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A digital circuit is a circuit where the signal must be one of two
discrete levels. Each level is interpreted as one of two different
states (for example, on/off, 0/1, true/false). Digital circuits use

transistors to create logic gates in order to perform Boolean logic.
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Logic Design

All digital computers are based on a two-valued logic system—1/0, on/off,
yes/no . Computers perform calculations using components called logic
gates, which are made up of integrated circuits that receive an input

signal, process it, and change it into an output signal. There are three basic
kinds of logic gates, called “and,” “or,” and “not.” By connecting logic
gates together, a device can be constructed that can perform basic
arithmetic functions.
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Digital Signal : Decimal values are difficult to represent in
electrical systems. It is easier to use two voltage values than ten.

« Digital Signals have two basic states:
1 (logic “high”, or H, or “on”)
0 (logic “low”, or L, or “off”)

« Digital values are in a binary format. Binary means 2 states.

* A good example of binary is a light (only on or off)

on Q Qoff

Power switches have labels “1” for on and “0” for off.
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=2 .« Bits and Pieces of DLD History

George Boole

Mathematical Analysis of Logic (1847)

An Investigation of Laws of Thoughts; Mathematical Theories of Logic
and Probabilities (1854)

Claude Shannon
Rediscovered the Boole
“ A Symbolic Analysis of Relay and Switching Circuits
Boolean Logic and Boolean Algebra were Applied to Digital Circuitry

---------- Beginning of the Digital Age and/or Computer Age
World War 11
Computers as Calculating Machines

Arlington (State Machines) “ Control *
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_ ~ Motivation o
« Microprocessors/Microelectronics have revolutionized

our world
 Cell phones, internet, rapid advances in medicine, etc.
* The semiconductor industry has grown
tremendously
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Digital Systems and Binary Numbers

m|Digital age and information age

m|Digital computers
e General purposes
* Many scientific, industrial and commercial applications

 Digital systems
* Telephone switching exchanges
* Digital camera
e Electronic calculators, PDA's
e Digital TV

* Discrete information-processing systems

* Manipulate discrete elements of information
* For example, {1, 2, 3, ...} and {A, B, C, ...}...
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Analog and Digital Signal

* Analog system

* The physical quantities or signals may vary continuously over a
specified range.

* Digital system
* The physical quantities or signals can assume only discrete values.
* Greater accuracy

X(t) X(t)

, llmﬂ' ,
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Binary Digital Signal

* An information variable represented by physical quantity.

* For digital systems, the variable takes on discrete values.
* Two level, or binary values are the most prevalent values.

* Binary values are represented abstractly by:

+ Digits 0 and 1 vV
* Words (symbols) False (F) and True (T)
* Words (symbols) Low (L) and High (H) Logic 1
 And wordsOnandoff [ | |
undefine
* Binary values are represented by values f--------f--------t-eeeeev
or ranges of values of physical quantities. Logic 0

08-11-2020

Binary digital signal
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Decimal Number System

* Base (also called radix) = 10 " "
e 10digits{0,1,2,3,4,5,6,7,8,9 } s =
* Digit Position

* Integer & fraction

* Digit Weight
. _ Position
Weight = (Base) 100 10 1 0.1 0.01
* Magnitude
e Sum of “Digit x Weight”
e Formal Notation 500 10 2 0.7 0.04

d,*B"+d *B +d*B +d *B "+d .*B

(512.74)
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Octal Number System

e Base=8
e 8digits{0,1,2,3,4,5,6,7}
. Weights 64 8 1 18 1/64
* Weight = (Base) """ 5 2 7 A
* Magnitude 2 10 12
« Sum of “Digit x Weight” 5+8°+1 *8'+2 *8'+7 *8 44 *8”
* Formal Notation =(330.9375),
(512.74),
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e Base =16

Hexadecimal Number System

16 digits{0,1,2,3,4,5,6,7,8,9,A,B,C,D, E, F}

* Weights
e Weight = (Base) """

* Magnitude
e Sum of “Digit x Weight”

 Formal Notation

08-11-2020

256 16 1 1/16 1/256
T € 5 7 A
2 1 0 -1 -2
1*16°+14 *16 +5 *16 +/ *16 +10 *16
=(485.4765625)
(LES.7A)
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The Power of 2

n 2" n 2"

0 20=1 8 28=256
1 21=2 9 29=512
2 22=4 10 210=1024
3 23=8 11 211=2048
4 24=16 12 21°=4096
5 2°=32 20 220=1M
6 25=64 30 230=1G
7 2'=128 40 240=1T

Digital Circuits and Logic Design (BCS-11)

Kilo

Mega

Giga

Tera
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e Decimal Addition

08-11-2020

Addition

1 <«— Carry

1 0
\ = Ten > Base

=» Subtract a Base

Digital Circuits and Logic Design (BCS-11)
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e Column Addition
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Binary Addition
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Binary Subtraction

~ = =

Digital Circuits and Logic Design (BCS-11)
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* Bit by bit

08-11-2020

1 0 1 1
X
0O 0 0 O
1 0 1 1 1
0 0 0 0 O
1 0 1 1 1

=
=
=
o
()

1 1
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Number Base Conversions

Evaluate
Magnitude

_—-_——"

—

Evaluate
Magnitude

—_—

Hexadecimal

( )

—
—~—__>

Evaluate
Mag Niturck@cuits and Logic Design (BCS-11)
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Decimal (Integer) to Binary Conversion

 Divide the number by the ‘Base’ (=2)
* Take the remainder (either O or 1) as a coefficient
* Take the quotient and repeat the division

Example: (13),, Quotient  Remainder Coefficient
[2 = 1 a,=1
/2= 0 a,= 0
/2= 1 a,=1
[ 2= 1 a;=1
Answer:  (13),,=( ), =(1101),
/ X

MSB LSB
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Decimal (Fraction) to Binary Conversion

* Multiply the number by the ‘Base’ (=2)
* Take the integer (either O or 1) as a coefficient
* Take the resultant fraction and repeat the division

Example: ( )10 Integer  Fraction  Coefficient
*2= 1 . dq= 1
*2= 0 . a,=0
*2= 1 . az=1
Answer:  ( )10 = (O. ), =(0.101),
f X

MSB LSB
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Decimal to Octal Conversion

Example: (175),,

Quotient Remainder Coefficient
175 18= 21 7 a,="7
21 /8= 2 5 a,=>5
2 /8= 0 2 a,= 2

