

S 2
Wy = Lvlél. = (2r)84P;+ ps — Pc— p)

1 m? AM?

— e . ]
S FAT AL

(7.30)
where

Dy = (8o 1)) o3z (9P S P S0)

is & Lorentz invariant matrix element and will be ealled the invariant
amplitude. In forming wy from (7.35) we have extended the treat-

Fig. 7-8 Eleetron-proton scattering
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ment of the square of a § function given below [see (7.6)] to include
the space as woll as time interval:

(2n)84(Ps + pr — P — pII?
= (2r)'340)(2x) 8% (Ps + ps — Pi — p) >
X VT@x)8 Py + ps— Pi— pi) (7.37)

Next wo divide the transition rate per unit volume by the flux of
incident particles |/ino| and by the number of target particles per unit
volume, which is just 1/V according to thc normalization used in (7.2).
I'inally, to get o physical cross section, we must suin over a given
group of final states of the clectron and proton corresponding to
laboratory conditions for observing the process. The number of
final states of o specificd spin in the momentum interval dp, d*P; is

vERV o (7.38)

and so the cross scction for transitions to final states in interval r is

- d'p; dar, v

do / ve @r)3 i2ri' ’lnn
d*p; d*P; mM mM (2x)'84(P; + p; = Pi =
r (2r) @r)? EsE, BB [V inolV

2D [2
(7.39)

We may still sum this over spin states of the final particles and
avcrage over the initial spins for unpolarized cross sections.

At this stage we can identify soine features which will be common
to all scattering processes. The physics lies in [{,(?, the square of
the invariant amplitude. There is a factor m/E for each external
fermion line, that is, for each Dirac particle incident upon or emerging
from the interaction. The phase-space factor for cach final particle
is d*p,;/(27)%. We observe, then, that cach final particle gives rise to
the factor (m/E)[d*p/(2x)?). This forms a Lorentz invariant volume
element in momentum space, as we see with the following identity:

2 = [, oot — ) d'p = [ dp S — mep) (1.40)

1 for po > 0

6 -
(po) [ 0 for po <0
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is the stop function introduced in (6.18) and is Lorentz invariant pro-
vided p* is time-liko, as is the case here. Overall energy-momentum
conservation in the interaction comes from the factor (2r)48¢(P, +
ps = Pi = p). Finally, there appears the factor 1/V|Jinol; |/inel,
the flux, is for collinear becams the number of particles per unit area
which run by each other per unit time, that is

0o = ]ﬂ{yﬂ

When V|Ji| i8 combined with the normalization factor for the two
incident particles it forms a Lorentz invariant expression:
mM - mM - mM
EElvi = V| |piE + ]P:IE ,\/(p‘. p‘ji — miM?
This shows that the total cross section ie invariant under Lorentz

traneformation along the direction of motion of the incident heams,
Fquation (7.30) may now be written in the invariant forin

(7.41)

- / \/(_FF_ETF [Myf2(2x)484(P; = P, + pr — p0)
d*p, M d°P
(%«)_'%L_W;’ (7.42)

These factors are of very general origin; hercafter wo shall omit details
of how they appear. The box normalization volume V has now dis-
appeared from our final result, which indeed could also be obtained
from other normalization conventions not involving V.,

Under circumstances not involving collinear beams it is more
convenient to consider directly the number of events per unit time
dN /dt which is found from (7.36) to be

D = [ @ 0xosxt) [ T 1DUl32e)8Ps = Pet 27 = p)

m d'p, M d'Pp
@rE, Cr)g

The p,(x,t) and py(x,!) are the number of electrons and protons per
unit volume, respectively, and they replace the two factors (1/V)
which normalized (7.36) to one per volume V.

As written, the cross section (7.42) is for a transition from given
initial spins to final spins of the electron and proton. If the polariza-
tions are ot observed, we must average over initial and sum over
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final epine; then

Dol =5 Y [atonsdroutons) 5, 0P8 Py

81.8. 24,01
7 @Utm) k) g B Pk
4 2m oM T 2M "

The calculation of the first trace using the trace theorems of Seq,
7.2 yields
'rr (’I + m) (’( + m)
2m

1
2m o I v pey” + mivey?)

‘Y‘

1
= 5 (Pt + piv; — ¢ (prpe — m?)

The second trace is of the same form and the final answer boile down
after some algebra to

[Dpaft = m (Pron(Pep) + (Pro)(Peps) — m*(PyPy)
— M¥prp) + 2M*m?) (7.43)

For the unpolarized cross section we insert this into (7.42).
For a uscful result we evaluate do in the laboratory frame of
reference in which the initial proton is at rest and we lot p, = (E',p"),
p. = (E,p),and P; = (M,0). Itisconvenient to apply (7.40) in carry-
ing out the phase-space integrals for the differential cross section for
the clectron to emerge into a given solid angle d@' about an angle 6.
Writing dip’ = p'idp’ dY’ = p'E’ dE' dQ', we have

/‘ m’Mp dL' (W2 d*P, 8(PY — M3)6(PY)

X 8P+ p = P —p)

]gl = /p dE' [Tpl28((p’ = Py — p)? — M?)
X 6P+ E—-E

Wﬂ

=B [ut" v 4B [Blts(amt — UE — DM - 2B

+ 2pp’ cos 6)

- m3M p’ ‘Dl,;l’
= M T e ETp) <08 6 (7.44)

where the requirement of energy conservation coming from the 8 func-
tion is
E'(M + E) — p'pcos 6 = EM + m? (7.43)
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and in obtaining the final form we used [ dz 8(f(z)) = |df(z)/dz|~"

For electrons of energy £ << M, the proton rest energy, we resur-
rect our earlier result of scattering in a static Coulomb field by neg-
lecting E/M « 1. In this limit (7.44) reduces to the Mott cross
section (7.21), since

do 2 E
e <

with E' = E from (7.45). From (7.43)
8rlal E
Wps = g B+ m* = prp) g <1

When the proton recoil beconies important, the electron mnay be
treated as extreme relativistio and correction terms proportional to the
clectron niass neglected. As is apparent from (7.43) and (7.44), there
are no linear (or odd) terms in m/F, so that the correction terms are of
order (m/E)%:

de _ m? E'/E (@2
d¥  &r? 1 + (2E/M) sin? (6/2) '~
In computing |T4|? from (7.43) it is convenient to reexpress P, in

terms of the electron rocoil using energy-momentum conservation
P; @ P, + p; — p;. Doing this gives

m
E.((l

3,3
D = 1_?;8’;;;? 2P¢ps Pepi + pep(Pepc = Prpy = M?))
8T’a’EE' . 9 l q’
- m31652K"2 sint (9/2) [2 + 28"1’5(— QW - l)]

- ’rﬂaﬂ 2 _ 2 R ’2 m

mEE sin* (0/2) (°°“’ 7~ gapsin 2) E <!
where werecall g2 = (p; — p)® = —4EE’ sin? (6/2). The differential
cross section is thus

de _ o® cos® (6/2) — (¢*/2M7) sin? (6/2)

d@ — 4Esin' (6/2)[1 + (2E/M) sin (6/2)]
where use is made of (7.45) in the limit m2 — 0:

E'E(1 — cos 6) = M(E — E)

Equation (7.46) was derived undor the assumption that the proton
behaves just like a heavy electron of mass M. This description is
incomplote, however, since it fails to take into account the proton
structure and anomalous magnetic monient, which are of mesonic

'ﬁ &1 (7.46)
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origin. A complete description of the proton leads to modifications i
(7.46) which are important at large energies exceeding several hundreq
MeV. Weshall return to this point in a later discussion (see Chap. 10),

Higher-order Corrections to Fleetron-Proton Scattering

The ealculation of electron-proton scattering we have carrried out thug
far is valid only to the lowest nonvanishing order in e2. To obtain
the next higher order corrections in ¢ we must return to (6.57) and
consider the amplitude for second-order interactions between the
electron and proton. This is given by

S0 = —ief d'z dy ¥,(2)A(@)Se(z — PAWW)  (7.47)

where the clectromagnetic potential is again to be generated by the
eurrent of the proton. To determine the form of this current, we look
at the form of the second-order clectron currcnt interacting with
Au(z) and A,(y) in (7.47). As in the first-order calculation (7.35),
Si3 should be symmetric in form between this seeond-order electron
current,

W(2)7Sr(z = Y)ve(y) = V@ { Y 6(z0 — yl¥al@W(t)

nipo>0

- E 0(yo — xo)\f'n(x)%(y)} (V)

nipe<0

and the proton current. The factor ¢ is necessary to make the current
a superposition of products of two transition currents. This suggests

w
D’(z-w)

{p)
8 (x~y) spl“"") Fig. 7-4 Contribution to fourth-order eloctron-

proton scattering.

0wy’
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Fig. 7-6 Contribution to fourth-order
electron-proton scattering.

that we write, following (7.31),

A z)AL(y) = ¢} f d'wd'z Dp(z — w)De(y — W} (w)vs
X { D Owe — 203wP2)

nipe>0

— Y bz — v} w2

Rnipe<0
= ic} [ d4wd'% Da(z — w)Drly — 2)
X Vi (w)vuSP(w — 2)v.¥i(z) (7.48)

The factors Dy(x — w)Dy(y — 2) are the Feynman propagators for
the two internal photon lines in Fig. 7.4. They propagate between
the cleetron and proton vertices, represented as dots, which contribute
ey, and eyv,, respectively. The internal electron and proton lines
have the fermion propagators Sy(z — ) and S3(w — 2). These
factors arc an example of the correspondence between Feynman graphs
and S matrix clements written in coordinate space. To complete the
expression for Sj¥, another term muct be added to the proton current
expressing the indistinguishability of the two photons. The electron
does not know whether the photon interacting at z originated at w or
at 2, and the possibility illustrated in Fig. 7.6 must be included along
with that corresponding to Iig. 7.4. The IFeynman propagators for
the photons assure that positive frequencies only are propagated for-
ward in time. However, all relative time orderings of the four points
z, ¥, w, and 2 occur in the interaction and the photon at w could be
equally well the first or second one emitted or absorbed by the elee-
tron. In order to symmetrize the variables of the two indistinguish-
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able exchanged photons, we add to (7.48) the terin
teyf d'w d'z Dy(z — &) Doy — w)¥7(w)7.Sp(w — 2)7.¥{(e)
This gives in (7.47)

Si = e'ef diz d'y d'z d*w ¥,(2)7uSr(z = Y)7¥(Y)
X {Dr(z — w)Dp(y — W7 (w)y"Sh(w — 2)v'¢i(2)
+ Dy(z — &) Dr(y — w¥i(w)y"Sh(w — e)y¥i(e)} (7.49)

Both terms of (7.49) satiefy the same rules for writing down S-matrix
elements from corresponding Feynman diagrams in coordinate spag |

Notice that as yet our rules are somewhat unclear with regard ,
factors! of . We associated an overall factor (—¢) with the S natr
and then a factor £S§ with the proton propagator. In higher orders |
the proton propagators S will be accompanied by an 7 for the san
reagon a8 in our present example. We may make the rule regardir
fermion propagators uniform if we write ¢Sp also for cach electrc
line and associate with each A a factor —¢, that is,

—ieASreASy -+ - efl = (—ieA)iSr(—ted) - - - (—ied)

The overall (—1) is absorbed into the extra factor of A. Thus to each
7, in the electron line we associate a factor —z. 'We can also associat
a —¢ with each proton vertex v, if we compensate by writing an £ "1
front of each photon propagator Dy. Then we obtain a uniform rule
for factors of £: — ¢ for cach vertex and ¢ for each line in the graph. W
shall hereafter assume this rule,

For practical calculations it is useful to go over into momentu 1
space, and 8o we Fourier-transforin everything in sight in (7.49). The
wave functions of the external particles (that is, the incident and fi |
electron and proton) are presumed to be plane waves as in (7.2),
(7.3), and (7.34). Then the first term of (7.49), for instance, becom

e ,—E_l 22 dé 1 d‘93 _‘Ep daip
Vi/ diz dy d'z d'w 4 ﬂEl y ,\{;_E: (_5‘!?—721 TomHERTemY
a~inv(o—w) g=igy(y—s) - P &t ) o
X qf+ Te qi F Te [ i, ﬂ(PI.GJ)‘Yn’ — m"—'+ e 'Y'u(p{,a‘)c P V:I

a—‘P'(.—!)
X [e"'l"ﬂ(P/.St)'r" PNt vu(PyS)e "'"'] (7.50

Carrying out the integrations over all coordinates yields a factor o
(2x)¢ times a four-dimensional & function for energy-momentumn con

' By working out Prob. 7.2 one may dispel possible doubts with regard
overall factoms of 2,
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servation at the vertex associated with each coordinate. The momen-
tum integrale may now be done; (7.50) then reduces to

. T [
Ig-, \}E"_?Er. E;!E @)% Py +p, — Pi— D)
dig 1 1
(2m)igi +1e(g—q) + 1

1
X [11(?1,31)‘7. ¥ — @1 — m + e ‘Y-U(Pi.&)]

X [ﬂ(PI.SJ)Y" P[ + o l ﬂ'{ + i! 'Y'u(”i,S‘):I (7.51)

where ¢ m p, — p; as earlier. Notice the appearance of the overall
energy-momentum conserving § function and of the integral over the
four-momentum ¢, running around the closed loop in the momentum
space Feynman diagram shown in Fig. 7.6. There has been a sys-
tematic cancellation of factors of (2x)4 except for the (2x)¢ we associate
with the 3 and the comnpensating (2r)-¢ that goes with the integral
over dig,. Other factors in (7.51) may be associated with the
Feymnan diagram in the same way as done for the lowest order cal-
culation in Fig, 7.3. Each vertex contributes a factor —tey, and
each external particle a factor v/m/E. The new feature here is the
factor i[p — m <+ t¢]~!, which is inserted in matrix order between
vertices, coming from the propagator for the virtual intermediate
fermion line.

With the aid of a little experience it is possible to associate
forms such as (7.51) with given IFeynman dingrams by inspection.
The Feynman graph of Iig. 7.7 in momentuin space corresponds to

Pig. 7-6 Contribution to fourth-order electron-
proton soattering.
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Fig.7-7 Contribution to fourth-order electron-protop
scattering.

Fig. 7.8, and the amplitude differs from (7.61) only in the replacement
of the proton spin factor there by

1
ﬂ(I,I)SI)-Y' p‘ - ql — “{ + i{‘rlu(P‘.S‘) (7.52)

The rest of the evaluation of (7.51) and (7.562) is nontrivial;’
involves a difficult four-dimensional integration. For the statie limit
of the proton as a point Coulomb source it has been calculated by
Dalitz.! Special difficulties arise in this example from the infinite
range of the Coulomb interaction. We shall not carry this calculation
further here.

Bremasstrahlung

It is quite possible that one of the two quanta exchanged in Figs. 7.6
and 7.7 will satisfy the Einstein condition ¢* = 0. In this case .
might escape in transit between the electron and proton and emerge
o8 free radiation, or bremsstrahlung. To study the effect of this
interaction with the radiation field on the scattering process, we again
turn to heuristic arguments similar to those used by Schiff.? These
yield with relatively little labor useful experimental results which
coincide with answers obtained on the basis of a strict quantum
treatinent of the radiation as discussed in the companion volume.?

1 R. H. Dalita, Proc. Roy. Soc. (London), A208, 509 (1061).

? Pauli, 8chifl, op. eit.

8J. D. Bjorken and 8. D. Drell, Relativistic Quantum Fields, McGraw-Hill
Book Company, New York, in press. .
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The four-vector potentinl of a “photon” with momentum &,
and polarization ¢ is written as a plane wave

As(zik) = -\/—‘2.’;7, (e + givr) (7.53)

with kk* = 0. ¢ is the unit polarization veotor and satisfies the
transversality condition

— i =0 (7.54)

as required by the nature of the radiation fietld. In a special Lorentz
frame ¢ is pure space-like, that is, ¢ = (0,c), with ¢+¢ = 1; in an
arbitrary Lorentz frame ¢ is space-like and normalized to

ot = —1 (7.65)

The normalization constants in (7.53) are so chosen that the energy
in the wave A% is just w = ko = |k| as desired. To verify this, we
compute

U= 1[d% (E* 4+ B?) = [d% B!
Since

B = curl A = { \VE/2V f x e(e=*2 — ¢%) = +/2E]V k X ¢ 8in k-z
and, according to (7.54) and (7.565),
kxe hxemee— (ko) me-e— ()= 41
we have
UmZ [ auaint - kox)mkmo
vV

We ‘consider the scattering amplitude describing the radiation
of such a “photon’” during a scattering event. For simplicity we
return to the static approximation, replacing the proton by a statie
Coulomb field as in (7.4), and calculate Sy to lowest nonvanishing
orderine. The Feynman diagrams for this process, shown in Fig. 7.8,
correspond to a second-order process with one vertex for the interac-
tion of the electron with the Coulomb field and one for the emission of
the bremsstrahlung quantuni, There can be no first-order emission
of radiation by a free electron in the absence of the exiernal field.
This is kinematically forbidden, since it is impossible to conserve
encrgy and momentum: k? = 0 » (p, — p)? < 0.
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Fig. 7-8 Bremsstrahlung of an electron in a Coulomb field.

