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Effect of Temperature on Semiconductor’s  Band gap

As the temperature of a semiconductor is varied, several important effects takes place in the
lattice.

 The lattice will expand or contract, and the oscillations of the lattice atoms around their
mean positions will increase or decrease.

 The electron lattice interaction also changes with temperature.

 Impurity potentials of shallow donors and acceptors are also affected, although the
ionization energy of the impurities remain fairly constant.

 The experimentally observed macroscopic factor is a change in the band gap with
temperature.

 The dependence varies in different temperature range and approximately obeys the
empirical relation, first proposed by Varshni .



Effect of Temperature on Semiconductor’s  Band gap



 The built-in biaxial strain is caused by the lattice mismatch between the growing layer and the
substrate.

 Compressive hydrostatic presser decreases the interatomic spacing, which results in an
increase in the fundamental energy band gap.

 In general, all energy levels in a semiconductor are shifted, and the change can be expressed
by the equation

𝟏

Which denotes a linear change in the energy level with change in lattice constant . The above
relation is valid for small value of .
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 is the energy level without the application of hydrostatic pressure.
 ଵ is pressure coefficient or deformation potential.

 The change in the energy gap of a semiconductor can then be expressed by the equation-

𝒈 𝒈 𝟏𝑪 𝟏𝑽

Where ଵ஼ ଵ௏ are the respective pressure coefficients for the conduction and valance
bands.

 Different valleys have different pressure coefficient and some may be even have negative
values.
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 For example, in  GaAs,

valley increases in energy at a faster rate than the L valleys, and the X valleys decrease 
in energy.

ii. The valley pressure coefficients for , L and X valleys is tabulated below-

Effect of Pressure on Semiconductor’s  Band gap

Valley  Valley pressure coefficients (eV/bar)

Γ 12.6×10-6

L 5.5×10-6

X -1.5×10-6

Thus the different valleys cross over and after a certain magnitude of hydrostatic
pressure GaAs becomes an indirect band gap semiconductor.



 The process of alloying and application of hydrostatic pressure, and equivalent.

 In alloying depending on the relative atomic size, the host lattice can be compressed or
dilated.

Effect of Pressure on Semiconductor’s  Band gap

As the And energy separations decrease, due to alloying or hydrostatic
pressure, there will be transfer and redistribution of carriers among the direct and
indirect minima.

 The mobility and equilibrium carrier concentration will now be average quantities,
determined by the parameter of all the bands.

 Since the effective mass and density of state are higher in the X and L minima, the average
measured mobility will be lower than that in GaAs.



 The concentration of electron in the - minimum will decrease.

 The distribution of electrons between the different conduction minima can be simply
expressed by Boltzmann statistics.

The total electron concentration, 𝑻 𝚪 𝑳 𝑿

 A change in band gap due to hydrostatic pressure cause changes in other properties of the
material. For example-

• The intrinsic carrier concentration, depends exponentially on the energy band gap.
• Change in the dielectric constant which indirectly alters the ionization energies of

impurity atoms and the binding energy of excitons.
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Carrier Scattering 

• Mobile electrons and atoms in the Si lattice are always in random thermal motion.
• Electrons make frequent collisions with the vibrating atoms

“lattice scattering” or “phonon scattering” – increases with increasing T

• Other scattering mechanisms:
• deflection by ionized impurity atoms
• deflection due to Columbic force between carriers

“carrier-carrier scattering” – only significant at high carrier concentrations

• The net current in any direction is zero, if no E-field is applied.
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1. Lattice Scattering or Phonon Scattering  

• In equilibrium a charged carrier electron or hole, in a semiconductor has thermal velocity

௧௛
ଷ௞ಳ்

௠∗

భ
మ⁄ which is derived from its energy distribution.

• When the carriers move in the influence of externally applied bias, or due to concentration
gradient, its motion with in the lattice can be greatly restricted by impurities, defect and
other imperfections.

• In addition, at any finite temperature, the atoms in the lattice are vibrating about their mean
position in the lattice

• The quanta of lattice vibrations are called phonons, which are quantum mechanical
particles.

• In a diatomic lattice, such as GaP and InP and their derivatives there are acoustic and
optical phonons.



• The names are associated with their oscillation frequencies.

• In a monoatomic lattice such as Si, there are only acoustic phonons.

• The probability of finding a phonon of frequency , is given by the function-

஻ா
௘௫௣

ℏఠ
௞ಳ்

ିଵ

Which is Bose-Einstein distribution function.