Answer:  (175),,= (2,2, 8,)s = (257),

Example: (0.3125),,

Integer  Fraction Coefficient
0.3125 *8= 2 . 5 a,=2
05 *8= 4 . 0 a,=4

Answer:  (0.3125),,= (0.2 ,a,a.);=(0.24),
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Binary — Octal Conversion

e Each group of 3 bits represents an

000

octal digit

001

Assume Zeros

010

Example:

011

100

101

110

~N~N o (OO

(I I )
( )s

111

Works ways (Binary to Octal & Octal to Binary)
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Binary — Hexadecimal Conversion

¢ 16 =24

0000

0001

* Each group of 4 bits represents a 0010

0011

hexadecimal digit
0100

0101

Assume Zeros 0110

0111

1000

Example: / \

1001

1010

1011

1100

1101

(I I )
( )16 1110

TMMO|IO(W|>|lo|lo|N|lo|jo|d|lw|N|(F|O

1111

Works ways (Binary to Hex & Hex to Binary)
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Octal — Hexadecimal Conversion

* Convert to as an intermediate step

Example:

)s

(2 6 . 2
Assume Zeros \ I I /AssumeZeros
(010110.010),

(1 6 4 )i

Works ways (Octal to Hex & Hex to Octal)

08-11-2020 Digital Circuits and Logic Design (BCS-11)
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Decimal, Binary, Octal and Hexadecimal

Decimal Binary Octal Hex
00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
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Complements

* There are two types of complements for each base-r system: the radix complement and diminished
radix complement.

* Diminished Radix Complement - (r-1)’s Complement

* Given a number N in base r having n digits, the (r—1)’s complement of N is
defined as:

(r"=1)—-N

* Example for 6-digit decimal numbers:

* 9’s complement is (r"— 1)-N = (10°-1)-N = 999999—-N

* 9’s complement of 546700 is 999999-546700 = 453299
* Example for 7-digit binary numbers:

* 1'scomplementis (r"—1)-N=(2-1)-N=1111111-N

e 1’'s complement of 1011000is 1111111-1011000 = 0100111
* Observation:

e Subtraction from (r"— 1) will never require a borrow

e Diminished radix complement can be computed digit-by-digit

* Forbinary:1-0=1and1-1=0



Complements

* 1’'s Complement (Diminished Radix Complement)
e All ‘O’s become ‘1’s
e All ‘1’'s become ‘O’s
Example (1011 ),
= (0100 ),
If you add a number and its 1’'s complement ...

1011

0100
11111111

08-11-2020 Digital Circuits and Logic Design (BCS-11)
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Complements

The r's complement of an n-digit number N in base r is

* Radix Complement defined as o
M — N for N # 0 and as 0 for N = 0. Comparing with the (r
— 1) 's complement, we note that the r's complement is
obtained by adding 1 to the (r — 1) 's complement, since

M-N=[("-1)-N]+ 1.
* Example: Base-10

The 10's complement of 012398 is 987602
The 10's complement of 246700 is 753300

* Example: Base-2

The 2's complement of 1101100 is 0010100
The 2's complement of 0110111 is 1001001




Complements

e 2’'s Complement (Radix Complement)
* Take 1's complement then add 1
oRr * Toggle all bits to the left of the first ‘1’ from the right

Example:
Number:
Comp.:
10110000 10110000
01001111
+ 1

01010000 01010000

08-11-2020 Digital Circuits and Logic Design (BCS-11) 30



Complements

e Subtraction with Complements

* The subtraction of two n-digit unsigned numbers M — N in base r
can be done as follows:

1. Add the minuend M to the »'s complement of the subtrahend N. Mathematically, M
+G@" -Ny=M-N-++"

2. If M = N, the sum will produce and end carry ", which can be discarded; what is
left is the result M — M.

3. If M < N, the sum does not produce an end carry and is equal to 7" — (N — M),
which is the »'s complement of (N — M). To obtain the answer in a familiar form,

take the 's complement of the sum and place a negative sign in front.
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Complements

* Example 1.5
* Using 10's complement, subtract 72532 — 3250.

M= 72532
10's complementof N= +96750

Sum = 169282
Discard end carry 10° = —100000

Answer = 69282
* Example 1.6
* Using 10's complement, subtract 3250 — 72532.
M= 03250
10's complement of N= +27468 There Is no end carry.
Sum = 30718

08119020 Therefore, the answer 1S — (1p's complemgnt oii 30718) = —69282.
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* Example 1.7

&4 Complements

* Given the two binary numbers X=1010100 and Y = 1000011,
perform the subtraction (a) X—Y; and (b) Y — X, by using 2's

complement.

(a) X = 1010100
2's complementof Y= +0111101

Sum = 10010001

Discard end carry 2" = —10000000

Answer. X —Y = 0010001
(b) Y = 1000011
2's complement of X = + 0101100
( Sum = 1101111

There is no end carry.
Therefore, the answer is'Y —
X =—(2's complement of
1101111) = - 0010001.

Logic Design (BCS-11) 33



Complements

* Subtraction of unsigned numbers can also be done by means of the (r —1)'s
complement. Remember that the (r— 1) 's complement is one less then the r's
complement.

* Example 1.8

* Repeat Example 1.7, but this time using 1's complement.

(a) X—-Y=1010100- 1000011
X= 1010100
1I's complement of Y=+ 0111100
Sum = 10010000
End-around carry = + 1
Answer. X— Y= 0010001

(b)Y —X'=1000011 — 1010100 There is no end carry, Therefore,

Y= 1000011 the answer isY — X = — (1's
1I's complement of X= + 0101011 complement of 1101110) = -
0010001.

08-1: Sum = 1101110 | Circuits and Logic Design (BCS-11) 34



Signed Binary Numbers

To represent negative integers, we need a notation for negative
values.

It is customary to represent the sign with a bit placed in the
leftmost position of the number since binary digits.

The convention is to make the sign bit O for positive and 1 for
negative.

Example:
Signed-magnitude representation: 10001001
Signed-1's-complement representation: 11110110
Signed-2's-complement representation: 11110111

Table 1.3 lists all possible four-bit signed binary numbers in the
three representations.
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Signed Binary Numbers

Table 1.3
Signed Binary Numbers
Signed-2’s Signed-1's Signed
Decimal Complement Complement Magnitude

47 0111 Ol11 0111
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
-0 — 1111 1000
—1 1111 1110 1001
-2 1110 1101 1010
—3 1101 1100 1011
—4 1100 1011 1100
=3 1011 1010 1101
-6 1010 1001 1110
—7 1001 1000 1111
=8 1000 - —
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e Arithmetic addition

Signed Binary Numbers

* The addition of two numbers in the sighed-magnitude system follows the rules of
ordinary arithmetic. If the signs are the same, we add the two magnitudes and give
the sum the common sign. If the signs are different, we subtract the smaller
magnitude from the larger and give the difference the sign if the larger magnitude.

e The addition of two signed binary numbers with negative numbers represented in
signed-2's-complement form is obtained from the addition of the two numbers,

including their sign bits.