The second-ordor S-matrix element is
Sy = & diz d%y ¥,(z) [ — Az k)iSp(z — ) (=) AP (W)
+ (=) AT (2)iSp(z — Y —iA (k)] I(y) (7.56)

where Agi(z) = 4'—'[2;‘]’

and the two terms correspond to the two orderings of the vertices
shown in Fig. 7.8.

As usual, it is convenient to transform (7.56) to momentum
space by Fourier-expanding all factors and carrying out the coordinate
integrations. The result of this by-now-routine operation is

—2Ze® ) 1 mt 1
S = = etk k= B>
, t ,
X a(ps8) [(-“) ¥ k=m (=170)

+ (=ive) g (—0) | wmam) | D)

where ¢ = p, + k — pi. Thore is an additional contribution coming
from the first term in (7.53) for which the energy & function is
8(Li + k — E;). This term describes absorption of energy in the
scattering proocess and does not contribute to the proocess of interost
here, in which the incident electron gives up energy to the radiation
field and emerges with E, = E; — k < E;, We note the new feature in
(7.57) whioh is to be added to our growing lore in Feynman amplitudes:
the factor (—t¢) appears at the vertex where a free photon of polariza-
tion ¢, is emitted, and 1/4/2k appears as the normalization factor for

a photon "“wave function.” \
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The bremsstrahlung oross scotion can now be caloulated from the
S matrix (7.57). We limit the derivation to & — 0, that is, to the
emission of a very soft photon. The more gencral result, known as
the Bethe-Heitler formula, appears in many toxts. In this limit the
factor within the brackets in (7.67) can be approximated as follows:

—id(py,87) [¢ ((z’, j’_ i)'."_'”::," + v ((:“ — ,S,'"_'”gf,] u(p.,&)

- o —i(pyep) (122 = (B~ mhde
+ 7°[2"p'__2,:$:: — m)l} w(pi,8)
= —1i(py,87) you(ps) (ﬁ— - ;:—:%:) (7.58)

where we have dropped a factor kX — 0 in the numerator and, in the
last step, used the proporties (3.9) of Dirac spinors. The brems-
strahlung matrix element in the k — 0 limit is just & multiple of the
clastic scattering amplitude. I’roceeding to the cross section, we
square Sy of (7.57) and (7.58), divide by the flux |v|/V and by 2x8(0)
to form a rate, and sum over final states (V?d% d3p,)/(2r)® in the
observed interval of phase space. (I7or a cross section for unpolarized
electrons we should also suin over final and average over initial electron
spin states,) We obtain

Zletm? (k ¢ Pi) |9(s,87) vou(ps,8)|*
‘Dr

= k[v]E,E, ke [q[*

3 3.
X 2ni(E + k = B) L

Identifying terms with the elastic scattering cross section in (7.11),
we find

:;I’: (‘%;)almlo 2k(2r)? K d dk (k - ke—:) Aomm= k()7 59)

This is the cross section for the eleotron to be observed in a solid angle
dQ, and for a photon of polarization ¢« to emerge with k in the interval
ddk. Thus in the limit of soft-photon emission we ocan express
the inelastio cross section as a multiple of the elastic oross section
at the same energy and angle of scattered olectron.

We observe in (7.69) that the photon energy spectrum behaves
as dk/k and therefore the probability to emit a zero-energy photon
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>VV\M Ze Ze Fig. 7.9 Radiative corroctions to
Coulomb soattering.

i infinite. This is the “infrared catastrophe.” It requircs a caroful
analysis of actual experimental conditions for observing bremsstrah-
lung in order to rcmedy the difficulty presented by this infinity, [he
crucial point is that every detecting apparatus has a finite enorgy
resolution; and if it accepts inclastieally scattered clectrons in a finite
cnorgy interval including k = 0, it also accepts the elastically scattered
ones. [or a consistent eomparison with oxperiment we must there-
fore include both clastic and inclastic cross sections caleulated to the
same order in €%, Since the bremsstrahlung contribution (7.59) is of
order e? relative to the clastic scattering, we must also include radia-
tive corrections to (do/dQ/)cuese to the same order 3. These arise
from two types of terms. There are those illustrated in Figs. 7.4
and 7.5 corresponding to a second-order scattering of the elootron
in the Coulomb ficld, In addition, we must take into account the
interaction of the electron with ttself via the radiation field, The
I'eyninan graphs for these contributions in Fig. 7.9 show a virtual
photon originating on the electron and boomeranging back instead
of landing at the Coulomb source (or proton) as in Fig. 7.4. The
amplitude coming froin these graphs contains a divergent term which
preciscly eancels the divergence in (7.59) at ¥ = 0, We shall arm
ourselves with more training and cxpericuce boefore undertaking the
delicate task of caleulating it. !
Bofore leaving (7.59), howevor, we shall ovaluate the cross section
for emission of soft bremsstralilung in an interval AE which excludos
the elastie limit. We begin by summing over photon polarizations
by using & very eonvenient technique due to Foynman.! Notice
that the exact scattering matrix eloment in (7.57) vanishes if wo roplace
the photon polarization ¢ by its four-inomentun k*. This property
is also valid for the sofi-photon approximation to the cross section
(7.59). It is & consequence of current conservation 8j,(x)/oz, = 0
which has as its momentum space analogue k,5#(k) = 0, It is required
'R. P, Feynmnan, Phys. Rev., 76, 769 (1649).
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of o gauge invariant calculation in electrodynamics, since the momen-
tum spaee analogue of a change of gauge is A«(k) — A=(k) + k=A(k)
and the added factor proportional to & must not change the final
answer.

To take advantage of this result, we write

. (,%_'%’; - ,g%:)’ (7.60)

and orient the coordinates such that k= = (k%,%,0,0), wherc k! = ° m [,
Since (7.60) is a scalar, we can evaluate it in an arbitrary Lorentz
frame; in partioular, we choose one in which the scalar potential
vanishes, A%z) = 0 in (7.53). In this system A(zx) is transvorse
and the two indcpendent transverse polarizations may be specified in
accord with (7.54) and (7.55) by

e« = (0,0,1,0)
and € = (0,0,0,1)

Summing (7.60) over polarizations gives

3
T esealsr = S S JO0 0~

poi uel

Since kJ»* = [k, Ju» = 0, as observed above, it follows that Jo = Jiv,
J*0 = Jr1 and therefore JO° = J1l: henoe

g oSt m = s

whero we again rovert to the summation convention. Tho polariza-
tion sum has now been replaced by a manifestly covariant expression
which carries a quite general instruction based only upon current
conservation: the result of performing a polarization sum is

El [e.(K)a*(B))[e.(R)b* (k)] = —adb (7.61)
po

provided a* and b* are conserved curronts; that is, k-a(k) = k-b(k) = 0.

Applying (7.61) gives the bremsstrahlung cross section (7.59)
summed over polarizations. Intograting this over all photon emission
angles and energies in the interval 0 < kgie € & S knx K Ey, wo
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do - do @ [ hmax 2prp . mt _.m
(dﬂ,) tnatte 477 /km- kdk/ ‘m"[k-pf kp, — py)? (k'p‘)’J

do kll'lll 2(1 - 9 U')
- (@7).1.....," Fotn f 4r [(l -k o,)(l' —ft 09
ml

B - kg EN1- f:- o‘)']

where §, and @, are the initial and final electron veloeitics, respectively,
with 8, = 8, = § in the soft-photon limit and (;« §, = 8% cos 6, for
seattering angle 8, Integration of the last two terms in (7.62) is
elementary.

dn. m?

m 1] 1
4 B -o.k)?'E"'f—nEd‘(l —y !

The first integral is readily evaluated with the aid of yet another trieck
introduced and exploited by Feyninan.! This consists of eombining
the two denominators with a paramneter integral

(7.62)

1 ! dz
&=} @ra=op (7.63)
Applied here it gives
dh __ 1= b

-k g0 ~k-g)

- -— * g‘l. l
21— G- 00 [, de Fr 1=k Oz + 01 = )P

1 1
=200 =00 [ de g [0z + 6(7 = 2)]°
dz
— BT F 487sin® (6/2)z(1 — z))

-2(1 —ﬂ’cosﬂ)fol[l
(|+ = BYsin’ ; )+0(ﬁ') A1
2111(—-9-)+0(q,) '-:;«1

¢ = (pr — p)* = —4E* sin’g
' Ibid,
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The soft bremastrahlung cross section is then

4000 050 NR
do (da) 2, ke 3 8"sin' 5 + 089
a3, "~ \d0, Janite * - s -
/ 1/ elangle T ml ln(—%’-)—l+0(ﬂ:) ER
m q
i (7.64)

whero the two forms apply in the nonrelativistic (NR) and extreme
relativistic limit (ER) of electron cnergies. We must join (7.64) onto
the radiative corrections to (do/dQ)aeu. in order to obtain a finite
result when kg — 0.

7.7 Comptlon Scattering

We may now include second-order interactions with plane-wave
fields (7.63). Let (7.53) represent an incident photon which is
absorbed by an eloctron at one vertex and
’ l om’ :

A,(x';k’) - _‘\/_2,5'—. G;(G_“ v 4 ot "‘) (7.65)
a final photon emitted at the second vertex. This process, known as
Compton scattering, conserves energy and momentum in scattering
from a free electron according to the rolation

k+pi=k + py (7.66)

The second-order Compton amplitude differs from (7.66) by the sub-
stitution of v, A#(2;k') for veAF™" (). Inserting (7.63) and (7.65) into
the second-order S matrix and carrying out the Fourter transforma-
tion to momentum space gives

l

S;?onmol) E \/ﬂ_)? (2x)s8%(py + K — ps — k)

X o1 [ (=) s (— 0

+ (=it g (=) | w107

corresponding to the Feynman graphs of Fig. 7.10. Three additional
terms with changed signs of & and/or &’ have been dropped from (7.67).
Two of these vanish, since they lead to 8¢ functions corresponding to
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Fig. 7-10 Compton scattering.

the energy-momentum conditions
p=p+Ek+ K and pr=p+ k+ kK

which are impossible to satisfy. These conditions correspond to the
process of a free clectron decaying to a final state of one free electron
plus two photons, which is kinematically forbidden, A third tenn
with the two photons & and &’ interchanged leads to the condition
k' + p, = k 4+ p, corresponding to scattering of an incident photon
with &' to a final one with . The kinematical constraint cannot be
satisfied simultaneously with (7.66), which describes our present
conditions, and so can be dropped. The term retained in (7.67) comes
from the first term of (7.63), e=**#, which corresponds to absorption
at z of a photon of four-momentum &* from the radiation field, and
from the second term of (7.65), eH¥'#, rcpresenting emission at 2’ of a
photon with four-momentum &',

Notice that S{t°**** in (7.67) is symmetric under the substitution

ke =K', :
This is known as crossing symmetry, and it porsists as an exact sym-
metry in all higher orders of interaction.! It plays an important role
in particle physics.

Calculation of the Compton scattering cross section proceeds
along the lines developed earlier; it is only the spinor algebra that
presents a somewhat more formidable hurdle. We form the cross
section do by squaring the amplitude of (7.67), dividing by (2x)464(0)
to form a rate, dividing by an incident flux |v|/V and by the number
of target particles per unit volume 1/V, and summing over the phase

1800 the compnnidn volume, Bjorken and Drell, op. cit,
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space [V1/(2x)4] d®p, d*k’:

e'm
do = 2x 4
X /Iﬂ(wﬂr) 1 t+r ¢ ) u( a‘)
' pt+k-m yi — kf— m Ph
\
x 8oy + K = pi=k) ™% T q.0g)

The factor m/kE;|v| is just (1/k) if we work in the laboratory frame
in which the initial clectron is at rest; and the integral over all recoil
electrons and over photons scattered into a solid angle dQ. about a
laboratory angle 6 gives, with the aid of (7.40),

Kk [ md ,
dﬂn’/—ﬂr '-'LE:L'5‘(P:+IG -p—k)

= mdty [\ K di* 8k + pi = KT — mDoCk + m — K)
- dily / B 1 i s2m(k — k) — 2kK'(1 — cos 6)]
_ K
= g5 90~ (7.60)

where &’ and % arc rolated by the Compton condition according to the
8 function in (7.09):

' - k - k
¥=1 + (5/m)(1 — cos 6) 1 + (2k/m) sin® (6/2) (7.70)

Equation (7.68) reduces now to

do LAY 4 1 !
F.n-“l(-x;) Ia(p],ﬂj)(f "+k_m¢+"‘_kr_m")

u(p,8:) l’ (7.71)

which describes the differential cross section for electrons and photons
polarized initially and finally. We can further simplify the spinor
matrix element considerably by choosing the special gauge in which
both the initial and final photon are transversely polarized in the
laboratory frame of refcrence; that is, we choose

¢ = (Or) withe -k = 0
¢ = (0,) withe ‘K =0
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It follows from this that ep, = ¢'p, = 0 and the spinor factors col-
lapse to

(psey) ( —‘-iy:-‘:—m £+ "—:g%r.-;—m !’) u(p.&)

k k’
- _a(phal) (;k‘p + 2';; p ) u(ph“)

where we anticommuted spin matrices and used the property of the
Dirac spinors as before: (p + m)eu(p:,8) = ¢(—p; + m)u(p,s,) = 0.
Inserting this result into (7.71) and taking the sum over final spins s,
and the average over initinl spins & for an unpolarized clectron cross
section, we find, with the aid of (7.13),

do 1y do
aﬁ 2 ta.u da

2K B tm( ek | ok \ptm
2 \k 2m \2kp; * 2k"pi] 2m
ked | k'ds
X (2k-_m + o> p‘) (7.72)

which presents us with traces containing up to eight v matrices,
There are three distinct traces to be evaluated; the two cross terms
with the denominator factor (k-p)(%'-p) are identical according to
trace theorem 6 and the eyclie properties of traces. In reducing such
complicated traces which contain the same vector more than once
it is usually desirable to anticommute factors until the identieal
vectors are alongside each other; then the identity dd = a* removes
two v matrices, Applying this technique here, we reduce the above
traces as followa:

T\ = Tr (p;, + m)e'ek(p: + m)ke [

= Tr p,'ekp:kes’  torms proportional to m?® vanishing bocause
k* =

= Tr 2kp, pye’ekerd’ = 2k-p, Tr po’ke’
= 8kpi(k'p, + 2k¢ pre)  according to Theorem 3
= 8k k" ps + 2(k+¢')Y]

where we have used energy-momentum conservation k + pi = k' + p,,
80 that

k"pi - k-p, and l"p! -k (7.73)
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In the same way we evaluate
Ty = Tr (p; + m)es’k'(ps + m)k's'y
which differs from Ty only in the substitution ¢, k &> ¢/, —£’, 80 that
Ty 8K plkp — 2(K"e)Y]
For the lnst trace we find, by the various tricks indicated,

Ty = Tr (py + m)dek(pi + m)k's's
= Tr (P« + m)cek(pc + m)k'e's + Tr (k — k')dekpk'e's

= Tr (i + m)k(pi + m)k'e'ed’e + 2k’ Tr (= )kpk'y
— 2k« Tr (—1)skp.k’

= 2kp; Tr pik'd'es’s — 8(k-¢') k'p; + 8(k'-)* k-p,
= 8(kp) (K" p)[2(e"¢)* — 1] — 8(k-¢)2 k' p; + 8(K-¢)* k-p;

Putting the traces all together in (7.72) we find the Klein-Nighina!
formula for Compton scattering

- (k')' [7; + 5+ 4 = 2] (1.79)

where &’ and k are related through the scattering angle according to
(7.70). In the low-energy limit of k — 0O this reduces to the classical
Thomson scattering

de o!
(d-_ﬁ)n-.o m' (e ¢ )

—a- - .-——’-— - 18
e ™ 28X 10~ cm

where

is the clnssical electron radius. As the ecattering angle 6 = 0, k — &’
and we find the Thomson cross section to be valid for all encrgies
in the forward direction. Finally, we can sum over final photon
polarizations ¢’ and average over initial ¢ for the unpolarized cross
gection. The procedure is just the same one used in classical electro-
dynamics for scattering of light, and we borrow the result:

2 N\ g /)
oo (5 (5 - i)
10. Klein and Y. Nishina, Z. Physik, 63, 863 (1929).



Relativistic quantum mechanics

LA LN

LN

-5, .8,
Fig. 7-11 Pair annihilation.