• An interesting relation exists between the  optical phonon frequencies and the dielectric 
constant in a crystal.

• At lower frequencies in the optical spectrum, such as for infrared light, thee atomic sub 
lattices respond to the variations caused by the em wave, and the corresponding change of 
dipole momentum can be accounted for by the static dielectric constant ௦
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• At higher frequencies, for example for visible light , the atoms can no longer response to the
fast-varying electric field, and thus the high frequency dielectric constant ஶ is determined by
electronic motion alone.

• Usually ஶ ௦ and the relationship

௅଴

்଴

௦

ஶ

ଵ
ଶൗ

was derived by Liddane, Sachs, and Teller.

This equationis therefore known as Liddane-Sachs-Teller relationship.

Lattice Scattering or Phonon Scattering  



2. Ionized Ion Scattering 

• There are other sources of carrier scattering such as scattering by charged impurities and by
other defects within the crystal.

In general, anything that perturbs the periodic crystal potential in the lattice, which in
turn alters the bandedge potentials, will scatter carriers.

 Now we will derive a simple relation between the relaxation time for carrier scattering and
resulting mobility of the carriers i.e.

𝒆
𝑪𝒆

𝒆
∗ 𝒉

𝑪𝒉

𝒉
∗

for electron and hole respectively.



Derivation :

• First we define a scattering cross section ௦ which the
probability that an electron is scattered from to some
angle within an incremental solid angle .

• The total cross section is then

𝒔𝒕 𝒔 (1)

• We also define a mean free time ஼ between successive
collisions such that

𝑪
𝒍

𝒗
(2) 

Where is the mean free path and is the mean velocity.     

(a) Scattering geometry in polar
coordinates and (b) motion of an
electron under the influence of an
electric field. The motion is
superposition of drift and random
motion with thermal velocity. As the
field increases, the drift component
becomes more dominant.
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• Consider n electrons moving with the velocity in a given direction.

• The number of collisions, dn , in time dt is proportional to n and dt, so that
(3)

where C is a constant of proportionality. We define  
𝟏

𝝉𝑪
(4)

where 𝑪 is defined as the relaxation time.  

• Combining equation (3) and (4),
𝒅𝒏

𝒏

𝒅𝒕

𝝉𝑪
(5)

which, on integration gives
𝟎 ି𝒕 𝝉𝑪⁄ (6)

where 𝟎 at t = 0.
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• The probability that a electron has not made a collision is
𝒏

𝒏𝟎
ି𝒕 𝝉𝑪⁄ (7)

• The mean time between collisions is
𝟏

𝝉𝑪

ି𝒕 𝝉𝑪⁄ஶ

𝟎
= 𝑪 (8)

• The mean free path can also be defined as 
𝟏

𝒍 𝑺𝑪 𝑺𝑪 (9)

where 𝑺𝑪 is the density of scattering centers. Therefore from equation (2),

𝑪
𝟏

𝑵𝑺𝑪𝝈𝑺𝑪𝒗
(10)

• Now, consider an electron under the influence of an electric field and suffering collisions as 
depicted in previous figure.
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• At time t = 0, its velocity is ଴ and velocity at time t, when it suffers collision, is given by

𝟎
𝒒𝑬𝒕

𝒎𝒆
∗ (11)

where E is the applied field.

• This equation must be averaged over all time knowing that
𝟏

𝝉𝑪

ି𝒕 𝝉𝑪⁄ is the probability that a

collision will occur after t seconds. Thus, the time-averaged velocity is given by

mean 𝟎
𝒒𝑬

𝝉𝑪𝒎𝒆
∗

ି𝒕 𝝉𝑪⁄ஶ

𝟎

𝟎
𝒒𝑬𝝉𝑪

𝒎𝒆
∗ (12)

• If the collisions are truly random, ଴ =0 and the mean drift velocity is given by

mean 𝑫=
𝒒𝑬𝝉𝑪

𝒎𝒆
∗ (13)
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 The magnitude of the mean drift velocity per unit field is defined as ‘mobility’, such that

 For electrons,

𝒆
𝒎𝒆𝒂𝒏 𝒗𝑫

𝑬

ି𝒒𝝉𝑪𝒆

𝒎𝒆
∗ (14)

and for holes,

𝒉
𝒎𝒆𝒂𝒏 𝒗𝑫

𝑬

𝒒𝝉𝑪𝒉

𝒎𝒉
∗ (15)

Therefore, through the effective masses, the carrier mobilities depend on 
the dispersion (E-k) curve
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