* A carry out of the sign-bit position is discarded.

 Example: + 6 00000110
+13 00001101

+19 00010011
+ 6 00000110
—13 11110011

-7 11111001

08-11-2020

-6 11111010
+13 00001101
+7 00000111
-6 11111010
—13 11110011
—-19 11101101

Digital Circuits and Logic Design (BCS-11)
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Signed Binary Numbers

Arithmetic Subtraction
In 2’s-complement form:

1. Take the 2’s complement of the subtrahend (including the
sign bit) and add it to the minuend (including sign bit).
2. A carry out of sign-bit position is discarded.

(xA)-(+B)=(£A)+(-B)
(xA)-(-B)=(£A)+ (+B)

(_%))(fr(r_‘%?: (11111010 — 11110011)
(11111010 + 00001101)
00000111 (+ 7)
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Binary Codes

Digital data is represented, stored and transmitted as groups of binary
digits also known as binary code.

-4--—--‘

' D P T e bl D P :o ' .
-~ N — - - .
c{,éﬁ“rhcm hl:,jj_.‘g{; ASCH [[EBCDIC ||Holerit
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Table 1.4

BCD Code Binary-Coded Decimal (BCD)

« A number with k decimal digits will
require 4k bits in BCD. ) 2;2'.;‘;'

« Decimal 396 is represented in BCD with
12bits as 0011 1001 0110, with each
g_ro_L{p of 4 bits representing one decimal

Igit.

« A decimal number in BCD is the same
as Its equivalent binary number only
when the number is between 0 and 9.

« The binary combinations 1010 through
_11}31C%e not used and have no meaning
In .

BCD

Digit
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 Ol111
8 1000
9 1001

Example: Consider decimal 185 and its corresponding value in BCD and binary:

(185)10= (0001 1000 0101) gep = (10111001),

4 0100 4 0100 8 1000
+5 +0101 +8 +1000 +9 +1001

9 1001 12 1100 17 10001
+0110 +0110

10010 10111

BCD addition

08-11-2020
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bther Decimal Codes
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Binary Codes

Table 1.5
Four Different Binary Codes for the Decimal Digits
Decimal BCD
Digit 8421 2421 Excess-3 8 4, -2, -1
0 0000 0000 0011 0000
1 0001 0001 0100 0111
2 0010 0010 0101 0110
2 0011 0011 0110 0101
4 0100 0100 0111 0100
5 0101 1011 1000 1011
6 0110 1100 1001 1010
¥ 0111 1101 1010 1001
8 1000 1110 1011 1000
9 1001 1111 1100 1111
1010 0101 0000 0001
Unused 1011 0110 0001 0010
bit 1100 0111 0010 0011
combi- 1101 1000 1101 1100
nations 1110 1001 1110 1101
1111 1010 1111 1110

o o S o

—TO" - T —Tro T\
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* The advantage is that only bit in the
code group changes in going from
one number to the next.

* Error detection.
* Representation of analog data.
* Low power design.

000 001

010 1 011

101

110 111

Binary Codes

Table 1.6
Gray Code
Gray Decimal
Code Equivalent
0000 0
0001 1
0011 2
0010 3
0110 -+
0111 5
0101 6
0100 7
1100 8
1101 9
1111 10
1110 11
1010 12
1011 13
1001 14
1000 15

08-11-2020 1_1 and OntO!! Digital Circuits s———
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American Standard Code for Information Interchange (ASCIl) Character Code

Table 1.7
American Standard Code for Information Interchange (ASCII)
bbb
bsbs;b,b; 000 001 010 011 100 101 110 111
0000 NUL DLE SP 0 @ P p
0001 SOH DC ! I A Q a q
0010 STX DC2 - 2 B R b r
0011 ETX DC3 # 3 G S C S
0100 EOT DC4 $ 4 D T d l
0101 ENQ NAK Fo 5 E U e u
0110 ACK SYN & 6 F Y% f v
0111 BEL ETB = 7 G W g W
1000 BS CAN ( 8 H X h X
1001 HT EM ) 9 I Y i y
1010 LF SUB " : ] L ] z
1011 VT ESC + : K [ k {
1100 FF FS : < L \ | |
1101 CR GS = = M | m }
1110 SO RS , > N A n ~
111 S| Us / ? O - 0 DEL
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ASCII Character Code

Control characters

NUL Null DLE Data-link escape

SOH Start of heading DCI Device control |

STX Start of text DC2 Device control 2

ETX End of text DC3 Device control 3

EOT End of transmission DC4 Device control 4

ENQ Enquiry NAK Negative acknowledge
ACK Acknowledge SYN Synchronous idle
BEL Bell ETB End-of-transmission block
BS Backspace CAN Cancel

HT Horizontal tab EM End of medium

LF Line feed SUB Substitute

VT Vertical tab ESC Escape

FF Form feed FS File separator

CR Carriage return GS Group separator

SO Shift out RS Record separator

Si Shift in us Unit separator

SP Space DEL Delete

08-11-2020 Digital Circuits and Logic Design (BCS-11)
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ASCII Character Codes and Properties

American Standard Code for Information Interchange (Refer to Table 1.7)
« A popular code used to represent information sent as character-based data.

* |t uses 7-bits to represent:
* 94 Graphic printing characters.
34 Non-printing characters.

« Some non-printing characters are used for text format (e.g. BS = Backspace, CR
= carriage return).

 Other non-printing characters are used for record marking and flow control (e.qg.
STX and ETX start and end text areas).
« ASCII has some interesting properties:
* Digits 0 to 9 span Hexadecimal values 3016 to 3916
» Upper case A-Z span 4116 to 5SA16
* Lower case a-z span 6116 to 7A16
« Lower to upper case translation (and vice versa) occurs by flipping bit 6.

08-11-2020 Digital Circuits and Logic Design (BCS-11) 45



Error-Detecting Code

"%,,41 Al /5
s =5

=+ To detect errors in data communication and processing, an eighth bit
IS sometimes added to the ASCII character to indicate its parity.

A parity bit is an extra bit included with a message to make the total
number of 1's either even or odd.

Example:
Consider the following two characters and their even and odd parity:

With even parity With odd parity

ASCIT A= 1000001 01000001 11000001
ASCII T=1010100 11010100 01010100

08-11-2020 Digital Circuits and Logic Design (BCS-11) 46



Error-Detecting Code

=" Redundancy (e.g. extra information), in the form of extra bits, can
be incorporated into binary code words to detect and correct errors.