This is readily integrated over the photon solid angle to a total cross
section. Introducing 2 = cos 6 and using (7.70)

ra? 1 1
o= *nT*'/-n [[1 + (k/m)(1 — o)? + 1+ G/m){T =)
1—2t
(7.75)

T T+ G =2k
The Thomson cross section again emerges at low energies:

8r o k
0-?;’ for;-»O

At high energies the total cross section is

e [h 2 g O(’:ln;ﬁ)]

with the dominant logarithm coming from the second term in (7.75).

.8 Pair Annihilation into Gamma Rays

If we turn the Feynman diagrams for Compton scattering on their
sides as in Fig. 7.11, we come upon another process of considerable
physical interest. This is the annihilation of an electron-positron
pair into two photons. The relevant S-matrix element in momentum
space, with kinematics as shown in the figuro, is

S = 75 \{m '_21.2k, (2%)*5' (ks + ks — P+ — P-Y0(pssts)

k:ﬁi (=tn) + (-ih)'”_—_;;';'-:—‘”—1 (—s'n)]
X u(p-,8.) (7.76)

X [(-in) 7=
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and is symmetric under the interchange of the two photons as required
by the Bose statistics. According to our description with Feynman
propagators, this process corresponds to the picture of an electron
produced in the past scattering into a state of negative energy —p.
and propagating back into the past. Along the way it produces two
photons, that is, it gives up energy twice to the radiation ficld. This
is the lowest order in ? in which this process can occur, since pair
annihilation to a single photon cannot conserve encrgy and momentuin,
Both graphs must be included in order to ensuro the required sym-
metry of S under interchange of the two photons.

Looking back at the Compton scattering amplitude, we notice a
very strong similarity between (7.76) and (7.67). Indeed, the
subatitutions

¢ ke €, -k
K o, +ky
Py & < P, 8-

P 8 =Py +8

(7.77)

transform the two amplitudes into each other. This is an example of a
general substitution rule! which is valid to arbitrary orders and which
relates processes of the type

A+B->C+ D
for instance, to the processes
A+C—oB+D

whero 5 denotes the antiparticle to B, ete.  Another example of this
substitution rule applies to the relation of the bromsstrahlung ampli-
tude (7.50) corresponding to the graph of Fig. 7.8 with the amplitude
of pair production in a Coulomb field as shown in Fig, 7.12.

By familiar steps we proceed from the matrix clement (7.70)
to a differential croes section. For an unpolarized positron incident
on an unpolarized electron at rest in the laboratory frame the result is

- ¢! m (=1)qp m=— 2, ks tiksrs \ p- + m
de (2‘!’5’ / m + 4 Tr 2m (2?_‘k| + 2})_"61 2m
ke #akans \ d°k, d%ks - -
X (2P—'k| -2—7’——5-__ ') Ek—l -'2-E 8‘(’01 + k, P~ p,,) (7.78)

where 8, = p,/E, is the incident positron velocity, the factor 34
comes from the spin average over initial states of both the electron and

1 A proof to all orders is given in Bjorken and Drell, op. cit.
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Fig. 7-1& Pair production in & Coulomb field.

positron, and the (potentially treacherous!l) minus sign comes from our
norialization of positron spinors [sce Eq. (3.9)]. The siinplified forin
of the matrix element is due to the choice of transverse gauge

Qp. = P = 0

for the laboratory frame of reference and is the same gauge, according
to the substitution rule, as was applied to the Compton scattering
calculation, It has the virtue here that we can obtain the tracs
directly from (7.72) and (7.73), with the substitutions (7.77). The
only task remaining is to roduce the & functions for laboratory
kinematics:

Ik dl
T T 8 + b = 1 = )

-/ %k,dk. ds, 8(p+ + p)* — 20 (P + P)G(E, + E_ = kap

- 9“5‘5 54" kudby of2mt + 2mEy = 2ki(m + B, = py 008 0)

_l m(m + E,)
4[m 4+ E, — P, cos 6]

dh, ; (2.79)

Collecting the above trace and phase-space results in (7.78), we
find the following result for the pair annihilation cross section in terms
of laboratory energies and angles:

de a*(m + E,) ks _k e
= = e [ - B - 4ot - 2]
om + E,)

= 8palm ¥ E, — py con 0)?

E+ = P4 CO8 (] m _ ‘
X l m + Ey = pyconb +2 -4 'l)’] (7.80)
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7.9

where
ki - M+ Ey)
1

m+ E, — . p, cos 0
and
k,-m+1«;+_k,-l"4:%t£°ﬂ_0k,

according to the kinematic constraints in (7.78) and (7.79).

For a total cross section we sum do/dSl, over final photon polar-
izations and integrate over the solid angle dfl,. This latter step
requires care, since the final state contains two identical particles.
Equation (7.80) tells us that one of the photons emerges in df),;
because of their indistinguishability, this can be etther of the two
photons. If we were to integrate do/dfh, over the entire 4r solid
angle, we would be counting each distinguishable state exactly twice,
that is, we would evidently be counting two photons per scattering
event, We should thercfore take one-half of this intcgral in forming
a total cross section

do
2 d<,

The low- and high-energy approximations for the total cross section are
now recadily obtained froin (7.81) and (7.80): a8 py — 0, k; — —k, and
the polarization average of (e'e5)® — 14; hence!

o= dh, (7.81)

tr
pm g W1H0E) Ak

In the extreme relativistic limit we find

-ﬂ'a 2D+ E.' e
2 mi, [l l+O(E.-ln )+ ]

where the first two torms of (7.80) contribute equally to the leading
order contribution and the sum of the last two terms there is smaller
by a factor m/E,. These results were first obtained in 1930 by Dirac.?

Electron-Electron and Fleetron-Positron Scattering

Electron-electron scattering is handled in & manner very similar to
clectron-proton scattering. Ilowever, there is an additional graph
1This is & poor approximation to 2 for 5, — 0. Coulomb wave functions

should replace the plane wavos of the electron and positron.
tP. A, M. Dirao, Proc. Cambridge Phtl. Soc., 38, 361 (1030).
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which arises because of the identity of the electrons. The two graphs
for this process are shown in Fig. 7.13, which also defincs the relevant
kinematics. The corresponding scattering amplitude is, with spin
labels suppressed and with factors as in (7.35) for the electron-proton
anmplitude,

SN - __—em? [ a(Pl)("‘Yn)u(Pl)a(Ps)(-i‘Y")u(Ps)

s | %4 Y1939 J’ (pl - p:)’
; PN (=i )ulp)a(ps) (= iv)u(py)
(» — p)?

X (2m)34pi + P2 — 71— py)  (7.82)

The relative minus sign between the direct and exchange terins is due
to the Fermi statistics, which requires the amplitude to be antisyme
mectric under intcrchange of the two final electrons. It is also anti-
syminetric under interchange of the two initial clcctrons as required
by the statistics. By a similar argument the scattering amplitude
to or from a state containing two identical Bose particles must be
symmctric under their interchange. We observed this to be the case
in the amplitude (7.76) for the pair annihilation process of Fig. 7.11.
No additional nonnalization factors, such as 1/4/2 or 2, were intro-
duced into (7.82) when the exchange torm wasadded. The rules for
constructing differential cross sections from Sy, are not altered by the
presence of identical particles in the initial or final states, We must
only take care that the factor 14 of (7.81) is included in intograting
for a total cross section when two identical particles appear in the
final state. No special factors appear for idontical particles in the
initial state, since the incident flux is unchanged. Eloctron-eloctron
scattering provides a clear and simple example of the correotness of
this rule. The second, or exchange, term in (7.82) can be noglectod
for scattering in the forward direction with a small momentum trans-
for (pr — p1)%. In this limit the scattering reduces to the correct
Coulomb amplitude, a result which is indepondent of statistics.
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An expression for the differential croas scction for scattering of
unpolarized electrons can be constructed from (7.82) in the usual way.
In the center-of-mass frame it is

e'm!

1 1
4 = G EEH) / 3 [Rp’. =)
)(Tr(" +m_Y '+m'r-)'l‘l‘(’;2-,:m'r" Ps+m_r,)

2m "’ 2m om
1
IR DE Y D
prtm_  a+m_ (t+m)  (atm)_,
X Tr [ m ™ om ' om L om !

N

+ (p1 & p;)] 3(p1 + ps — P — ps) dpy dPpy  (7.83)

wherc E is the centor-of-mass cnergy of each eloctron and g its velocity.
Notice the factor 28 for the relative velocity of the two initial clectrons
in the center-of-mass system.  For relativistic energies this approaches
twice the speed of light. There is no contradiction here with apecial
relativity, and indeed the velocity of one electron viewed from the
othor never exceeds that of light. The symbol (p; & p;) above stands
for the two additional terms that arc obtained from the first two in dz
by interchanging p, and ps.

The interference term in (7.83) betwoen direct and exchange
scattering contains only one very long trace. A pictorial way of
representing the squares of matrix elements in terms of closed loops
as in I'ig. 7.14 shows the differcnce of the direct term with two loops
and two traces and the interforenee term with one. These diagrains
are useful at times for keeping the order of indices 4, » and of spinor
factors straight. The circlo on the line is a reminder that no denom-
inator (p* — m?*~! appears.

Fig. 7-14 Graphical representation of the squares of matrix cloments for
cleotron-electron scattering. The eircle on the line indicates that no factor
of (p* = m%=! appears.
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Evaluation of the traces in (7.83) can be carried out by applying
the trace theorems following (7.14). In partioular, Theorem § is very
useful in reducing the trace of eight ¥ matricesin the interference term,
Simplifying the result to relativistic energics E >> m and noglecting
terins proportional to m?, we find for examnple

Tr (Povudrr Py Pry”) = —2Tr (Fiy.p1Psy'Pr) = —8p1ps Tr piy
= —32(p1pe) (P1DY)

In terms of center-of-mass energy E and seattering angle 6 the differ-
ential croes section is

de 1 + cos (6/2) + 2
dQ ) sind (6/2) ' sin® (6/2) cos? (6/2)
l + sint (0/2)

wherc the first and third terms are the squares of the matrix clements
for the two graphs of FFig. 7.13, and the second term is the interference
contribution. In obtaining this result we used the kinematical iden-
titics p1'ps = py'ps = 2E3; prps = py-ps = 2E cos? (6/2); and

.8
prpy = prpy = 260 8int

which are valid when terms in m?® are neglected. Fquation (7.84) is
the high-energy limit of the Mgller formula! in the center-of-mass
frame.

Turning next to clectron-positron scattering, we invoke the sub-
stitution rule as in (7.77) to obtain the cross section from the Mgller
formula. The Feynman diagramns for this process, known as Bhabha
scattering,? are shown in Fig. 7.15. With the substitutions

nem
P Py
Prer —qy
pre =

1 C, Mgller, Ann. Phys,, 14, 531 (1932).
tH. J. Bhabha, Proc. Roy. Soc. (London), A184, 195 (1935).

(7.85)
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’ pe
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+
Fig.7-16 Flectron-positron scattering. ) Pt
P=p;
h —q "]
(a)

and upon changing the overall sign in accordance with (6.66), we
find the Bhabha amplitude

etm? 1
87‘ - T’i- \/ENE:'—_ at‘e’ \
- A(p1) (= tye)u(p1)¥(g1)(—v*)v(q1)
X [‘ @ - p)t
_ iﬂ(pi)(-i'r.)v(q{)ﬂ(m)(-i'v“)u(pn)]
(» + @)t

X @)%+ e —m—q) (7.806)

The first term represents direct eleotron-positron acattering in analogy
with the first scattoring terin in the electron-cleotron amplitude (7.82).
Tho annihilation term corresponds to the second or exchange scattering
terin there. The relative iminus sign between these two termsa comes
from applying the substitution rule to (7.82). The antisymmetry of
(7.82) under the interchange of the two final, or initial, eleetrons
becoines in (7.86) an antisyinmetry between an incoming positive-
enorgy clectron (p;) and an “incoming” negative-energy electron (—g;)
running backward in time, or between outgoing electrons p; and —qu.
To understand this antisymmetry in the language of hole theory, we
note that at a tiine prior to the interaction the initial state eontaing
an electron p, of positive energy and, in addition, a negative-energy
sen filled except for the hole in the negative-energy state —gi. In
particular, a negative-energy electron is present in the state —g, and
therefore, by the Fermi statistics, the initial state must be antisym-
metrie under the interchange of p, «~+ —gi; a similar argument applies
to the final state. Antisymmetrization is also required with respeet
to all other partieles in the sea, but these do not appear in (7.86) and
therefore do not change its form.

In order to obtain the eross seetion for eleetron-positron scattering
in the center-of-mass system, we apply the substitution rules (7.85)
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to (7.83) and carry out the traces as for Mgller scattering. This
gives for the oxtreme relativistic limit

de a! [1 4 cost (0/2) 2com* (8/2) , (1 + costd)
()Tsi),,-ﬁ'.'[—_sin‘ @2 " e T2 ] (7.87)

Polarization in Electron Scattering

As a practical application of the spin projection operators developed
in Chap. 3 we return to the Mott cross section in Sec. 7.2 and consider
the calculation for an incident beam of polarized clectrons. As will be
discussed in Chap, 10, the decay clcctrons from x mesons are polarized
with their sping pointing antiparallel to their direction of motion.

The Couloinb scattering of an electron incident with momentum
m and spin s, where 8-p; = 0, and summed over final apin states + s,
is given by [sce Eq. (7.11))

gl% = égl%al?l' z [a(ps,8.)7 u(py )| (7.88)
ta

In order to take advantage of trace techniques in evaluating (7.88),
we introduce the spin projection operator, using (3.19) and (3.22):

1 4 vtk
2

Z(s)u(pys) = ulpys)

Z(8) =
(7.89)

Z(s)u(p,,—s&) = 0

Repeating the development indicated between (7.13) and (7.14), wo
have! \

d 42! 2m2
=g 2 (AEns)veEeulpes)] (s vou(pns)
a8

_ 42%'m? 1+ v\ +m) (3, +m)
T Tr ‘Yn( 5 ) 2 7 O (7.90)
According to (7.15) and (7.18), the additional trace involving the spin
vector vanishes and we return once again to the Mott formula (7.22).
Our result that the differential cross section is the same for a polarized

1 Ono can, of course, introduce E(s) twico, both into the matrix clemont and
its adjoint, but this is unnecessary.
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as for an unpolarized incidont beam is a special consequonce of the use
of lowest order perturbation theory only and is not true gencrally.!

In order to illustrate an observable effect of spin polarization, we
again consider an incident electron with spin lined up along its direction
of motion and comnpute the polarization of the scattered clectron as a
function of the scattering angle, The initial polarization vector &
sntisfies

8= =1 = (st —g, -8 (7.91)
and api=0 or & =g
where G m E (7.92)

Combining (7.91) and (7.92) gives

1 .
RV oy v @5

whore 8, is & unit vector along 8, For the electron spin polarization
lined up along @, denoting a right-handed electron with polarization
&n, we have , - 8ix = 8;, and

8| = \/TL—-?' - ,% 8n = Bilsm] (7.94)
¢

Similarly, for the spin polarization antiparallel to §, denoted a left-
handed clectron with 81, = —s;,, we have

B Ba, = —5
and 8| = ,% %, = —Bileal

Similar formulas apply to the scattcred electron with the index
replaced everywhere by f. The right- and loft-handed vectors
an = — s, form a particularly convenient basis for describing electron
polarizations to which we shall frequently refor. The eigenstatcs of
Z(s) in (7.89) with ¢ = t8n = Fa, arc known as positive- and
negative-helicity cigenatates.®

The polarization of the scattered clectrons is measured by

NR_NL I
Nr+ No (7.95)

tN, F. Mott and H. 8, W. Massey, “The Thoory of Atomiec Collisions,” 2d
ed. chap. I1X, Oxford University Press, Now York, 1949, L. Wolfonstein, Ann.
Rev., Nucl, Phys., 6, 43 (1956). H. A, Tolhoek, Rer. Mod, Phys,, 38, 277 (1956).
M. Jacob and G. C. Wick, Ann. Phys. (N.Y.), 7, 404 (19859).