« A simple form of redundancy is parity, an extra bit appended onto
the code word to make the number of 1’s odd or even. Parity can
detect all single-bit errors and some multiple-bit errors.

A code word has even parity if the number of 1’s in the code word
IS even.

A code word has odd parity if the number of 1°’s in the code word is
odd.

« Example:

Message A: 10001001 1 (even parity)
Message B: 10001001 O (odd parity)

08-11-2020 Digital Circuits and Logic Design (BCS-11) 47



Hamming Codes

Invented W.B Hamming and Simple 1parity bit can tell us an error occurred
Multiple parity bits can also tell us where it occurred
O(lg(n)) bits needed to detect and correct one bit errors.

In generally we use 7 bits hamming code
* 4 data bits/message bit (m) and 3 parity bits (2P>= P+m+1)

Example: Byte 1011 0001

Two data blocks, 1011 and 0001. Bitpositon 1 2 3 4 5 6 7
Expand the firstblockto 7 bits: _ 1 01 e — 11—
Bit 1 is 0, because b3+b5+b7 is even. Encoded data 11 s [ 22 |4
Bit 2 is L, b3+h6+h7 is odd. bies (RS TR B4
bit 4 is 0, because b5+b6+b7 is even. | — —
Our 7 bitblockis:0110011 pllx| x| |x| |xl|
Panity |

Repeat for right block giving1 10100 1 bt p2| XX X | X

Error detectings: 0110111 P e e e

Re-Check each parity bit p3 X|X|xX|X

Bits 1 and 4 are incorrect
1+ 4 =5, sothe error occurred in bit 5

08-11-2020 Digital Circuits and Logic Design (BCS-11)



Binary Storage and Registers

Registers

* Abinary cell is a device that possesses two stable states and is capable of storing one of the
two states.

* Avregisterisa group of binary cells. A register with n cells can store any discrete quantity of
information that contains n bits.

n cells 2" possible states
A binary cell
e Two stable state
e Store one bit of information
* Examples: flip-flop circuits, ferrite cores, capacitor

A register
* A group of binary cells
* AXinx86 CPU

Register Transfer
* A transfer of the information stored in one register to another.

* One of the major operations in digital system.
* An example in'next slides.

08-11-2020 Digital Circuits and Logic Design (BCS-11) 49



A Digital Computer Example

Memory
Control 5
CPU unit Datapath
<
Inputs: Keyboard, T ¢ Outputs: CRT,
mouse, modem, / LLCD, modem,
microphone InputiOutput speakers

Synchronous or
Asynchronous?

08-11-2020 Digital Circuits and Logic Design (BCS-11)



Transfer of information

MEMORY UNIT
J O H N
| — T t————h Memory
0100101001()011113100100011001110 Register
r
PROCESSOR UNIT
Processor
Scells <{ Scells |[<{ Scells (<1 8cells Register
A
INPUT UNIT Input
8 cells Register
A
@ >
Keyboard % | CONTROL
® -
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Operand 1

Transfer of information

MEMORY UNIT

0000000000

Sum

Operand 2

0011100001

0001000010

* The other major
component of a digital
system

e Circuit elements to
manipulate individual bits
of information

e Load-store machine

Y

0001000010

Y

Digital logic

R1

circuits for
binary addition

A

08-11-2020

»0011100001

PROCESSOR UNIT

0100100011

LD R1;

LD R2;

ADD  R3,R2,RI1;
R SD R3;

Digital Circuits and Logic Design (BCS-11) 52



Binary Logic

* Definition of Binary Logic
* Binary logic consists of binary variables and a set of logical operations.

* The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc,
with each variable having two and only two distinct possible values: 1 and O,

* Three basic logical operations: AND, OR, and NOT.
1. AND: This operation 1s represented by a dot or by the absence of an operator. For

example, x - y =z or xy =z is read “x AND y is equal to z,” The logical operation
AND is interpreted to mean thatz = 1 if only x = 1 and y = 1; otherwise z = 0.
(Remember that x, y, and z are binary variables and can be equal either to 1 or 0,
and nothing else.)

2. OR: This operation 1s represented by a plus sign. For example, x + y =z 1s read “x
OR yisequal to z,” meaning thatz=1ifx=1ory=1orifbothx=1andy = 1.
If bothx=0and y =0, thenz = 0.

NOT: This operation is represented by a prime (sometimes by an overbar). For

%)

example, X' =z (or x =z)isread “notx is equal to z,” meaning that z is what z 1s
not. In other words, if x = 1, then z = 0, but if x = 0, then z = 1, The NOT operation
is also referred to as the complement operation, since it changes a 1 to 0 and a 0 to
l.
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Binary Logic gates

* Truth Tables, Boolean Expressions, and Logic Gates

AND OR
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1
Z=Xey=XY Z:X+y

=D ) >~
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NOT
0 1
1 0
Z=X=Xx’

X — o7
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Logic Function Boolean Notation
AND AB
OR B
NAND AB
NOR e
FX-OR (AB)+(AB)OrA® B
EXNOR (AB)+ 0rADS
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Universal Gate

* NAND and NOR Gates are called Universal Gates because AND, OR
and NOT gates can be implemented &created by using these gates.

NAND Gate Implementations NOR Gate Implementations
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* Logic gates
* Example of binary signals
Volts

A

3

\

T

Transition occurs
between these limits

l

0
08-11-2020

Binary Logic

Signal
r range for
logic 1 3+
Logic 1
2 L S
Un-define
T W
Logic 0
0
Signal
> range for
logic 0
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* Logic gates

Binary Logic

e Graphic Symbols and Input-Output Signals for Logic gates:

X

y — 1
(a) Two-input AND gate

AND:x -y

OR:x +y

NOT: x’
08-11-2020

X X
y

(b) Two-input OR gate (¢c) NOT gate or inverter

Digital Circuits and Logic Design (BCS-11)
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Binary Logic

* Logic gates

* Graphic Symbols and Input-Output Signals for Logic gates:

A — F=ABC
B
C.._

(a) Three-input AND gate

G=A+B+C+D

TN

(b) Four-input OR gate

Fig. 1.6 Gates with multiple inputs

08-11-2020
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Boolean Algebra

" Invented by George Boole in 1854
"  An algebraic structure defined by a set B = {0, 1}, together with two binary

operators (+ and :) and a unary operator ( )

“An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic
and Probabilities”