Pwm
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where Nn denotes the number emerging with positive helicity (op
polarized right-handed) and Nv the number with negative helicity
(left-handed), Nw, N1, and P are generally functions of the scatterin
encergy and angle. The polarization for Coulomb scattering of o
right-handed electron is given according to (7.11) and (7.96) by

Pa o |2Rrsm)yons(posm) |t — [8(ps ) vou(pysm)|?
= Tatosam)voulonsm)|F + 18008 you(pism) P

lﬁ[a+mmm+m u+mmm+m]

2m 2 2m
- Tr [ (1 + vetin) (pe + m) (1 — vodsn) (ps + m)]'
- 2 2m 2 2m
[ U+wmﬂn+m)(w+M]
2 2m 2m
Tr ['mwm (z-'z':‘n._z'” YoYobsn .(1’1 + m)] .
- 06)
(% + m) ( + m)
Tr [7" 2m lzm ]

The subscript appended to Pp denotes the polarization for an incident
beain that is completely right-handed, All toerms linear in sn or
8sa vanish as in (7.90). The denominator trace in (7.96) has already
been computed in (7.21) and the nuinerator is reduced by anticommut-
ing the two v natrices together and applying (7.17). The result
after a short calculation and insertion of (7.94) is

2m? sin? (6/2) ]
EV con® (6/2) + m? sin?® (6/2)

In the relativistic limit m/E—0, or §— 1, we find Pr— 1,
indicating no depolarization of the incident electrons in the high-
energy limit of Coulomb scattering. \

For an incident electron beam that is not completely but only
partially polarized along its direction of motion, we expect that (7.97)
is modified to

Ppow=1-— [ (7.97)

P = pPy (7.98)
Here p dcnotes the polarization of the incident electrons, that is,
P PR — DL

where pg ie the fraction with positive helicity and pr, = 1 — pa is the
fraction with negative helicity. To verify (7.98), it is only nocessary
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to return to (7.96) and observe that the expression for the polarization
is linear in the initial spin projection operator. Therefore, with the
aid of the identity

14+ yubn 1= v _ 1 + pyotn
— + 5 )

Pr

in (7.96) we have the desired result:

2m* sin? (6/2)
P= P[ ~ Efcos® (6/2) + m*ain? (0/2)] (7.99)

A special case of (7.99) for p = 0 shows that an initially unpolarized
beam of electrons remains unpolarized in Coulomb seattering,

For a geometric picture to associate with these polarization results
we define the angle between the gpin of a moving electron with spinor
wave function u(p,8) and an arbitrary direction along the unit vector
n* = (0,n) by

L'(Pia)d * nu(p,8)
u'(p,8)u(p,s)

= VT =B a(p,8)ymu(p,e) (7.100)

cosam (d-n) =

whero § = p/E.

Again introducing projection operators and resorting to trace
techniques to evaluate the matrix element in (7.100) we find, with the
aid of (7.93),

cosa = 4/1 = 8%Tr (P+m)(li‘27")1m

=+I=Fsn
R RL (7.101)

According to this, [cos of < /T = B for 8 perpondicular to ¢ and the
expectation value of spin given in (7,100) for a state with ite spin axis
perpendicular to the velocity direction vanishes as 8— 1. On the
othcr hand, if the spin 8 is taken along the velocity axis, that is, for
helicity states,

cosamf.n (7.102)

and the spin projection is +1 along a direction n parallel or antiparallel
tos. In this caso we call « = § and

cosd = £1 (7.103)
wspectively.
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The average value of cos « for a beam of scattered electrons iy
given by

{cos a) = E w(s,p) cos a (7.104)
ta

where w(s,p) is the transition probability to a given final state with
momentumn p and spin 8. The sum in (7.104) is most conveniently
taken over the two helicity states. For the spin projection along the
direction of motion we find from (7.103), (7.104), and (7.95)

{cos 8) = w(sn,p) — w(ar,p) = P (7.105)

that is, the polarization represents the cosine of the angle between
gpin and momentum vectors. For Coulomb scattering of an initially
polarized beam of electrons with p = 1, (7.105) and (7.99) tell us
that at high energies £ > m or small scattering angles 6 « 1,

O ~50 (7.100)

that is, the angle between the gpin and momentum vectors of the
emerging clectrons is m/E times the scattcring angle.!

The relativistic limit of polarization calculations is most simnply
achieved by directly reducing the polarization projection operators for
m/E — 0. In this limit the spin projection operators for longitudi-
nally polarized elcctrons with s parallel to p can be further reduced.
By (7.93) and (7.94) we write

1., _vi-g
—»% asf—1

and find in this limit

1+ yatu(2+m\_ (1 n\ptm
2 2m 2 2m
Similarly,

(7))~ () o

Since the spin projection operators stand next to energy projection
opcrators in the cross-section calculations, the simplifications in
(7.107) can be made in the relativistic limit. The result of (7.99),

18. M. Borman, private communication.
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that Coulomb-scattered electrons are not depolarized for m/E — 0,
is secn immediately in this limit. The matrix element for a right-
handed relativistic electron

(1 + )
2

u(p,,8) = u(pi,8)

to scatter to a left-handed one

1 —
w(ps8y) = 3 w“(?l.ﬂ/)

with interaction y* is proportional to

a(Phﬂl)‘ln“(Ph&) - a(phal) (‘l -; 15) Yu (l 42- 1‘) “(P‘.&)
| e

= 0(ps,8,)7. ( - (1 ';'") w(po,8)
-0

Problems

1. 8how that tho planc-wave solutions normalized as in (7.2) and (7.3) have the
desired Lorentz transformation propertice. In particular, include tho offect of &
Lorontz transformation on tho box volume V {0 show that ¢(z)y(z) is o soalar and
that y!(z)y(z) is tho timo component of a vector, as dosired.

2. Construct the scattering amplitudo for tho oxchange of two photons botween
an olectron and proton corrasponding to the two graphs in Figs. 7.6 and 7.7.
Show that tho statio liinit, for infinite proton maas, agrees with tho amplitude in
second Born approximation for cloctron scattoring in a Coulomb potontinl, aa in
Fig. 7.2,

3. Construot tho amplitude for bremsstrahlung in olectron-proton scattering and
show that tho static limit reduces to (7.57) for bremsstrahlung in a Coulomb field.
Show that thore is tho same correepondence in factors betweon theso two cases as
was found in (7.5) and (7.35) for elastio sonttering.

4. D rive tho Bethe-Heitler cross scotion for bremssirahlung of photons of arbi-
trary onergy. (Soe W. Huoitlor, ““Tho Quantum Theory of Radiation,” 3d ed.,
Oxford University Press, London, 1064, for discussions of this and related processes.)

5. Derivo the Bothe-Hcitler cross sootion for production of an clectron-positron
pair by an incidont photon in & Coulomb ficld. 8how that the amplitude for this
is relatod ¢ the bromestrahlung amplitude (7.57) by the substitution rule.

6. Calculnte from (7.80) tho total oross section for pair annihilation into two
photons, * 4 ¢~ — v + v, for nll energice and show that your answer agrees
with the two low- and high-cnergy limits givon in the text for (7.81).
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7. Construct the differential cross section for electron-slectron scattering in lowesy
order Born approximation in terms of laboratory energics and scattering angley.

8. Calculate the cross scation for the absorption of light by a bound electron jn
an atom with low atomic number Z, such that Za = Z/137 « 1 and Euisging & miet,
Assume also that the frequency of the light is such that Aw 3> Eyadin,. M.ki,,‘
these simplifying assumptions caloulate differential and total cross sections fop
the two limiting cascs:

8. Byaties Kt &K me!  nonrolativistio

b, hw D met ultrarolativistic

9. 8Spin polarization suma have been carried out in (7.99) and (7.106) by adding
contributions from positive- and negative-holicity states. Iqually well we could
use any two independent spin states aa our basis for tho expansion. Show thag
the final results are indopondont of choice of the basis,

10. Verify Eq. (7.97) for the polarization in Mott scattoring.



8

Higher-order
Corrections

to the Scattering Matrix



8.1 Electron-Positron Seattering in Fourth Order

The rules for writing S-matrix elements which have been developed
in the preceding examnples can be extended to higher orders in the
coupling constant, although there are new problems to be faced.
Consider, for example, the e* contributions to electron-positron scatter.
ing. In order to construct such an amplitude, we draw all possible
Feyninan graphs with four electromagnetic vertices which correspond
to this scattering process., Then, following the rules given by the
examples discussed so far, we write down the desired matrix elemncnts,
Several of the graphs contributing to this calculation (there are
18 altogether) are shown in Fig. 8.1. Graph (a) shows a two-photon
exchange between clectron and positron and contributes an amplitude
analogous to (7.47) and (7.48) for clectron-proton scattcring:

8y = —(—de)'f diwd'z dly d'z (V" (@)7.iSr(z — Yy WP W)
X iDp(z — w)iDr(y — 2)We(€)7"iSp(2 — W)y (w)]  (8.1)

! f +! f
J !
INANANNANNAW x e - xy
A *»
4 \
IPNNNANS 0 G
[ 4
i ¥ i 'y
(a) (b)

C)

Fig. 8-1 Bome fourth-order graphs for clectron-positron
scattering.

148
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‘I
(c)

Fig. 8-2 Origin of the relative minus sign between
graphs (a) and (¢) due to Formi statistios.

where ¢ and f, ¢ and f, are the quantum numnbers of the electron
and positron, respectively. Graph (b) is an annihilation term and
contributes a minus sign relative to (8.1)

Si = +(—1ie)f dhwd'z dly d'e 0] (@)v.88r(z — )75 ()]
X iDp(x — w)Ds(y — D)W (2)y"iSr(e — wyy¥(w)] (8.2)

The origin of the relative minus sign between the two amplitudes is
the sane as in the lower-order calculation (7.82); it comes from anti-
symmetrization of the wave functions for the initial positive- and
negative-encrgy electron state.

The amplitude for graph (c) correaponds to a process in which the
pair produced froin the annihilation photon seatters before emnerging
into the fina] state. According to our by-now-familiar rules of writing
—idev, and the invariant volume integral fd‘z at each vertex, a
Feynman propagator iSy(z — y) for each internal line, and wave
functions for free incident and cmerging particles, the amplitude for
this process is

S{ie = +(—ie)f d4w d'z d'y d' iDs(z — w)iDp(y — o)
X WP (2)7.48r(z = Y)7,iSr(y — W)y (W)W (@) v¥iM (8)]  (8.3)

Only the choice of overall sign in (8.3) requires comment. It comnes
from the requirement of Fermi-Dirac statistics that two electron states
must be antisymmetric under interchange of the electrons. One of the
possible time orderings of the four vertices in (e) is drawn in Fig. 8.2,
together with a corresponding one from diagram (¢). These two
graphs differ by the exchange of the two electron lines labeled I and II.
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The relative minus sign between (8.1) and (8.3) assures the requireq
antisymmetry of the total S-matrix eletnent under the exchange of tweo
similar foermions. The sign of (8.3) is the satne as that of the lowest
order contribution of the annihilation diagram, Fig. 7.16b, to the
second terin of (7.86).

A graph of type (d) must also be included when we symmaetrize
the amplitude under the interchange of the two photons; that is, the
photons arriving at vertices w and y in Fig. 8.1¢ may have equally
well originated from z or x, respectively. This leads to a contribution
to the fourth-order S matrix of the fonn

SH® = 4 (—1e)f dwd'x diy d'2 iDp(z = Y)iDs(w — 2)
X WP (2)7.8Sp(r = y)viSe(y — w)v P (WP ()it (2)]  (8.4)

and with the same sign as (8.3).

The amplitude for graph (e) of Fig. 8.1 corresponds to a process
in which the pair produced from the annihilation photon interacts,
again via aunihilation, before emerging into the final state. Above
the vertex at y, graphs (c) and (e) of I'ig. 8.1 are related in the same
way a8 the two socond-order processes of electron-positron scattering
in Fig. 7.15, and we expect to find, as in (7.86), that their contributions
to the S matrix arc of opposite sign. This leads to the result

S = —(—i8)* dYw diz dly d'z (V" (W) v (W))iDp(w — 2)
X [vepiSr(y — 2)nrtSr(x — Y)ea]tDp(y — 2)
X W @)y i (e)]  (8.6)

The overall sign in (8.5) ean be independently verified by constructing
an appropriate tie-ordered sequence as in Fig. 8.2,

The symmetry and antisymnetry requirements that have carried
us this far lead to one additional class of graphs as illustrated by
I'ig. 8.3. This arises from symmetrizing the two photons in Fig.
8.1¢; the photon arriving at w can equally well originate from z or .
All such disconnected graphs, that is, graphs containing a completely
isolated part into or out of which none of the initial or final particles
emerge, are properly ignored in all calculations. Figure 8.3 shows
an electron propagating to z; there it emita a photon and scatters
backward to y, where it destroys itself and the photon. In the
language of hole theory this is a fluctuation effect in which an electron
jumps out of the negative-energy sea into an empty positive-energy
state with virtual photon emission and then drops back into the nega-
tive-energy sea upon reabsorbing the photon. Such fluctuations are
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Pig. 8-8 Examplo of a disconneoted graph.

taking place all the time; and to find the scattering amplitude relative
to what happens in the vacuun, we divide out the contribution of all
disconnected bubbles, which evidently provides a multiplicative factor
on the connected graphs of interest.

We may summarize the rules for constructing the amplitudes
for higher-order processes as follows:

1. Draw all connected graphs.
2. Associate with cach graph an amplitude with a factor

= w"/u.r dz

at each vertex.

3. Include a propagator €Sy(z — y) or sDy(x — y) for each line
representing a fermion or photon which terminates at vertices z and y
—this is an internal line. For photons insert an additional factor
gw to tio together the y* and v” at the vertices connected by the photon
line.

4. Introduee n wave function for each external ling, that is, a
line representing an incident or scattered particle.

These rules are as developed in the low-order examples, with
the new condition that only connected graphs are to be calculated.
Finally, we add the sign conditions:

5. There must be a relative minus sign between two terms which
differ by the exchange of identical fermions, as in (7.82) and I'ig. 7.13
for two positive-energy electrons and in (7.86) and Fig. 7.16 for one
positive- and one negative-energy electron. In the amplitude (8.5),
for kig. 8.1¢, this led to the introduction of an additional minus
sign with the closed electron loop. As a general rule a factor of (—1)
is included with each closed Fermion loop, as in Fig. 8.1e, in construct-
ing the amplitude for a given Feynman diagram.
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k

[

(o) (d) (e)

Fig. 8-4 Feynman graphs illustrating (¢) vertex
corrections, (d) cleotron sclf-mass, and (¢) vaouum
polarization,

6. In accordance with (6.56) there is an overall factor (—)"®, where
# is the number of positrons appearing in the initial state.

The big question remaining is how to compute the integrals,
in partieular for the fourth-order interactions, and obtain numbers for
comparigson with experiments. Diagrame (a) and (b) of Fig. 8.1,
along with the two crisscrossing photon lines obtained by interchang.
ing z and y, present a formidable four-dimensional integral of the
type given by (7.61) for the similar contribution to electron-proton
scattering, and they will not be computed here.

It is convenient in discussing diagrame (c) to (¢) of Fig. 8.1
to go into momentum space and relate them to tho similar lowest
order graph, Fig. 7.15b, which contributes the second termn of (7.86).
Making the—by now familiar—expansions in momentum space, we
find that S} diffors from the sccond term of (7.86) by the replacement
of the curr ent

t
pr—k—mte

atplonw(al) — a(ol) [ (3w, j 7 (~ier)

¢ ion Nl
X ev, e — 5, (—sev () (8.0)
S differs by the insertion for the final electron wave function

ﬂ(?l)"’ a(?:) / (21?)‘ k’; , ( ‘e‘y')

xp{—k—m+‘il( wy')—’T. (87)
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8.2

and 8} differs by the insertion into the photon propagator

lﬂ.. - (—¢ L)
(o + )+ te = =D [(pn + gt + u]

. , )
X [ G Te (o) i (o) g =

- =D (=9
= iyt TN 68)

The portions of the graphs contributing here are shown in Fig. 8.4.

All of the remaining fourth-order graphs give rise to insertions
of these same three types, It is unfortunate that these closed-loop
contributions diverge for k— «. We discuss and compute them in
order.

VYacuum Polarization

The most severo divergonce is that in (8.8) corresponding to the
closed electron loop of Fig. 8.4e. We refer to thie contribution as
the sccond-order photon self-energy part. The integral contains two
elactron propagators and therefore, with only two powers of k iu the
denominator, diverges quadratically. The quadratic divergence may
be argued away with a certain amount of plausibility by appealing
to the condition of gauge invariance as discussced above (7.60). A
gauge change A,(g) — A.(g) + ¢.A(g) must not alter final results
of a calculation of physical amplitudes. This requirement has the
following significance for (8.8). Let the photon in Fig. 8.4¢ be a real
physical photon with ¢* = 0 according to the Einstein condition, such
a8 occurs in the bremsstrahlung or Compton process. As illustrated

Fig. 8-5 Vacuum polarization correc- ?
tion to an clectromagnetic process.
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in Fig. 8.5, the electron loop gives an e? correction to the current flow.
ing through the question box with which A,(¢) interacts. The gauge
requirement is that g, times tho currcnt vanish, which in terms of (8.8)
means

¢*1u(g) = 0 (8.9)
when ¢'=0
This may be rewritten as
d'k 1 1
- e—pd
¢lul)) = =0T | i e TR k== m T
'k 1

[(k = m + ie)

= =T | Gk =g =+ i

— (k=g —m + 9] ”

- m + 3¢

dk 1 1
- ! @;)‘Tr(k—q—m+u_k—m+ie)7' (8.10)

If the intogral woroe finite, we could let k' = k — g in the first term and
thus obtain gzero. The fact that the integral is not finite is unavoid-
able, and consequently (8.10) remains ambiguous. In order to pro-
ceed, we cut off (8.8) at high frequoncies, making the roplacemont!-?

Lulgm®) = Lu(@) = Lu(m®) + 3, CAMNIu(q, M)

- E cd,.(g,m]) (8.11)

where the M} are large masses and the C: are chosen such that the
intograls converge. This cutoff procedure is not unique and is adopted
only to dofine the mathomatics. If physically measurable quantities
dopend upon any cutoff parameters, the theory fails. In any case
the existence of divergent quantitios leads one to suspect trouble
in the theory at large momenta or, equivalently, small distances.
Notice that the method of cutoff in (8.11) has the virtue of pre-

1 W. Pauli and F. Villars, Rev. Mod. Phya., 31, 434 (1040). ' An alternative
procedure for handling these divergent integrals which firat led to a gauge invariant
result was given by J. Schwingor, Phys. Rev., T4, 1430 (1048).

*R. Feynman, Phys. Rev., 76, 769 (1049).
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serving the gauge condition (8.9). Were the individual propagators
to be cut off, we would not be ablo to maintain gauge invariance.

The calculation of I,,(9) subject to the condition (8.9) is most
readily done by oclevating the propagator denominators into expo-
nential factors by the identity

{ i(k + m)
E=mFae K —m +1e

= (k+m) [7dsewimtiio (819)

This gives

@ = =40 [[" des [[" dea [ 2%,
X [ku(k -9.+ kv(k ') 0..(k’ - k'q - m’)]
X exp [i2)[k? — m? 4 de] + izg[(k — @)? — m* + d¢]} (8.13)

whero the trace has been carried out and orders of integration inverted.
Completing the square in the exponential by changing the integration
variable to

-h— I + g8
lmk P k — h s (8.14)

we perform the momentum integrals, using the identities!

d4 orksn) m 1 i .
(2;.)0 [l,lmlulr] gt artap Tﬁm [lpop 2t + z’):I (8.15)

with the result

L, = -4 z 6= f dey [ (81 ‘_i:'z’ :

X (exp {"[9'?"-}?_:. - (m} — ie)(n + z-)]])

=i Q'
X {2(0"9 %) (a - + 'l)’ + o [(81 +2) (n -l'l ;s)’ + m"]')
(8.16

The terms proportional to (g..q* — ¢.q.) automatically satisfy the
gauge condition (8.9), whereas the last three terins proportional to

! Theso are bost evaluated in roctangular coordinates. Each integral, with
& rotation of contour of 45° becomes a gaussian integral, for example,

/ ‘”' P (a+is) m bk

2vVm
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gw do not. However, we may show that these vanish, that is,
_dnydzy 2 [ - 3 g'nity ]
/ / (Z| + 2])' ' (2] + tgi (_1 + 2—5'
X !expi [q’ h—'_‘:—';’ = (m} = s)(n + z-)]l
dz dz _ U _ Qe
/ / (2 -ll- z:)’E [m’ Ma+2) (ot :-)’

X ‘exp A [q' P (m} — ie)(r + z-)]l
ak / / X(;if f’;').

X 2 P lfx [;l"'_';—';' R z,)]l (8.17)

where we have let z;— Az in the sccond step. Upon letting Mg —
in the integrand, we see that the integral is independent of )\; hence
(8.17) is identically zero.

The remaining contribution to 1,. is evaluated with the aid of the
saime sealing triek. Using the identity

L= [ % ( -'-'—‘Lf') (8.18)

24 o o rodided
=2 [ [ [

X 6(1 —f'—ili')x Ec;expl [ Lailil (m’—u)(z|+n)]'
- 2%' (2.9, — 0" fo' fo' dey dey 21235(1 = 21 — 1) fo' ‘%

X z ¢ exp [IA(g*z12y — m! 4 i¢)) (8.19)

where we have again scaled 2, — Az,
The integral over A, unhappily, diverges logarithmieally, and we
evaluate it with the aid of the cutofl procedure. Choosing, in (8.11);
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Cy= —1,C; = 0( > 1), we find
I;- - n(m’) - I-'(M)

o i (q.q. = gwt’) f dz2(l — 2) log - :'i(l -2)

- 371; (7.9 = Gu@"
X [1 gﬂ—l-- - ofo‘du(l -2 log(l - "-q:—,z(l - z))] (8.20)

To undcrstand the physical significance of (8.20), we considcr, as in
Fig. 8.1¢, Lthe contribution of the closed loop to the scattering. Add-
ing it to the second-order amplitude in (7.86) gives, according to (8.8),
a photon propagator which can be written as the sum of two terms

S 4 S0 1,0 5D (8.21)

Inserting (8.20) and dropping the terms proportional to g, and g,,
which vanish by current conservation at the electron vertices, we find

_i » —"10 M'
¢ 3r 8 m

+ T.-'/ol dz 2(1 — 2) log (l 21(l——)] (8.22)

This is the photon propagator including corrections of order . In
any Feynman graph the cffect of an electron loop on the amplitude
for the exchange of o photon between two conserved currents is given
by (8.22). In the limit ¢g* — O, the propagator is changed only by the
multiplicative factor Z,, defined by

Zoet1 - 2 log %f-,- (8.23)

and thercfore, for example, the Coulomb scattering amplitude for
snmiall momentum transfers becomes

feldyou ., dyol a M? feldyou )
— % s fe —-q—;’— (l - log W) - _"?L (8.24)

We conclude that the parameter e* appearing in the Dirac equa-
tion is not 4x/137 but something larger, since it is ¢}, which is measured
to be 4x/137. eg i8 called the renonmnalized charge and ¢ the bare
charge. In any process where a photon is exchanged, this multiplica-
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tive factor will be present
e} m Z,ct 2 ¢! (l - -— log M ) (8.25)

independently of momentum transfer. Consequently, there will alsq
be the same renormalization of the electron charge arising from the
static polarizability of the vacuum. Therefore, the divergence in the
caleulation, to order €', disappears if we rewrite cross sections in
terms of the observed charges e). The observable, momentum.
dependent corrections come from the second term of (8.22), whieh
vanishes in the static limit ¢*— 0. Its contribution is finite and
independent of the cutoff procedure adopted in the calculation. Only
the rclation between bare and physical charge is cutoff-dependent,
In the limit of low momentum transfer [¢?/m?| & 1, it alters, for
instance, the Coulomb scattering amplitude (8.24) by the factor

ser LY “;"‘“ (1 - 7 log %{-, = "{-,) ie} """"[l - ,;{1, + o(a:,)]
(8.20)

This can be expressed as an additional interaction in coordinate space
of the form

~ 15em? 4or  dxr ' 15rm?

It leads to a first-order change AE.: in the atomie energy levels in
hydrogen-like atoms of churge Z

(1 oA v')—& = k4 0%k g (8.27)

8B = ZER o) = — g4 2reem) 904, (B9)
Forn m 2 {=0,and Z =1
ym 9{1' = —27 megacycles per second

The nigns of the contribution (8.26) and (8.27) are what the
discussion in Chap. 5 leads us to expect. For an electron scattering
with low momentum transfer [g? « m? corresponding to a large
impact parameter, the interaction is proportional to the total charge.
For scatterings with small impact parameters and large momentum
transfers ¢* = —|q|%, the clectron penctrates the polarization cloud
and the interaction strength increases. The resulting modification of
Coulomb’s law, as first calculated by Uehling® in 1935, was the object

1E. A. Uehling, Phys. Rev., 48, 55 (1035); R. Serber, Phya. Rev., 48, 49 (1930).
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of the original measurements of the 25y, — 2Py I amb shift splitting in
the hydrogen atom. Instead of —27 mc/sec a shift of ~ 4 1,000 me/
sec was discovered in 1947; this was due primarily to the vacuum
fluctuations of the radiation field as discussed in Chap. 4. Very
precise measurements and calculations during the last decade agree
to within 0.2 mc/sec for the I amb shift of thc n = 2 lovels in hydrogen
and thereforc confirm to high accuracy the presence of the —27 me/sec
of vacuum polarization. This is an impressive vote of support both
for the hole theory of the Dirac equation, which has given rise to
the closed-loop contributions, and for the simple form of point coupling
used in describing the interaction of electrons with photons. It still
remains for experiments probing the theory for large ¢%, corresponding
to interactions at small distanees, to demonstrate the need for any
modifications. l'or large momentum transfer scattering with

lg* = —g*>>m?

the correction in (8.22) increcases logarithmically and the photon
propagator, to first order in the unrenormalized charge a, is

-_qig.o-: (1 + 5 log l:l:) (1 — £ log i’;) (8.29)

When the momentum transfer reaches the cutoff value M3, the correc-
tion compensates the charge renormalization factor and suggests that
in the limit of infinite encrgies the interaction is measured by the
strength of the bare point charge of Fig. 6.3. This is an intoresting
but unproved conjecture.}

Whenever the virtual photon momentum ¢ is time-like and ¢?
exceeds 4m?, as in the pair production diagram of Fig. 8.1e, the correc-
tion to the propagator in (8.22) becomes eomplex, with an imaginary
part given by?

+ige (20) [, de et — opine ['(1 i

ql

1 Seo romarks in Sec. 5.3. For extensive discussion of motivation and impli-
cations of thim interprotation see L. Landau, A. Abrikosov, and 1. Khalatnikov,
Dokl. Akad. Nauk SSR, 98, 773 (1964). L. Landeu in W. Pauli, V. Weiskopf,
and L. Rosenfold, *'Niols Bohr and the Development of Physics,’” MoGraw-Hill
Book Company, Inc., New York, 1965. M. Gell-Mann and F., Low, Phys. Rev.,

96, 1300 (1954). N. N. Bogoliubov and D). V. Shirkov, “Introduction to the
Theory of Quantized Fields,” Interscience Publishors, Inc., New York, 1860, "~
' R. Foynman, Phys. Rar., 76, 769 (1049).
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To understand the origin of this imaginary part, we recall from
Chap. 6 and the discussion of scattering in the nonrelativistie prop-
agator theory that the S matrix in the Schrddinger theory is unitary,
The condition of unitarity

StS =1

8.3
that is, ES:/S"‘ - 5y (8.31)

ensurcs the probability interpretation of the scattering solutions
according to which the sum of all transition probabilities for a given
initinl state must add up to unity. In the positron theory, particles
are produeed and destroyed and the sum over states n must inelude
all electron, positron, and photon final states to which a given initial
state ean scatter. One finds that (8.31) retains its interpretation
as a statement of probability conservation. Siuce it is an identity
in ¢, each order in an expansion of S in powers of the interaction eon-
stant must satisfy (8.31). If we expand

Spom b+ S+ S+ - (8.32)

the unitarity condition becomes

S® 4 S m 0 (8.33a)
SP 4 SP* - — E Shegw (8.33b)
SE 4 SP* - E[ Sheg® 4 gwe gy (8.33¢)

S + 8if* = E[S""S‘ SBes® 4 Swegl  (8334)

For { representing an initial free electron-positron state, Sj’ = 0;
the reaetion e~ + ¢+ — 1y is forbidden by energy-momentum con-
servation. Relation (8.33b) is satisfied by (7.80), which is anti-
hermitian as required. Relation (8.33d) gives a nonvanishing her-
mitian part of the fourth-order amplitude in terms of the seeond-order
contributions. Equation (8.30) represents just this fourth-order eon-
tribution; it is real and thercfore gives a hermitian contribution to the
S matrix (8.6) a8 required. The threshold function (1 — 4m?/¢?%)
indicates that (8.30) is present only for momenta whieh could lead
to a final real pair state in addition to the virtual pairs in the closed
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8.3

Fig. 8-8 Exchange of & “real” photon ¢?=0
between two currents macroscopioally
soparated in space.

Distant source

electron loop.! The proof that the S matrix is unitary in any order
is besat carried out within the framework of field theory.?

Renormalization of External Photon |ines

The eontribution of (8.8) has been discussed 8o far for the propagator
of a virtual photon. Closed electron loops will also correct the
contributions of external photon lines. Here the photon may be
visualized a8 in Vig. 8.6 as having been produced by some distant
source. If the vaeuum polarization bubble is incorporated into the
system of interest, it provides a multiplicative factor of Z; to the
uncorrected matrix element, according to (8.23) and (8.24). MHow-
ever, the source current then remains unrenormalized. If a factor
V' Z, is associated with the source and the other v/ with the sys-
temn of interest, the bare charge ¢ at each vertex will be replaced by
v/Zye = ¢g. Thus b working rule for dealing with real external
photons is to ignore corrections to all external lines and replace e by ex
at each external vertex. This is equivalent to ealculating all graphs,
ineluding vacuum polarization bubbles on external lines, and then
dividing by 1/Z; for each external photon line,

Ilereafter we shall assume, when writing equations, that charge
renormalization has been earried out. 6*/4x denotes }{g7, and the
barc charge, whenever needed, will be denoted by 6o,

! Tho imaginery part, (8.30), is just right to make the total transition proba-
bility out of the initial-state unity to order a®, 8ee R. H. Dalitz, Proc. Roy. Soc.
(London), A208, 521 (1951).

!For tho proof see J. D. Bjorken and 8. D. Droll, “Relativistie Quantum
Fields,” MoGraw-Hill Book Company, Ine., in press.
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4 Sclf-mass of the Electron

The amplitude for the graph of Fig. 8.4d—known as the electron
proper self -encrgy part to order e*—is given by the integral in (8.7),
namcly,

_12(3’) - (_‘e) / (2,)‘ B _(;:)_'_ e ‘Ylp %k — : m + te v’ (8.34)

Equation (8.34) diverges, since there are only three powers of %
in tho donominator, two coming from the photon and ono from the
electron propagator. X\ is a small photon mass inscrted to protect
us from infrared divergences which will appear.