Boolean Algebra
{(1,0), Var, (NOT, AND, OR), Thms}

OMathematical tool to expression and analyze digital (logic) circuits

dClaude Shannon, the first to apply Boole’s work, 1938
— “A Symbolic Analysis of Relay and Switching Circuits” at MIT

dThis chapter covers Boolean algebra, Boolean expression and its
evaluation and simplification, and VHDL program
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Basic Functions and Basic Functions

Boolean functions : NOT, AND, OR,
Exclusive OR(XOR) : Odd function Exclusive NOR(XNOR) : Even function(equivalence)

Boolean functions for (a) AND, (b) OR, (c) XOR, and (d) NOT

X y XAY X y XVvy X y X@y X H X’
0|0 0 0|0 0 00 0 0 H 1
0 1 0 0 1 1 0 | 1 | 0
1 0 0 1 0 1 | 0 1
] 1 | 1 1 1 | | 0

() (b) (©) (d)

Basic functions
« AND Z=X-Y orZ=XY

Z=1if and only if X=1 and Y=1, otherwise Z=0
« OR Z=X+Y

Z=11f X=1orif Y=1, or both X=1and Y=1. Z=0 if and only if X=0 and Y=0
« NOT Z=X'or

Z=1if X=0, Z=0 if X=1
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Boolean functions for (a) NAND, (b) NOR, and (c) XNOR

X y |[INAND X y NOR X y || XNOR
o] o 1 oo ] oo 1
0 | 1 1 0| 1 0 0| 1 0
110 1 1 | o0 0 1 |0 0
1 1 0 1 1 0 1 1 1
@) (b) (©)
All possible binary boolean functions
X| VIO alxy' | x| Xy|y|®|v|NOR XNOR|y"| x+ y'| x| X'+ y|NAND| |
010(0[{0f 0|0f 0[0[0[0] 1 [ [ l 1|1
0[140[0] O (O] 1T (1fT{1{ 0| 0O |0O] O |1 I 1|1
OO0 1 (11 0 (0fT{1;{ 0] 0 |T I 107 0 1|1
PETHOorTt ot o tiomrotr 1100 1 100 1 0 I]
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Boolean Operations and Expressions

 Boolean Addition

* Logical OR operation
Ex 4-1) Determine the values of A, B, C, an D ke the sum term A+B’+C+D’
Sol) all literals must be ‘0’ for the sum term to be ‘0’
A+B’+C+D’=0+1"+0+1'=0— A=0, B=1, C=0, and D=1

* Boolean Multiplication

* Logical AND operation
Ex 4-2) Determine the values of A, B, C, and D for AB’CD’=1
Sol) all literals must be ‘1’ for the produc —D_

AB’'CD’=10'10'=1—> A=1, B=0, C=1, atiu vu-vu
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Basic Identities of Boolean Algebra

Basic ldentities of Boolean Algebra

| — X+0=X 2. Xl=X
3 X+l =1 4. X0=0 The relationship between a
single variable X, its

5 O XN+X =X b, X-X=X complement X', and the binary
7 X_I_z 1 3 X )_( ~ 0 constants 0 and 1

9| X=X
0. X+¥=VY+X 1. XY=YX Commutative
12| X+(Y+Z)=(X+Y)+7 15, X(YZ)=(XY)Z Associative
4. X(¥Y+Z)=XY+XZ 15, X+YZ=(X+Y)(X+Z)  Distributive
6, X+Y=XY 7. XY=X+Y DeMorpan’s
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Laws of Boolean Algebra

Commutative Law: the order of literals does not matter
AR=RA

B -
BA
AN ——]

A+B=B+A

A B
A+B =
B A

I
AB =
B

Associative Law: the grouping of literals does not matter
A+ (B+C)=(A+B)+C(=A+B+C)

+(B+C) A+ B
A+B)+C

A(BC) = (AB)C (=ABC)

B —

B+AC ¢« —
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Rules of Boolean Algebra

v A+0=A In math if you add 0 you have changed nothing in Boolean
Algebra ORing with O changes nothing

v  A0=0 In math if 0 is multiplied with anything you get 0.
If you AND anything with O you get O

v Ael =A ANDing anything with 1 will yield the anything

v  A+A = A ORing with itself will give the same result
vA+A’=1  EitherAor A mustbelso A+ A =1
v AeA = A ANDing with itself will give the same result

v A*A’ =0 In digital Logic 1’ =0 and 0’ =1, so AA’=0 since one of the
inputs must be 0.

vV A= (A) I you not something twice you are back to the beginning
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= VA+AB=A+8B
If Ais 1the outputis1l |If AisO the outputisB
vA+ AB=A
v(A+B)(A+C)=A+BC
. DeMorgan’s Theorem
-F'(AA, -, +,1,00 = FA,A +, -,0,1)

~(AeB))=A"+B" and(A+B) =A"e P’
- DeMorgan’s theorem will help to simplify digital circuits using
NORs and NANDs his theorem states
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X Boolean Analysis of Logic Circuits
J e Constructing a Truth Table for a Logic Circuit ¢ _3_

CD
D—1

ﬂ B+CD
B
A—

* Convert the expression into the min-terms containing all the input literals
* Get the numbers from the min-terms

e Putting ‘1’s in the rows corresponding to the min-terms and ‘O’s in the
remains

Ex) A(B+CD)=AB(C+C’) (D+D’) +A(B+B’)CD =ABC(D+D’) +ABC’(D+D’)
+ABCD+AB’CD =ABCD+ABCD’+ABC’D+ABC’D’ +ABCD+AB’CD

=ABCD+ABCD’+ABC’'D+ABC’D’ +AB’CD TrpaT Sutpat
A B = D | A(B+CD)

=m11l+m12+m13+m14+m15=>(11,12,13,14,15) N O 0

9] 9] 1 o [®]

A(B+CD) = m11+m12+m13+ml14+ml5 =%(11,12,13,14,15) g ? é é g

o) 1 o) 1 [3)

o) 1 1 o [3)

o) 1 1 1 [o)

1 o) o) o [o)

1 o) o) 1 [o)

1 O 1 O (0]

1 O 1 1 1

1 1 9] o 1

1 1 9] 1 1

1 1 1 o 1

1 1 1 1 1
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Standard Forms of Boolean Expressions

AThe Product-of-Sums(POS) Form ex) (A+B)(A+B+C), (A+B+C)(C+D+E)(B’+C+D’)

Principle of Duality : SOP < POS
Domain of a Boolean Expression : The set of variables contained in the expression
Ex) A'B+AB’C : the domain is {A, B, C}

v'Standard SOP Form (Canonical SOP Form)
— For all the missing variables, apply (x+x’)=1 to the AND terms of the expression