Introducing (8.12) and taking tho analogous steps to (8.10), we
come to

- _dzydey t I3
2(p) 2"’/ / & + 2)? [2 5+ 2:]

X oxp [ (zp _:_‘" — mizy — J\’n)] (8.35)
Z(p) in (8.35) applies both for internal oloctron lines with arbitrary
p*and p in a Foynman graph and for oxternal lines. In the latter case
p? = m? and p stands next to a frec-particle spinor as in (8.7). The

Dirac equation may thon be used to sot p = m. As in vacuum
polarization, we use (8.18) and lot 2, — y#,;, obtaining

2) = g [, delem = o1 = ) [,” D exp (irtprect - )
— mig = A1 — 2) +14¢} (8.30)
The integral

Jom) = [ d_{-" exp lirlp'2(l = 2) = miz = A1 — £) + e]}

divorges logarithmically; we cut it off by subtracting off J(p,m,A)
with A a large mass,
Using the identity

/o. d-zf (eto* — %) = (log Eb) (8.37)
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we find for tho propagator, after cutoff,

2(0) = o [, dzl2m — (1 = 2]

ANl — 2)

X log miz 4 A1 — 2) — p%(l — &) — fe

ANl = 2)

- §-—/ dz [2m — p(1 = 2)] log e

+ 5;/0 dz [2m — p(1 — 2)]
miz? 4 A1 = 2)
X108 o (=) = p(i = 3)
_m_-:f"-'log,%: - -m log,',\T,

+%foldz[2m—p(l -2))

mie? 4 \Y(1 — 2)
X log miz + Al — 2) — ph2(l — )

(8.38)

All tho cutoff dopendenco lies in the first two terms, which will bo
disposed of by the renormalization procedure.! Tho intogral is readily
evaluated for p* — m? > m); ono obtains

]
2r Jo el = 70 = g hT’T;?’(zl —)

am (m? — p? mt— 1
-;( p’-)log po

(5 1+ (24 ]

Near tho “mass shell,” that is, when p? s m? (but p* — m*>> md),
and whon 2 stands next to a free-particle spinor (p = m),

-2 (’ - m) (log +4logZ p’) (8.40)

Notice tho logarithmic singularity as p'— mt For p' > m?, 2
becomes complex, corresponding to the existence of the process of
virtual electron decaying into oloctron and photon, in analogy to what
happened to the photon propagator. For p? — m? & m\ the last

1 The finite torm separated off in (8.38) is fixed uniquoly by requiring it to
venish idontieally for the clectron on the mass sholl, pt = m?,



Relativistic quantum mechanics

logarithm in (8.40) is replaced by log (\/m). This may be verified
by a direet calculation® of tho integral in (8.38) in the limit p* — m3,

5 Renormalization of the Flectron Propagator

The modification of the electron propagator thus far has been the
roplacoment, according to (8.34),
% i

'] %
p—m_'p—m'i'p—m(_m(p))pfﬁ

i
- 7= =) + 0(a®) (8.41)

From (8.40), we write

Z(p) = dm — [Z5' — 1 + C(p)l(p — m) (8.42)
with
4x m?
and

] | JESSPSY, |
Zit =1 +C(p)g§(log:7,+4log'”—m;1)

m\ L p? — m' K m?

C(p) is chosen such that at p = m, C(p) = 0; it Lthus contains no
dependence upon the cutoff A. At p = m this becomes

] H
Zi'— 1= ﬁ (log :,\T- - 2log ’—;‘;) (8.43)

Using (8.42) we may now rewrite (8.41) as follows:
t - 17y _
pP—m=2(p) (p—m)l+2Z.L0)—2Z:ém
1y
T —m = ml + Cp)l
We identify mp, = m 4 3m as the physical mass of the electron;
the parameter m in the Dirac equation is, like the bare charge, another

unincasured number. Tho necessity of mass renormalization already
occurs in classical electrodynamics; experiments on a free electron

+ 0(a?) (8.44)

1 For the complote second-order contribution to the dectron sclf-encrgy part
sce R. Karplus and N. M. Kroll, Phys. Rev., 77, 536 (1060). Bocalso J. M. Jauch
and F. Rohrlich “The Theory of Photons and Electrons,” Addison-Wesley Pub-
lishing Company, Inc., Reading, Mass., 1955,
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Fig. 8-7 Timo orderings for tho second-ordor y
solf-mass correotion. J

)
|

(a) (%)

measure m, the parametor in the Lorentz force law, plus the iner-
tia of tho electron’s self-ficld.! For a classical clectron of radius
~aq, tho clectromagnetic sclf-energy is ~a/a and the observed mass
is ~(m + afa) = mua. For a point charge, a — 0 and the corree-
tion to tho mass becomes infinite. This is true also in Dirac theory;
however, here it diverges logarithmically with the cutoff in contrast
to the classical sclf-energy correction, which is linearly divergent
as the charge radius a— 0. This weakening of the divergenco is a
consequence of holo theory. As first studied by Weisskopf,? the
virtual pairs in the timo-ordered graph of Fig. 8.7a cancel the leading
divergence in Fig. 8.7).

Although formally infinite, the mass correction is small for cutoff
masses A K me?* i~ 1019, On the other hand, the mass of the
universe is estimated? to be ~10%m,

A systematic way of carrying out mass renormalization is to
rewrite the Dirac equation in terms of tho physical mass and treat
the difference as an additional intoraction term. That is, we write

(V — mpa) = AY 4 (m — mp)y = ey — dmy  (8.45)

The additional intcraction terin is reprosented by the graph in Fig, 8.8,
This term just cancels out the first term in (8.40), and the propagator
reduces to a multiple of the free propagator as p — my.

We shall hcreafter suppose mass ronormalization to be carried
out, that is, the graphs of I'ig. 8.8 to be included; wo shall let m denote
the physical mass of the electron.

The rost of the corroction to the propagator lies in Z, and tho
function C(p), chosen such that at p = m, C(p) = 0. Thus, for

*H. A. Lorentz, “The Theory of Eleotrons,” B. G. Teubnor Verlagsgesell-
schaft, mbll, Stuttgart, 1916.

* V. F. Weisskopf, Phys. Rev., 868, 72 (1039).

* C. W. Allen, “Astrophysical Quantities,” University of London Prees, Ltd.,
London, 1985.
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» "fi"‘ . Fig. 8-8 Mass ronormalization countertorm.

P = m the propagator is given by
t 12y
[ —
p—m p-—m

(8.46)

that is, it is modified by a multiplicative factor. Z, is analogous in
this scnse to the Z, factor encountered in the photon propagator.
Iere also this factor may be absorbed into the charge & appearing
at the vertices at cither end of the electron line; however, this is
unnecessary, since we shall see that the correction to the vertex
will cancel the Z;, We cannot expoct Zy to contain much physics,
since it depends upon the photon mass according to (8.43).

One must be careful not to correct cxtornal lines twice; the
situation hero is similar to that encountered for the photons. The
propagator is an expression bilincar in the ficld amplitudes, as seen,
for example, in (6.48). However, an oxternal line represents a ficld
amplitude; hence it is renormalized by the factor /Z,. Thus if all
graphs giving corrections to external linea are ineluded in the calcula-
tion, the result must be divided by 4/Z; for cach external clectron line.

A faniliar example of this offect is found in nonrelativistic pertur-
bation theory, where

= Voot T L) o (847)
with Z, =1- _I(¢!v_‘{'«’n)| (8.48)

&, (Er = 12"

Again, the Z factor is computed essentially from the Green's function
and the wave function is renormalized by /Z,.

6 The VYertex Correction

Thore remains only the graph of Fig. 8.4c, whieh shows the correction
due to a photon bridging the vortox v,. This contribution is referred
to as the second-order vertex part. In order to compute its contribu-
tion to physical procosses we study the integral

- (=19) i
Au(p'ip) = (—ie)* / (2x)4 Kkt - A’+3¢7'1’ —k—m <+ de

X vs

FEe TR 649
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where p’ denotes the momentum of the electron and —p the momen-
tum of the physical positron created by the virtual photon in Fig. 8.4c.
Equally well, (8.49) represents a radiative correction due to an clectron
scattoring from some external potential, as illustrated in Fig. 8.9.
In this cage, p’ is again the momentum of the final electron but p is
now the momentum of the initial electron. Thus the same function
(8.49) describes corrections to different physical processes.

The amplitude (8.49) diverges, since the integral contains only
four powers of k in the denominator. In addition, we shall encounter
an infrared divergence and again assign the photon a small mass \
to cut off the contribution of very soft photons. We identify the
infinite part to be separated out by considering A*(p’,p) for

g=p —p—0
and for free-particle momenta for the initial and final eloctron, that is,

Pp=mp =m
In this case

p)Au(pp)u(p) = (Z7* — 1)a(p)y,u(p) (8.50)

whore Z, is & constant depending upon the masses m? = p*, 2%, and
the cutoff needed to make it finite. Equation (8.50) is gonoral, since
the only other four-vector, p,, i8 the same as my, when sandwiched
between spinors 2(p) and u(p) in (8.50),

It is not necessary to calculate Z,, because a direct comparison
of (8.49) for ' = p and of the propagator 2(p) in (8.34) shows that

oz
Ap,p) = — - a,(}) (8.51)
Hero the important identity

d 1 1 1
5-]—)—'?—"1-_?—"87‘?—"8 (8.52)

is used; it says that differoutiation of a free propagator with respect
to momentum is equivalent to the insertion of a zero-encrgy photon

pl

Fig. 8-9 Vortex correction to scattering in an external
electromagnetic potential.
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in tho line. 982(p)/dp* may be computed directly from (8.42), and
we find

Up)Au(p.p)u(p) = (Z3' — Da(p)y.u(p) (8.53)
or by (8.50)
Z; - Z, (8.54)
to order e.
To this ordor, the vortex correction is then
‘\u(p'v ) - (Zl—l = Dy, + A:(P’.P) (855)

All the cutoff dependence is contained in Z,. AL (p',p) is finite pro-
vidod wo avoid tho infrared catastrophe by keeping tho photon mass
A > 0, It is also uniquo, satisfying tho condition

a(p)Ay(p,p)u(p) = 0 (8.50)

We now may oither regard Z; as renormalizing tho charge e
at the vertex or observe that it just cancels the 4/Z; wave function
renormalization of the external lines. This is best seen by looking
at all the graphs to order e? for the forward scattering of an electron
from a potential. These are shown in Fig, 8.10,

Sadua
o o

Fig. 8-10 8econd-order radiative corrections to scattoring in an ex-
ternal clectromagnetic potential.
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The contributions of these graphs in the limit ¢ — 0 are listed
below:

(a) —1tev,
(0  —devuZ = 1)

©  dmao (—iev) = (2 = 1)(—ien) (8.57)
(d) -Bmi, _l o (— 9678)

() —(=ion) o log o5 = —tevu(Z = 1)

According to our previous discussion, we also divide by +/Z;
for each external electron line and 4/Z, for the photon line; the sum
of all these contributions is, to order e*,

1 , o .
Zoy (el + @it = 1) = 225 = 1) + (= 1)
o o1 e[t (2 = DI+ (Zy = 1)
Zs V2, (=io) [; + Zyt = 1))
- -“zf'zl\/z;‘n
= —iexY. (8.68)

where (8.26) and (8.564) are used in the last step. Between the
vertex part and the propagator the Z, renorialization is completely
removed. The vacuum polarization is entirely responsible for the
charge renormalization,

The rather elaborate notation employed in arriving at (8.68)
is used with an eye to dealing with higher orders. In particular,
(8.51) and the relation Z, = Z, in (8.54) are true to all orders (Ward’s
identity) as is the result that all divergent integrals can be absorbed
into the renornalization constants Z,, Z,, and Z,.!

We have alrcady found a physically observable effect in the finite
part of the vacuum polarization graph. Looking into the finite part
of the vertex and electron seclf-energy contributions, we also uncover
predictions of great physieal interest.

Turning to the vertex A.(p',p), 8 somewhat lengthy calculation
is required to reduce the integrals in (8.49). We first rationalize
electron propagators and combine denominators, using either expo-

1 This is discussed in detail in Bjorken and Drell, op. cit.
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nentiation of the propagator denominators (8.12) followed by the
scaling trick (8.18) or, more directly, the formula!

dey -+ - de, 5(1 —
ﬁ - (=01 f" (2‘“‘()' );z‘) (8.59)

One finds, after the four-dimensional k integration (and using a cutoff
At on the divergent integral)

Me') = v [ log 2 + 01|

t g [ amdnans (1= 3 )

mi(l — 2))? 4 A\,
m¥(1 — 2)) 4+ Mz; — @Pzety — e

= [ ) andndns(1 - ‘2&)

w 1AW (1L = 2) = pes + mlv.[p(l — 2) — P'z4 + my’
mi(l — 2,)t + A2, — Q2o — de

X log

(8.00)

At this stage it is convenient to reduce the numerator of the last
term by anticommuting p and p’ to the sides, where they may act

' With the aid of this Feynman integral [Phys. Rev., 76, 670 (1040)] we bring
the denominators to a quadratic form and then complete the square by shifting
the origin of the k integrations, vis.

y ¢ l l l
/—.dkf(k)kl-»-l-l'o(p'_k)l_ml+".(p_k)i_m'+‘.
-2/0-/0-/0-4,.41:.41:.3(1 — =2 —8)

x /-- d'%k f(k)
[kt = 2k-p'ss = 2k-pay — ANy + (p3 = mO)ay + (p? = MmNz + iaft

o dik f(k + pay)
-2/ / / dt.dtgdh&(l-ll-n-ll)/ {’E'tr:“)'ﬁ“

with ¢ = (p'sy + pa):(p'ss + pna) + May = (P = mB)as = (p* — MmOy
= —p'y(l = 21} = p'ra(l = 23) + 2p-p'mes + M1 = 2,) + Ny
= =(p't = mYus(l — 23) = (p* = Mmas(1l = m) — glasns
4+ mi(l — z,)t + My

We now perform the [ d* by contour methods, carrying out the / _.. dk, with
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upon electron spinors between which we tacitly assume A, to be
sandwiched. The Gordon reduction (3.26) helps here; the numerator
of the last term becomes

—v[2mi(1 = 421 + £) + 20%(1 — 2)(1 = 25)] — 2maizslg,7,] (8.01)

The integration over the z's is in general a mess, although an
analytic result has been obtained and is quoted in many places.!
Woe restrict ourselves here to the two limits |g]* < m? and |g¥] >> mt.
In the first case the integrations are straightforward and yield, to
order ¢*,

2
v + A:(P',P) =N [l + 24 (1°8¥ - g)] + 8‘_:‘!; lg,v.) (8.62)

3r m?

For |g* > m*® we obtain the A\-dependent terms only and find
p— | ]
v+ a@p s 1 - Sog} [l SH - 140(%)]} @on

Adding these results to the contribution from the vacuum polar-
ization (8.20) gives the radiative correction to order « for an electron
scattering in an external field which supplies & virtual photon g.
From (8.26) we find that the vacuum polarization adds a constant
—1§ to the —34 in (8.62) in the low momentum transfer limit and
has no effect on the infrared or magnetic moment terms in (8.62) and
(8.63).

The last term of (8.62) adds a magnetic moment of «/2¢ to an
electron, since it modifies the static limit of the interaction of an

the contour displaced from the poles at + \/|EE + ¢ by Tie as indicated:
K = ¢+ dem (kg — A/|k]i F ¢ + d0)(ke + /Ik| F ¢ — f¢). This gives

f " g -
- (M =c+dp 2
The results for arbitrary powers of the denominator, n > 3, arc obtained by
differentiating with respect to ¢. Bocause of the symmetry of the denominator,

which is & function of X* only in thec above expression, numerator factors are also
easily reduced: odd powers of k, — 0

kyky— Mouk*  eto.

1 8ee Feynman, Phys. Rev., 76, 769 (1949). For the vertex when the electron
lines are not on the mass shell and p* p mt, p’s p m9, see Karplus and Kroll,
op. cil.
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clectron with an external field to

—ieas) (v + 32 ) utp) e

= —iet(p") [(” ol 2 (l + 21) icnﬂ:] u(p)A*(g) (8.04)

2m

This corroction factor of (1 + «a/2x) for the electron magnotic moment
was first derived by Schwinger?! in 1048 and has since been eonfirmed
experimentally.?

The oxperiments have become sufficiently aceurate to study the
o corroction to the magnetic moment. This has been calculated by
Sommerfeld and Petermann;® their rosult of —(at/#?)(0.328) is in
agreement with present experimental limits.t The rosult is obtained
by considering all vertex graphs involving the exchange of two virtual
photons.

The other terms of (8.62) and (8.63) lead to infrared divergent
contributions to electron scattering. These, however, disappear when
the contribution from bremsstrahlung of soft photous is ineluded in
the cross section. Any exporimontal apparatus has finite resolution;
if electrons are detected with a given energy resolution AK, the number
of observed events corresponds to the elastic cross section plus the
bremsstrahlung cross section leading to electrons whose encrgy is
within AE of the elastic value.

We verify to order et that this sum of elastic plus inelastic cross
sections is finite and f1rce of the infrared difficulty by comparing (7.64)
and (8.62) and (8.63). The infrared part of tho clastie cross section
to order e? is

(%)= (%).[1 - 1o T xen] 8:55)
l 3 3
“im "l
with x(g?) = - .
g -1 — L (8.60)

3 J. Schwinger, Phya. Rev., 78, 416L (1048).

s H. M. Foley and P. Kusch, Phys. Rev., 78, 4121, (1048).

*C. Sommerfeld, Phys. Rev., 107, 328 (1967), and Ann. Phys. (N.Y.), &
20 (1968); A. Peterinann, Helv. Phys. Acta, 80, 407 (1087).

«The latest experimental value has boen reported as u = 1 4 af2r =
[0.327 £ 0.005)a%/x* by D. T. Wilkinson and H. R. Crane, Phys. Rev., 180, 852
(1003).
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(do/df), is the lowest order contribution to the elastic scattering cross
section. The bremastrahlung cross section is givon by (7.64)

(ggl)u..... = (g:z), 2;a log z:," x(¢" (8.67)

Woe cannot divectly add these last two oquations togcther because we
have cut off the low-frequency photons differently in the two cases.

To overcome this problem, we have the choice of rederiving the
bremsstrahlung cross section with photons of finite mass or of recom-
puting the vertex corrections assuming that cmission of photons of
energy less than kpi, is suppressed. 'We ehoosc the latter altornative
in order to avoid the intricacies due to real longitudinal quanta,
absent when A = 0, Sinee the introduction of the photon cutoff kyin
is a noncovariant procedure, identification of the renormalization
parts in the vertex eorrection becomes very delieate. This is why
tho dovelopment was given first in terms of the invariant photon
mass . Furthermore, we choose kni, 3> A to case the mathematics.
Therefore, we must now return to (8.49) and modify the photon
propagator by suppressing the & < ki amplitude.

This moans that Dy(x — y, \) in the photon propagator (7.30)
is modified from

Dz —y,\) =i f .(.Ew_‘)i:gm - (x=y)=dlad lg=yyl

d4 e—t(e—y)
I F TR ©69

to

gt (=) —tigh img—yy)

Doz = k) =i [ el

191> buse
. d%g
D -3\ - — {g-(x—y)—~tlge! Ime—vs
pre=un =i | e
= Dp(z =y, \)
dq° T 1
* |q|.‘:/... (2')'/ e ¢ — M 4 se (8.69)
whore Go= VA +MN  kma D) (8.70)

The regions of momentum space in which the two propagators are
modified arc shown in IFig. 8.11. The change 8A,(p",p) in the vortex
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(8.49) is then

M,(p',p) - An(P'-P.’\) - Au(p .P.knln)
dtk dko
i <kais (@) -

7(® = k+ m)?-(? = k4 m)y’
X B =N F 1)[(p" = k) — m?® + iel[(p — k)¥ — m® + ie] 8.71)

This expression is freo from ultraviolet divergence, since the range of
integration is limited.

To compute (8.71), we do the ko integration first by performing
a contour integral in the &, plane and using Cauchy's theorem. Three
simple poles are enclosed, as indicated in Fig. 8.12. In the limit
Kuin < m, only the residue from the pole at ko = +/k¥ 4 A\? survives
in 8A,(9,p), which simplifies to

- =gt

oy e d*k 7:(#' + m)v.(p + m)y
e == [ AT @ )(2k7)
dk Py

- —gly,

ml&/k . (2r)2 @2 vk + 2\ Uep) (}?75 (8.72)

where we anticipate sandwiching 8A, between free electron spinors.
The renormalization is now delicate bocause the introduction

I

A

Iq!

\\\\\’.,\\\\

Fig. 8-11 Regions of momentum spaco
modified by infrared cutofin.
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m &g
- . XXX - ~ 2p°'J Re ko
o ‘ o /x x
Jk!-i-)\!
Pyt k=p)iem?

] 2"0

Pig. 8-1#2 Singularities in tho ks plane encountered in computing
3A,(p"p).

of the photon cutoff is a noncovariant operation. Since (8.51) is
still valid, we may use our previous conclusion (Z, = Z,) that no
renormalization of A, is neceesary, provided the self-energy parts are
included properly. llowever, Z changes because of the changes in the
photon propagator; indeed

82(?) - 2(3’1*) - 2(pvknln)
. [ A% e S
' .'(21)’ --2;7"1!—k—m+ie7 kY =\ + 1
(8.73)

This must be computed through order p* — m3, since the modification
in the renormalization constant Z, is what is needed here (5m is free
of infrared divergence).

We integrate over ko first, as for the vertex, and obtain, through
first order! in p? — m?,

- d% 74P+ m)y"
5Z(p) ! |g|<[_.. @y 2V F NN = 2kp F (o' — 7

a%k (p* — m)yu(p + m)y

- Ki<hea (2722 VRV £ X0 (A = 2k-p)? + 0((p* — m®)?)
+ O(kmln)
dk m?
= 4! |t|<*/"" @2r)*2 vk + A\ (kp)? (» — m) 8.74)

1'The term O(kma) changos 8m by a negligible amount.
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The complote change of the vertex due to modification of the
photon propagator is then

&A, + % 8Z(p’) ;r%;,‘h tavgT : — 8Z(p)

dk

e |k|<'[.|.-(§;)'2—\/k’=+=7\’
pp  _ m*  mt
% [(p-k)(p'-k) 2(pk) ‘ﬂ?-—k)'] (8.75)

where wo must remember to take only half the contribution of the self-

energy bubbles of Fig. 8.10c and d, since it is the oxternal wave fune-

tions that are being corrected by the factor v/Z, 2 1 4 14(Z; — 1),
Evaluating (8.75) in the nonrelativistic limit |¢?/m?| « 1 gives

, s Ewmin 5
e o) = vege &5 (1o e - 8) (8.70)
and thus, from (8.62) and (8.71),
AP phmn) = ["’""’ +3 %, T (log s+ 3 5 _ g)] (8.77)

For [¢g¥/m? > 1 one finds for the infrared dwcrgent terms

) )
ALY \p) = —vuz [108 (—q;-) - l] (logmx — log 7‘—?;) (8.78)
and conscquently, from (8.03) and (8.71),
ofml a E -g!
A,(p ,p,knln) - —‘Y,.; log m log —'-n-,- -1 (8.79)

We see that in terms of the kuua cutoff the infrared part of the elastic
scattering is given, instead of (8.65), by

(5‘5).“ - (d%)o [1 - 3'9 log 76% x(q’)] (8.80)

Adding on the bremsstrahlung cross section (8.67) gives the infrared
part of the scattering cross section, including emission of photons
of energy less than kuax:

(g%)lnlm . (&%)., [1 - 2,,5 log ,‘;ﬁ: x(Q’)] (8.81)

It is completely independent! of kmin and A,

1J. Schwinger, Phys. Rev., 76, 651; 76, 700 (1040). For a recent review and
discussion of the entirc infrared question soo D. R. Yennie, 8. C. Frautschi, and
IL. Suura, Ann, Phys. (N.Y.) 18, 370 (1061).
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8.7 Thoe Lamb Shift

The scattering correction (8.77) may bo considered to be due to an
additional “effective potential” which acts between the clectron and
the source of photons, which we take here to be a nucleus of charge Ze.
The change in the atomic energy levels due to this added interaction
is the Lamb shift, which we are now able to discuss in more detail
than in the physical argumont of Chap. 4.

The effective interaction in momentum apace between the electron
and a current source A#(g) is given by (8.77) plus the vacuum polar-
ization contribution (8.26),

) :
a(p’) {'rn [1 + 3%35(““ 57:?..-—.1 + % - g = %)] + 4:_‘::1”"""} u(p)
X eA*(g) (8.82)

Equation (8.82) contains the corrections of order a to the clectron’s
current operator, 2(p")v(p), due to pholons of momentum greater
than kmin, and it is valid for small momentum transfers g, = p, — p,,
that is, for Jg%/m?| <« 1. The current source iseA*(g) = —(Ze%/|q?|,0)
for an cloctron in the Coulomb field of a nucleus of charge Ze, and
(8.82) becomes

—uX(p) {ﬁ%[l - 3—5';%: (l()g-z-’;'ﬁ; + % - '38' - ;)]

«a
+immrea) up) (889
The first term is spin-independent and is the Fourier transform of an
effective interaction potential of the form

Za , 4aZa m 11 1
'7+?womm;+ﬁ'9””
In hydrogen-like atoms this leads to an energy shift due to photons
of momentum > Kk, which is found from a first-order perturbation
calculation to be

da Za m 11 1
> - —— ' —_——— .
Arl 3 m’ |WH‘I(0)| (log 2kmln + 24 5) (8 84)
To this must be joined the contribution from soft photons of momen-
tum less than Ky,
One expects a natural cutoff of order kmin & (Za)m, that is, for
photon wavelengths large compared to the sizo of the atom. Indéed,
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kuin cannot be chosen arbitrarily small, because the propagator of
a bound electron is modified from the free-particle form for value,
of p' = m¥~ (Za)'m?. In tho atom

p~m+V,p)
with V ~ (Za)'m and Ip| ~ Zam

and in our previous calculation of the self-encrgy part Z(p) as wel]
as the vertex A, [soe (8.74)] we assumed

kp m kguum > p? — m?¥ ~ (Za)'m?

For photons of momenta loss than kni, rolativistic corrections should
be small, that is, involve higher powers of Za, and one uses a com-
pletely nonrclativistic calculation, first carried out by Bethe.! From
old-fashioned second-order perturbation theory, the encrgy shift due to
emission and reabsorption of a photon by an electron in state n is

0 2k(2x)? E,—k—En (8.85)

ols 113 . fk-r N kr ’
AES = e'/* w d% 2(n|u t ¢™7|m) (m|a - ¢ 6*7|n)
where the sum is over transverse photon polarizations and all electron
states.  'We now choose ki, such that

(Za)'m K kmin K (Za)m

[for instanee let kmin ™ (Za)¥m) and make the dipole approximation,
admittedly a somewhat questionable proceditre, Beeause the clectron
states are nonrclativistic, @ may be replaced by v = p/m. The
integrations over k£ may then be done, yielding

AES = 25-: [—kml.,(nlv'ln)

Em—En Eu_lgn"‘kmn
+ 2 g A A | "”"""”"] (8.86)

We now must carry out the mass renormalization for this part
of the calculation, Since the electromagnotic mass $m of the clectron
is already contained in ita experimental mass m, there will be a mass
counter term of the form

B ey
2(m — tm) 2m~2(m) bm

1 H. A. Bethe, Phys. Rev., 73, 330 (1047).
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in the hamiltonian. This leads to an energy shift.
SE. = ¥4 &m (n|vi|n)

which is just the structure of the first term of (8.86). It therefore
is absorbed into the mass ronormalization. Since kmin > Ex — Eu
~ (Za)*m, the nonrelativistic part of the Lamb shift is given by

Kuin
AES = 22 Z (En — E,) log E::l_ﬂ’—-l Knlp|m)|?

- aﬁaz (Ew — E2) log 242 (nlpim) ©87)

which sorves to define E, expeoted to be ~(Za)*m. The sum over
states can now be performed with some commutator algebra

Y (Ew = Enlplm)? = Y(nlip,Hl,plln)

yielding

AES m — log %3 n|viV|n) = (Za) log —3!5 [Waim(0)|? (8.88)

Joining onto (8.84) gives the energy shift to order a(Za)* for ¢ states
in hydrogen-like atoms:

AES - 4a(7 a) (

_E + 1) (8.89)

E has been evaluated by Bothe! et al. and found to be 8.9a?m in
hydrogen in agreement with our anticipations. To (8.80) must still
be added the contribution of the anomalous magnetic moment term in
(8.83) in order to complete the Lamb shift to order a(Za)*.

The reader may understandably be unhappy with this treatment,
in particular with rogard to the dipole approximation and the treat-
ment of kmwa. To the devoted student we recommend the recent
treatment of Ericksen and Yennie,? which avoids the division into
soft and hard photons,

1H. A, Bethe, L., M. Brown, and J. R. Stehn, Phys. Rev., 77, 370 (1950),
More recent improvements are due to C. L. Sohwarts and J. J. Tiemann, Ann,
Phys. (N.Y.), 6, 178 (1988).

*Q. Ericksen, unpublished doctoral dissertation, University of Minnesota,
1959,
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In this chapter we have shown how to oxtend the rules for writj
S-matrix eloments by one power of a beyond the lowest order ampj;.
tudes. The divergonce difficullies which were encountercd in thi,
dovelopment wero surmounted by showing that the infinite expressiony
could all be isolated in a well-defined way and included in constanty
which renormalize the charge and mass of the electron and the way ,
functions describing the propagation of the electron and photon,
The need for such renormalizations is clear on physical grounds, T,
the mass parameter in the Dirac equation, the clectromagnctic mang
must be added, since this is already contained in the experimenta)
mass, Also, the charge must be renormalized to include the offect
of the static polarizability of the vacuum. Finally, the wave fune.
tion must be renormalized, as in ordinary nonrelativistic perturbation
theory illustrated by (8.47) and (8.48), to corroct for the amplitude
of observing an olectron in the presence of the fluctuations induced
by the interaction.

Delicate care in carrying out the renormalization program has
been demanded by the unfortunate fact that the Z,, Zs, Z,, and &m
diverge. Howover, we have seen that the remaining physical offccts
are finite and independent of our cutoff. Moreover, they agree with
oxperiment, as, for example, in the Lamnb shift and anomalous mag-
netic moment observations.!

It is natural to ask at this point what new problems we face
as we push on further to higher orders in a. The answer is none
beyond the demand of added computational labor., We have already
introduced all the renormalizations required. The ideas and pro
cedures introdueed in this chapter suffice to carry us in a well-defined
way to unique, finite, and cutoff-independent answers to all physical
amplitudes in a calculation of the S$ matrix to any (finite) order in a.

Probleins

1. Check unitarity of the electron-proton scattering amplitude through order *
Do this by computing the absorptive part of (7.51), which corresponds to the
intermediate electron nnd proton propagating on their mass shells, and showing
by (8.33) that this equala the appropriate product of sccond-order amplitudos.
Show nlso that no other absorptive parts arise from Fig. 7.6 and Fig. 7.7.

1For the most recent reviow of this situation see R. P. Feynman, Reph
Bolvay Congr., Bruassels, Interscionce, Now York, 1061; also 8. DD. Drell, Ann
Phys. (N.Y.), 4, 75 (1058).

2 The sufficiency of theso ideas and procedures is discumsed in Bjorken an
Drell, op. cit.
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2. Check unitarity of the scattoring amplitude to order e® by relating the imagi-
nary part of the vertex correction (8.60) to the approprinte product of the second-
order electron positron scaticring amplitude and the vertex ey,.

8. Show that the self-mass computed from (8.35) for a cutoff A, such that A &m,
increases linearly with A and corresponds to the classical sclf-onergy for a eharge
distribution of radius @ ~ 1/A.

4. Complete the calculation of the Lamb shift to order a(Za)¢ by adding the
anomalous magnetie moment torm in Eqs. (8.83) to (8.80) and computing the
contribution to both s and p states.

B. Construct the photon-photon scattering minplitude to order ¢4 and show that
it is gaugo-invariant and finite,

6. Prove Furry’s theorem [Phys. Rev., 51, 128 (1037)] which atatos that n closed
loop, from which an odd number of photon lines emerge, vanishes, It followa
from this that scattering of light in an external field (Delbriick scattering) is
quadratic in the strength of the field in loweat order,

7. Verify Z, = Z) to second order by explicit caleulation. Cut off tho photon
propagator to maintain gauge invariance.

8. Prove (8.59).
9. Verify (8.76) and (8.78).

10. Compute the radiative corrections to clectron meattering from a Coulomb
potential at high cnergies and momentum transfers ¢ to order a log (g*/m?) and
o log (B/km)-
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The
Klein-Gordon

Equation



1 Introdnction

The propagator formalism may be used and techniques of caleculg.
tion may be developed for processes involving particles of zero spin,
We attempt to describe these particles by a scalar wave functiop
¢(z) with only one single component, and consequently we are led
back to the Klein-Gordon equation

O+ mAe(x) =0 .1
for the free particle,

Such an equation was abandoned in Chap. 1 because of the
impossibility of dofining a conserved positive definite probability,
Howcver, this original mnotivation for rejecting (9.1) has by now dis-
appeared and we reexamine it in the light of the Feynman interpre-
tation of the noegative-encrgy states propagating backward in time,
The spin of the particle does not enter crucially into such an interpreta-
tion which we shall find to be applicable to spin-zcro particles as well
as to clectrons.  As in the case of the clectron, we shall again be led
to this picture: along with a #*+ meson, for instance, which is described
by a positive-onergy solution of the Klein-Gordon equation, there
emergos its antiparticlo, the #~ meson, which is interpreted as a #*
meson of negative onergy propagating backward in time.