— List all the min-terms in forms of the complete set of variables in ascending order

Ex : Convert the following expression into standard SOP form: AB'C+A’B’+ABC’D

Sol) domain={A,B,C,D}, AB’'C(D’+D)+A’B’(C’+C)(D’+D)+ABC’D
=AB’CD’+AB’'CD+A’B’C’'D’+A’B’C’'D+A’B’CD’+A’B'CD+ABC’D
=1010+1011+0000+0001+0010+0011+1101 =0+1+2+3+10+11+13 = >(0,1,2,3,10,11,13)
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Standard POS Form (Canonical POS Form)

- For all the missing variables, apply (x’x)=0 to the OR terms of the
expression
- List all the max-terms in forms of the complete set of variables in

ascending order

Ex : Convert the following expression into standard POS form:

(A+B’+C)(B’+C+D’)(A+B’+C’+D)

Sol) domain={A,B,C,D}, (A+B’+C)(B’+C+D’)(A+B’+C’+D)
=(A+B’+C+D’D)(A’A+B’+C+D’)(A+B’+C’+D)
=(A+B’+C+D’)(A+B’+C+D)(A’+B’+C+D’)(A+B’+C+D’)(A+B’+C’

+D)=(0100) )(0101)(0110)(1101)=T11(4,5,6,13)
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Converting Standard SOP to Standard POS

51. Evaluate each product term in the SOP expression. Determine the binary
numbers that represent the product terms

Step 2. Determine all of the binary numbers not included in the evaluation in Step 1

Step 3. Write in equivalent sum term for each binary number Step 2 and expression in
POS form

Ex : Convert the following SOP to POS
Sol) SOP= A’'B’'C’'+A’BC’+A’BC+AB’C+ABC=0+2+3+5+7 =2(0,2,3,5,7)
POS=(1)(4)(6) = I'1(1, 4, 6) (=(A+B+C’)(A’+B+C)(A’+B’+C))

H SOP and POS Observations

e Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard
forms (SOP, POS) differ in complexity

* Boolean algebra can be used to manipulate equations into simpler forms

* Simpler equations lead to simpler implementations
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Summary of Minterms and Maxterms

* Minterms and maxterms are indexed fromO0to 2"-1

* Any Boolean function can be expressed as a logical sum of minterms and as a logical product
of maxterms

* The complement of a function contains those minterms not included in the original function
* The complement of a sum-of-minterms is a product-of-maxterms with the same indices
Dual of a Boolean Expression
« To changing 0 to 1 and + operator to — vise versa for a given boolean function
QExample: F=(A+C)-B+0

dualF= (A-C+B)-1=A-C +B
QExample: G=X Y+ (W+2)

dual G =

v Unless it happens to be self-dual, the dual of an expression does not equal the expression
itself

v Are any of these functions self-dual? (A+B)(A+C)(B+C)=(A+BC)(B+C)=AB+AC+BC
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Karnaugh Map

e Simplification methods
* Boolean algebra(algebraic method)
e Karnaugh map(map method))
* Quine-McCluskey(tabular method)

|
o o m xo 00 01 11 10
T o

(a) XY (b) X+Y (@)

Representation of Functions in the Map

YZ Y C

X 00 01 11 10 AB

R = 00

m my | my | mp OXYZIXYZIXYZI|XYZ

__ _ 01

11

Y
(a) (b) 10

Three-Variable Map
(a)

Y

X 0 1
Mg m 8] XY | Xy
ol e

@ XY+XY'=X(Y+¥W)=X

Two-Variable Map

00 01 11 10

00

01

11

10

(b)
c

AB 0
00 A\ B
01 | ABC
11 AB(C
10 | ABc

(b)
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Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Syllabus

UNIT-II
K-Map Reduction - Don't Care Conditions - Adders /
Subtractors- Carry Look-Ahead Adder - Code Conversion
Algorithms - Design of Code Converters - Equivalence Functions.
Binary/Decimal Parallel Adder/Subtractor for Signed Numbers -
Magnitude Comparator - Decoders / Encoders - Multiplexers /
Demultiplexers- Boolean Function Implementation using
Multiplexers




Karnaugh Map (K- Map) Steps

1. Sketch a Karnaugh map grid for the given problem.in power of 2N Squares
2. Fill in the 1’s and 0’s from the truth table of sop or pos Boolean function
3. Circle groups of 1’s.

¢  Circle the largest groups of 2, 4, 8, etc. first.
¢+ Minimize the number of circles but make sure that every 1 is in a circle.
4.  Write an equation using these circles.

Example) F(X,Y,Z)=Em(2,3,4,5) =X"Y+XY" Example) F(X,Y,Z)=2m(0,2,4,6) = X'Z'+XZ ' =Z'(X'+X)=2Z'
YZ Yy vz Y ah
X 00 01 11 10 X o0 O1 i 10 d
0 1 1 ol o] 1|32 hbd
X[1] 4 5 7 6 h’
X1 1 1
z
(a) (b)
z

Three-Variable Map: Flat and on a Cylinder to Show Adjacent Squares
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Four-Variable K-Map : 16 minterms : my ~ my.
Rectangle group
e 2-squares(minterms) : 3-literals product term
 4-squares : 2-literals product term
e 8-squares : 1-literals product term

e 16-squares :logic1 ch
ABN. 00 01 11 10

00 |ABCD|ABCD|ABCD|ABCD
YZ Y
WX 00 01 11 10
Mg [ My | M3 | M2 00 01 |ABCDIABCDIABCDIABCD
my | Mg | Mz | Mg 01
X \ D71 ) » 4 )
Mol mya| mys| Moy 11 11 |ABCDIABCD\ABCDIABCD
w
Mg | Mg | Myq] Myg 10 - -
10 |ABCD\ABCD|ABCDI\ABCD
z
(a) (b)

Fig. 2-17 Four-Variable Map
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F(W, X,Y,Z2)=2m(0,2,7,8,9,10,11) = WX’ + X’Z’ + W’ XYZ

4
11 10 w\,{\_ﬂﬂ 01 11 10
o |(UJ] oo| J| oo (L
110 010|010
110000 1100100
10} [P [ Y] N QIRRERD)
@ (b) ,
ABC_ O |
Ex 4-28) Minimize the following expression 56 b @)
AB’C+A’'BC+A'B’'C+A’B’C’+AB’C’ o A
&