Let us consider for a moment for which particles in nature one
would hope to use the Klein-Gordon equation. There are no known
stable olementary particles of spin zoro; however, the = mesons and
K mesons are nearly stable candidates. They are experimentally
found! to be copiously created and destroyed one at a time, for exam-
ple, in reactions (p m proton, n m ncutron, A° m neutral lambda
particle, »* = positively charged » moeson, ote.)

ptp—ptntx
—=p+p+a
—p+ A4 Kt (9.2)
 +p— A4 K°
K-+ p— A0 4 x°
—Z= - xt
Therefore the wave equation for these spin-zero mesons must take

into account their possible production and annihilation. One cannot

! 8o, for example, M. Gell-Mann and A. H. Rosenfeld, Ann, Rev. Nucl
Sei., 7, 407 (19057); J. D. Jackson, ““The Physics of Elementary Particles,” Prince-
ton University Press, Princeton, N.J., 1088; W. 8, C. Williams (ed.), **An Intro-
duction to Elementary Particles,”” Academic Pross Inc., New York, 1061.

184
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Fig. -1 Contribution to the clectro- P p
magnetio structure of a x moson. x* "

—— — o — —— i — —

follow the world lines of these particles throughout a scattering process
as was possible in our discussion of the clectron world lines interacting
with photons. This is also true if we consider just the interactions of
charged » and K mesons with photons, since graphs such as Fig. 0.1
contribute.

This possibility of creation and destruction of single spinless
particles as confirmed by expcrimental observation requires that a
theory of their interactions be a many-particle theory. The quantum
field theory formalism is best suited to a discussion of this problem,
but again, as with the cloctrons and photons, we shall find it possible
to understand and calculate a great deal by extending our propagator
approach to a study of the mesons coupled to source termas added to the
right-hand side of (9.1).

If we include the weak interactions, the spin-zcro mesons aro
also dcstroyed! by reactions of the type, for example (u = mu meson
and » = neutrino),

wt—=ut
Kt gt 4 x* 2~ (0.3)
x4t

Bocause of the exceedingly small magnitude of these weak decay inter-
actions (0.3), the charged » and X mesons have very long half-lives
r ~ 10~* scc, which greatly cxceed the natural unit of time formed
from #, ¢, and the »- or K-meson masses, #/mc? < 10~ sec. To
first order in an expansion in a perturbation scries in powers of the
weak interaction constant we may therefore ignore the dccays (9.3)
and the finite lifetimes r ~ 10~* sec in discussing strong interaction
amplitudes such as (90.2). In this approximation the = and X mesons
are treated as stable particles and are represented by initial or final
froe wave functions.
The neutral »° and X° mesons which we also wish to include
_ in these discussions have shorter half-lives, their predominant decay

1 Goll-Mann and Rosenfcld, Jackson, and Williams, op. eit.
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modes being!
=yt Tes ~ 101 gec
K= 7t 4+ 7~ Txe ~ 1019 80C

Ilowever, these dccay rates are still very long compared with the
characteristic period of 10~ see, and the interactions responsible for
them need be included in lowest order only. The »° and K° will
therofore also be treated as stable in strong reactions as in (9.2).

In addition to the interactions of the spin-zero particles illus-
trated by (9.2) and (8.3), the charged # and K mesons interact with
photons and with external electromagnetic fields. In order to empha-
size first the similarity to the clectrodynamics of a Dirac clectron,
we shall limit the discussions of this chapter to the electrodynamic
interactions of charged spin-zero particles. The propagator develop-
ment follows the physical lines given for the electron theory. In
order to discuss tho low-encrgy properties of mesons in external ficlds,
for example, the bound states of the r-mesic atoms, we also makeo a
systematic nonrclativistic reduction and interpretation of the Klein-
Gordon equation. More general weak decay and strong nuclear
couplings are discussed in the following chapter.

2 The Propagator for Klein-Gordon Particles

Bolutions of the Klein-Gordon equation satisfy a continuity equation,
as derived in (1.12):

ajn(x)-i . uO¢ . Op* -
Y T ("” o, %oz )"0

By the divergence theorem, the integral
Q = [ d* jo(z) = if d'z ¢*d0p (9.4)

e ab da
where adeh m a (5&) - (3-‘-) b

is a useful shorthand, is conserved for solutions of (9.1).
The plane-wave solutions of the Klein-Gordon equation with
both positive and negative frequencies form a complete set. Normal-

1 Gell-Mann and Roseofeld, Jackson, and Williams, op. cit.
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ized in a box of volume V, the solutions are

e#lp-
(&) ) =
; t 4 ( ) \/. w"
with wy = po > 0 and p* = m? acoording to the Einstein condition,
In the continuum normalization language wo write
1

f’(t)(x) - ﬁ"‘l m (9'5)

for tho positive- and negative-frequency solutions, respectively. They
satisfy the orthogonality and normalization relations

[ diz f$* (2)idef () = +8(p — pP)

J d% f4* (2)i36fF(x) = O

Notico that Q is positive for a superposition of positive-frequency
solutions, that is, for
¢®(z) = [ d'pa,(p)f;"(x)

(9.6)

- (9.7)
Q = if d'z ¢®)*(2)3e0™® () = +[ d*p |a,(p)[*
and for negative-frequency solutions Q is negative, that is, for
¢ (x) = [ d*p aX(p)fy(x)
(9.8)

Q = if d* ¢tI*(2)30p ) (z) = — [ d'p |a~(P)[?

Herein lies the difficulty for a probability interpretation for the solu-
tions of the Klein-Gordon equation, since Q may take on nogative as
woll as positive values for a genecral supcrposition of plane-wave
solutions,

To construct the Feynman propagator for the Klein-Gordon
oquation, we want to find a solution of

(Or + mAr( — 2) = =34z — 2) (9.9)

which propagates positive-frequoncy parts of waves forward in time
and negative-frequency omes backward in time. Proceeding in
analogy with the Dirac theory, (6.40) to (6.46), we Fourier-transform
to momentum space in which Ay has the representation

d . 1
Ap(r) —2) = [ (ﬂ‘%rlp-(-ﬂ)m (9.10)

The small negative imaginary part added to the mass in (8.10) agsures
that (9.10) mcets the desired boundary condition of propagating only
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the positive froquencies forward in time and the negative frequencies
backward. As discussed in Chap. 6, there is no other choice of inte-
gration contour in (9.10) which accomplishes this,

We may verify that (8.10) is the correct choice of contour by
intcgrating over dp, to obtain, with the use of the Cauchy theorem,

l'—ﬂaf"(l‘—l)

Mrle = 2) = =i [ @:’gr et
= =i [ e fP@IPH O ~ 1)
— i [ dp SO E0E - ¢) (011)

By dircet computation we find from (0.6) and (0.11) that Ar(z’ — 2)
propagates only the positive-frequency part of a general wave

?(x) = ¢*(z) + ) (2) (8.12)
a8 formed in (8.7) and (9.8), forward in time,
— (' — DeM(X'l') = [diz Ap(¥ — D)idep™(x,)  (9.13)
and the negative-frequency part backward
—i0(t = )t (X' ) = — [ dz Ap(x’ — 2)idep'(x,0) (9.14)

Equations (9.13) and (9.14) are analogous to (6.49) and (6.50) for the
Dirac oquation,

Introduction of Electromagnetic Potentials

Interaction of a charged spin-zero meson with the clectromagnetic
field is introduced by the minimal substitution

p*— p* — eA*(x) (9.16)

as for the Dirac equation. We first consider A*(x) as an applied
external potential. Introducing (9.15) into (0.1), we obtain

[(2% - aA")’ - m’] o(z) = 0 (9.16)

Equation (9.16) still has a conserved current which we find, as in
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(1.12), to be
o - $¥(z) [(i% - aA'(x)) ¢(I)]

- o) [ (15 + et 0*@] 1)
Tn
The corresponding conserved charge is

Q = [ dz $*(x)]ids — 2eA%x))(x) (9.18)

A plane wave representing a free incident charged meson will
scatter in this potential, with the amplitude given by the solution of
(9.16). Adopting the Feynman boundary condition that scattered
waves of positive froquency only are to propagate forward in time
and negative-frcquency waves backward, we intcgrate (9.106) with the
Feynman propagator (9.10):

. L, 0 s
Qs + m?)e(x,t) = —dc (a—‘w Ar 4 A -&—,) ¢ + 24, 4%

80 = ox) + [ d% Ba(z = V(IO (9.19)
with V) = o (40 + ) 1) - @ AIAG)

Equation (9.19) is the analogue of (6.63) for Dirac particles, and the
physical interprotation of the solution is again very similar to that
given for the clectron. In order Lo ensure that only positive-frequency
waves, representing positive-energy particles, emerge into the future
after a scattoring, we have integrated with the Foynman propagator in
(9.19). This leads by (9.11) to

G(x,t) = o(x,0) = if dp S (2)f dy 6(t = yo)fy (1) V() ()
— if dp S5 @) dy 6(yo — OFS* W) VW) S()  (9.20)

which also contains negative-frequency waves propagating backward
to carlicr times, Ilowever, from the point of view of an observer
watching his instruments, the absorption in the past of a negative-
energy particle of chargoe e is equivalent to the emission of a positive-
energy one of charge —e. In this way we are led to the fundamental
and exporimentally verified prediction that there exists an oppositely
charged antiparticle for each particle in nature,

A particle may have no charge, in which case it may be identical
with its antiparticle. Such a particle is found in nature, the neutral
spin-zero = meson, %, Though it docs not ghare in the clectromagnetic
couplings introduced in (9.15), the propagator for free x° mesons can
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Fig. 8-8 Diagrams for particle and antiparticle scattoring and for pair
production and annihilation,

be developed in complote analogy with Sec. 8.2, Since {he current and
charge (9.4) vanish for it, the »° will be represented in absence of inter-
actions by a real solution ¢ = ¢* of the free Klein-Gordon equation,
The Feynman propagator (8.11) will then propagate the positive-fre-
quoncy parts of ¢ forward and the nogative-frequency parts backward
in timo as for the charged mesons.

4 Scattering Amplitudes

By moving the world lines around—as in Fig. 0.2—so0 that they
move both backward and forward in time, we include in our scattering
formalism for mesons, as for electrons, the amplitudes for production
and annihilation of particle-antiparticle pairs along with the direct
scattering amplitudes.

In order to compute a scattering or transition amplitude, (0.19)
is iterated until ¢ is evaluated to the dosired accuracy. The free
solution ¢ in (0.10) ropresonts the normalized free-particle wave
in the absence of scattering. The iransition amplitude to a particle
state of given momentum, say, p} is found by projecting the scattcred
wave emerging from the intcraction onto a normalized free wave of
momentum p,. The transition probability is then given by the abso-
lute square of this amplitude, or by the intensity of the projection of
the scattered wave.

For ordinary scattering of mesons (Fig. 9.2a), positive-frequency
waves cmorgo after the scattering ast — o« with a scattering amplitude
that is calculated by projecting out the positive-frequency part of the
scattored wave (9.20):

Sy, = lim [ d* f21*1300(z)

= 8%p} — ps) = YWD VW) (9.21)
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where ¢(y) is given by (9.19), with f’(y) representing the incident
meson wave of positive frequency. The transition probabilily is then
|Sp.p.l%.  For pair production (Iig. 8.2d), we again project out the
positive-frequency waves as in (8.21), but now ¢(y) represents a
scattered wave developing from an incident negative-frequency wave
t(y) in (9.10). According to (0.14), the negative-frequency wave
is “incident” at yo— 4 o, since Ap(z — y) propagates it backward
in time only. In complete analogy with the ground rules developed in
Chap. 6 for positron thcory, we associate the backward propagation
of the negative-frequoncy solution with quantum numbers p_ with
the emergence of the antimeson—say, the »~ meson—of positive
onergy and four-momentum p...

For the pair annihilation amplitude, Fig. 9.2¢, we project out the
negative-frequency part of the scattered wave (0.20) as t — — oo

Spupe = = lim [ dz [*(2)id0s(y) (0.22)

- —if dy iV W)

Hore ¢(y) is given by (9.19) with f‘,f',"(y) representing the incident
x*-meson wave of positive frequency with four-momentum p,. As
usual, the incident #— meson with positive energy and four-niomentum
p- is represented by a negative-frequoncy wave fi-'*(y) propagating
backward into the past out of the interaction V(y). Finally, the
=~ (or anti-) meson scattering, Fig. 0.2b, is given by (8.22), where
¢(y) is still dotermined by (0.19). Ilowever, the “incident”’ #+ meson
wave of ncgative frequency is now given by f52(y), ropreseuting the
final #~ emerging with positive enorgy and four-momentum p’. after
the scattering, that is,

Sp_pr = 8(p- — p1) — if dY WV (W) W) (6.23)

Comparison with the propagator formulation of positron theory
in Chap. G shows that the S-matrix rules discussed hore have the
same physical origin and interpretation as discussed there.

The practical rules for calculation of transition rates for spin-zero
mesons under olectromagnetic interactions can be doveloped by

calculating several simple examples as was done for the electron in
Chap. 7.

5 Low-order Seattering Processes

As a first example we consider the Coulomb scattering of a »+ meson
to lowest order in . The e2A4,A* term in the interaction (0.10) docs
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not contribute to this order and may be neglected. The transition
amplitude corresponding to the graph, Fig. 0.3, is found from (9.21)
with ¢(y) ~ fi(y). For ¢ m p, — p, »& 0 the &-function term van-
ishes, so that

Soin. = G | 4V g €0 + DA

- St 4,
@ Vi @

where  As(g) m [ dly ebv As(y)

(9.24)

The form of the current in (8.24) is reminiscent of the spin-independent
term in the Gordon decomposition of the electron current. Inserting
A#(g) in (9.24) for a static Coulomb potential

Ar(g) = l%f‘ d(y — w)gH® (8.25)

we obtain the cross section by the usual procedure of squaring, sum-
ming over final states, and dividing by the incident flux., In analogy
with (7.10), we find

- (20)? — ). [ Lt w) LT
do —,ﬂ-d'p’ 2r8(wy — wi) [ @r)® \/ 20; 2 Iaf (0.28)
do ALY .
and an = I8 sint (6/2)

which lacks the factor 1 — §2sin? (6/2) found for the electron in
(7.22) and associated with the spin,

A similar result is obtained for the Coulomb scattering of »~
mesons. From (9.24), with f5*(y) representing the =~ with momen-
tum p_ before the scattering and ¢(y) ~ f52(y), the final #~ cmerging

Ze
/WWW Fig. 8-8 Coulomb scattering of a »* meson.
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Fig. 8-4 Coulomb soattering of a »~ meson. ) a¥aVaVa Vo V¥
/
/
I 4
i
/
after the scatiering, as in Fig, 9.4, we find
ie(p- + pl),A*(9)
8p.ps = + 2=t P, 9.27
2 =t ory v %02, 0.2

with ¢ m p_ — p_ again representing the momentum transfer. Equa-
tions (9.24) and (0.27) differ in sign only, corresponding to the change
in sign of the * and »~ charge, and lead to identical cross sections
(9.26).

The lesson we learn froin this calculation is that to the x-meson
veortex we attach a factor e(p, + pl) instead of ey, as for the cleotron.
The wave function nornalization factor is 1/4/2w, which roplaces the
v/m/E for the clectron, and of course there are no spinors,

To obtain the rules for the 24,4» term in V of (9.10), we turn
to Compton scattering of a charged meson. The “oxternal potential”
in this cxample consists of the absorbed and emitted photons described
“in continuum normalization” by the two terms, respeotively [see
(7.53)]

V2u@2a)3 | /22

where [, \ refer to the momentum and polarization. Since the lowest
order Compton amplitude is proportional to e?, the torms in V lincar
in e must be iterated once. The S matrix to order €3, corresponding
to tho Feynman graphs of Fig.