11

10 [ 1
Sol) B'+A’C -

E
1
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78

# ) Ex Minimize the following expression
B'C’D’+A'BC’'D’+ABC’'D’+A’B’CD+AB’CD+A’B’'CD’+A’BCD’ +ABCD’+AB’CD’
N

Sol) D’+B’C

dDon’t Care Conditions

e it really does not matter since they will never occur(its output is

either ‘0’ or ‘1’)
e The don’t care terms can

CcD

iB 00 01 I 10 ¥
.._____\\\ L\‘ (/r -
00| 1 I 5
o1 | 1 1
1l 1 I
10_ I (1 (7

ABCD
BCD

0
000 1 0
used to advantage onthe 3% ¢
001 1 0
0100 0
Karnaugh map o101| o e o i
0110 0 a8
0111 1 &
1000 1 =
1001 1 01 1
1010 X @
1011 X -~
11 X X X X
: : g (]) )>§ Don’t cares W
1110 X o (@[ D XJ
1111 X 7 X
ABC A
08-11-2020 (a) Truth table (b) Without “don’t cares™ ¥ = ABC + ABCD

With *

‘don’tcares”™ Y =A + BCD



Ex K- Map for POS (B+C+D)(A+B+C’+D)(A’+B+C+D’)(A+B’+C+D)(A’+B’+C+D)
Sol) (B+C+D)=(NA+B+C+D)=(A+B+C P o / -

(1+0+0+0)(0+0+0+0)(0+0+1+0) 00 7) 0 :0 !
(1+0+0+1)(0+1+0+0)(1+1+0+0) i
0 0
F=(C+D)(A’+B+C)(A+B+D) |
11 0 C+D
LConverting Between POS and i (.'0» | 0>
SOP Using the K-map —\
Ex 4-33) (A’+B’+C+D)(A+B’+C+D) e
(A+B+C+D’)(A+B+C’+D’) (A’+B+C+D’)
(A+B+C’+D)
AB - 00 01 11 IO"JF e AB - OO/\//)((;: li\/ﬁ(.I:O AB CD. 00 01 11 ; 10
s w @E w| “| o |6 ]| o | asr pes U i |28 | &
01 ﬁ)\ o1 | o M = =l e o1 | o (l Fq ] .
1 b)/ e 11 0 ,‘l l\ ~t— ABCD 11 0 tl Tj
10 m 10 /! /o /[ \|«~ \BCD 10 m 0 L_l/"— R
“A .3 \BCD ABCD ABCD ABCD /:"/)

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD +
ABCD + ABCD + ABCD + ABCD
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11

10

- Five Variable K-Map : {A,B,C,D E}

DE

01

11

10

15

2

A=

=0

22

30

14

26

10

Digital Circuits and Logic Design (BCS-11)

AB

10

00

11

01

EF

01

11

10

+ Six Variable K-Map : {A,B,C,D,E,F}

D 00 01 11 10
0 1 3 2
3 16135517 | 384, 19| 34418
49 Bl B
4 B 7 b
3052003721 | 3923|3842
b b5 4
2 3 16 4
44728145 x 29147 % 31|46 300
60 61 b2 63
8 9 1 10
4022441 < 25|43 qE? 42X 26




« Step 1 — Arrange the given min terms in an ascending order and make the groups based on the
number of ones present in their binary representations. - ‘n+1’ groups

« Step 2 — Compare the min terms present in successive groups. If there is a change in only one-
bit position, then take the pair of those two min terms. Place this symbol ¢ ’ in the differed bit
position and keep the remaining bits as it is.

« Step 3 — Repeat step2 with newly formed terms till we get all prime implicants.

« Step 4 — Formulate the prime implicant table. It consists of set of rows and columns. Place ‘1’
in the cells corresponding to the min terms that are covered in each prime implicant.

» Step 5 — Find the essential prime implicates by observing each column. Those essential prime
implicants will be part of the simplified Boolean function.

» Step 6 — Reduce the prime implicant table by removing the row of each essential prime
implicant and the columns corresponding to the min terms that are covered in that essential
prime implicant. Repeat step 5 for Reduced prime implicant table. Stop this process when all
min terms of given Boolean function are over.
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1. Simplify the following expression to sum of product using Tabulation MMethod
Fla, b, e, d) = Z(n, 1,2,3,4,67.11,12,15)

Solutiom:

a. Determination of Primme Implicants

Group 0 md: 0000 (0,1} O00D- W (0.1.2,32) 00—
{02} O0-0 W (0,2.4,6) O-—0
{04} O-00 W {0,2,1,3) 00— redundant
{0,422 &) 0—0 redundant
Group 1 ml: 0001 « (1,3} O0-1 W (2.32.6,7) 0-1-
m2: 0010 « {23} 001- W (2,63, 7)0-1-
md: 0100 « {2,8) 0-10 W
{#.6) 0O1-0 W
{4,12) 100
Group 2 m3: 0011 (3,7} 0-11 W {(3.7.11,15) —-11
me&: 0110 9« {3,11) -011 W {2,11,7,15} —11 redundant
ml2: 1100 « {6,7) 011- W
Group ¥ m7: 0111 ~ (7,15) -111 W
mll: 1011  {11,15)1-11 W
Group 4 ml5:13111
b. Primme lmplicant Chart:
Pl v ml m2 m3 mid mi& mF mil ml2 ml5
EPl 4132 T &)
EFI 0123 i =3 L
02436 [; ——————————— -I———————— —_———
2367 x : ' f
EFlI 371115 % £ =)
W W W w W W W w W W

Fila,b,c,d) = be'd' + a'b' + cd + a'd’
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08-11-2020

Simplify the following expression to product of sum wusing Tabulation Method
Fla,b,e,d) = l_[u,s,a,?,m.w}

Solution:

a. Determination of Prime Implicants

Growp 0
Groupl M1: 0001 v (1,3) O00-1 +«  (13,57)0-1
{1,5) 001 « {1,53,7)0-1 redundant
Grouwp2 M3: 0011 v (3,7) 011 «  (5.7,13,15)-1-1
M5: 0101 v (57 ©01-1 «  (513,7,15)-1-1 redundant
{5,13) -101
Group3 M7: 0111 « (7,15) -111
M13:1101 v (13,15)11-1 W
Group4 MM15%:1111 W
b. Prime Implicant Chart:
PI hA1 b3 5 M7 M1z  MI15
EPI 1357 B—H——
EPI 571315 )
L) v v L) W v

fla,b,e,d) = (a+dWb + d")
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Digital Circuits

* Digital circuits are two types

1. Combinational circuit consists of logic gates whose outputs at any
time are determined directly from the present combination of inputs

without regard to previous inputs.

2. Sequential Circuit employ memory elements in addition to logic
gates. Their outputs are a function of the inputs and the state of the

memory elements.
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m-outputs

n-inputs m-outputs
(Depend only on inputs)

Combinational Circuit

n-.ianITS:- | m—OUTPUIS
> Present
NexT—[Elementsr orese

stat

Sequential Circuit
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A o — S

P HALF oP

ADDER

B e — C

g
JUU

P,
= : D
y
(a)S=xy" +x'y (b)S=xdy
C=xy C=xy
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000 00
001 01
010 01
011 10
100 01
101 10
110 10
111 11
yz o yz Y
00 01 11 10 v 00 01 11 10
0O 1 1 ) 1
2t | 1 1 o | 1 1
< <
S=x"y'z+x'yz'+ xy'z" + xyz S = xy +xz + yz

xy +xy'z +x'yz
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X —p

Y —

—p C

g

ﬂl‘tﬁ N X [\J\gh
| |

Q

\ /4\
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Carry generation: output carry is produced internally by the FA.carry is generated only when both input bits are 1s.the
generated carry C is expressed as the AND function of two input bits A and B so C=AB.

Carry propagation: occurs when the i/p carry is rippled to become the o/p carry.an i/p carrymay be propagated by

the full adder when either or both of the i/p bits are 1s.the propagated carry Cp is expressed as the OR
function of the i/p bits ie Cp=A+B

2_ Blt P&F&”El Adder hree sum bits are ] . [
. LSB of two binary numbers are represented by A; and B1.The next higher bit are A2 and B2. The resulting 1 2 and Co, in which
the Co becomes MSB.
. The carry output Co of each adder is connected as the carry input of the next higher order.
A
= = —a £ Z =
2 1
[ | = [
=t = s I
= 4 =
) | = |
= == =2

Fig : bit adder using two full adder

Four Bit Parallel Adders

. An n-bit adder requires n full adders with each output connected to the input carry of the next higher-order full adder.

. The carry output of each adder is connected to the carry input of next adder called as internal carries.
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A, B, A; Bs A, B, A, B,
B I N I I e I e
A B C, A B C, A B G, A B Cp
Cout = Cout = Cout = Cout =

c, | ] | | | ] |
C3 C2 C1
24 23 22 z1
Input Imput |Carry | Sum Carry
bit for | Mt for | Dt it it
number | number | inpul | outpul | output
8 [ S| = | Cour
0 0
I
0 1
| 0
0 |
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Outputs: 3 output signals (GT, EQ, LT), where: GT=1IFF A>B EQ=1IFFA=B LT=1IFFA<B
Exactly One of these 3 outputs equals 1, while the other 2 outputs are 0s.

Solution:

Inputs: 8-bits (A = 4-bits, B = 4-bits).A and B are two 4-bit numbers. Let A = AzA2A1Ag, and Let B = B3B2B1Bo.
Design of the EQ

eDefine Xj= Aixnor Bi= AiBj+ A’ By’

xi=1IFFA;i =BijVvi=0,1,2and3
[
xi= 0 IFF Aj #Bj =<
eTherefore the condition for A= B or EQ=1 IFF

Az=Bz— (X3=1),and A=B,— (X2=1),and A1=B1— (X1=1),and Ao=Bo— (Xo=1).
«Thus, EQ=1 IFF X3 X2 X1 Xo= 1. In other words, EQ = X3 X2 X1 Xo

Designing GT and LT:
eGT=1ifA>B:

O A
\\// If As>Bs 3s=1and Bs=0 IfAs=Bsand A, > B,
!/fA3: Bsand Ao, =Byand A; > A;
If As=Bzand A,=Byand A1=Biand A; > By
eTherefore,

GT = AsB3‘+ X3 A2 B2+ X3 X2 A1 B1'+ X3 X2 X1A0 Bo*

Similarly, LT = As’Ba + X3 A2‘B2 + X3 X2 A1’B1 + X3 X2 X1A0” Bo
e
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Outputs: 3 output signals (GT, EQ, LT), where: GT=1IFF A>B EQ=1IFFA=B LT=1IFFA<B
Exactly One of these 3 outputs equals 1, while the other 2 outputs are 0's.
Solution:
Inputs: 8-bits (A = 4-bits, B = 4-bits).A and B are two 4-bit numbers. Let A = AzA2A1A0, and Let B = B3B2B1Bo.
Design of the EQ
eDefine X;='A; Xhor Bi=AiBj+ Ai’ B
X

xi=1IFFA =Bivi=0,1,2and 3
xi= 0 IFF Aij # Bi
eTherefore the condition for A= B or EQ=1 IFF

Az=B3z— (X3: 1), and A>=B;— (Xzz 1), and A1=B;— (X1: 1), and Ao=Bo— (Xo: l).
«Thus, EQ=1 IFF X3 X2 X1 Xo= 1. In other words, EQ = X3 X2 X1 Xo

1 A

Designing GT and LT:

oGT=1ifA>B:

v IfAs>Bs 3=1andBs=0 If As=Bs and Az > B>
|‘;A3: Bsand A2=Bzand A1 > Ag

I‘;Agz Bsand A;=B2and A1=Biand Ag > Bo

eTherefore,

GT = A3Bs3+ X3A2Bo+ X3 Xo A1 B+ X3 X2 X1Ag Bof
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Encoder

eEncoders typically have 2N inputs and N outputs.

eThese are called 2N-to—N encoders.

eEncoders can also be devised to encode various symbols and alphabetic characters.

eThe process of converting from familiar symbols or numbers to a coded format is called encoding.

Fig : Logical diagram of Encoder
8 t0-3 encoder Implementation
e Octal-to-Binary
e An octal to binary encoder has 2° = 8 input lines Doto D7and 3 output lines Yoto Y2. Below is the

truth table for an octal to binary encoder.

Fig : Truth table for 8-3 encoder

Frgm ;hg ;rmh ;gglgi ;hg QHWHE can Qg gxgrgg;gg Qx fgllgwing nglggn F“ng;ign. Yg = Di + Di + Di + D;
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2~ —_— 1

Inputs -— —
(sources) —
N
Select
Lines
DO .
./
D1 = —
Y
D2. F— | e
-
D3 . —
J
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Output

(destination)

DO «—]
D1 ——] X
=
D2 — =
D3 —]
B A
B A Y
0 0 DO
0 1 D1
1 0 D2
1 1 D3
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>< 2N
Input = Outputs
(source) LLl (destinations)
(]
N
Select
Lines
. > oo <[
- b D1
X o— =
Y D1 = Pz
——= D3
D_. D2 a8 A
_ ——D3 B|A|Do|D1|D2|D3
A 0 0 X 0] 0 0]
0 1 ) X 0 0]
| 1]/0]lo|o|X|oO
A
1 1 0 o) 0 X
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