BCS-29
Advanced Computer Architecture

Parallel Computer Models



Elements of Modem Computers

* The hardware, software, and programming elements
of modern computer systems can be characterized
by looking at a variety of factors, including:

* Computing problems

* Algorithms and data structures
 Hardware resources

* Operating systems

* System software support

* Compiler support

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-2



Elements of Modem Computers

Computing
Problems

|

Algorithms Mapping

and Data |=
Structures
Programming
Binding ications Softw
(compile, load) {pplcs o
High-level
Languages

Performance
Evaluation

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-3



Computing Problems

* Numerical computing
* complex mathematical formulations
 tedious integer or floating-point computation

* Transaction processing
 accurate transactions
* large database management
* information retrieval

* Logical Reasoning
* logic inferences
e symbolic manipulations

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-4



Algorithms and Data Structures

* Traditional algorithms and data structures are designed
for sequential machines.

* New, specialized algorithms and data structures are

needed to exploit the capabilities of parallel
architectures.

* These often require interdisciplinary interactions among
theoreticians, experimentalists, and programmers.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-5



Hardware Resources

* The architecture of a system is shaped only partly by the
hardware resources.

* The operating system and applications also significantly influence
the overall architecture.

* The modem computer system demonstrates its power through
coordinated efforts by hardware resources, an operating system,
and application software.

* Not only the processor and memory architectures be considered,
but also the architecture of the device interfaces (which often
include their advanced processors).

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-6



Operating System

e Operating systems manage the allocation and deallocation of
resources during user program execution.

* UNIX, Mach, and OSF/1 provide support for

* multiprocessors and multicomputers
* multithreaded kernel functions
 virtual memory management

* file subsystems

* network communication services

* An OS plays a significant role in mapping hardware resources to
algorithmic and data structures.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-7



Operating System

* An effective operating systems manage the allocation and
deallocation of resources during user program execution.

* An OS plays a significant role in mapping hardware resources to
algorithmic and data structures.

 Efficient mapping will benefit the programmer and produce better
source codes.

* The mapping of algorithmic and data structures onto the machine
architecture includes processor scheduling, memory maps, Inter
processor communications, etc. These activities are usually
architecture-dependent.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-8



System Software Support

 Compilers, assemblers, and loaders are traditional tools for developing
programs in high-level languages. With the operating system, these tools
determine the bind of resources to applications, and the effectiveness of this
determines the efficiency of hardware utilization and the system’s
programmability.

* Most programmers still employ a sequential mind set, abetted by a lack of
popular parallel software support.

* Parallel software can be developed using entirely new languages designed
specifically with parallel support as its goal, or by using extensions to existing
sequential languages.

* New languages have obvious advantages (like new constructs specifically for
parallelism), but require additional programmer education and system
software.

* The most common approach is to extend an existing language.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-9



Compiler Support

* Preprocessors

* use existing sequential compilers and specialized libraries to implement
parallel constructs

* Precompilers

* perform some program flow analysis, dependence checking, and limited
parallel optimzations

 Parallelizing Compilers

* requires full detection of parallelism in source code, and transformation of
sequential code into parallel constructs

* Compiler directives are often inserted into source code to aid
compiler parallelizing efforts

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-10



The history of Intel’s processors

Intel 4004 (1971)

« 16-pin DIP package
 4-bits processed at a time
« 12-bit addresses
* Clock: 740KHz
« Address Space: 4 KB
Instruction Set: 46
» Registers: 16
Intel 4040 (1974)
* Instruction Set expanded to 60 instructions
* Program memory expanded to 8 KB (13-bit address
space)
» Registers expanded to 24
 Subroutine stack expanded to 7 levels deep

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-11



https://en.wikipedia.org/wiki/Kilobyte

8-bit Microprocessors
8008

* Processed 8-bits at a time
 14-bit addresses
* First to include an interrupt line

Features

» Seven 8-bit "scratchpad" registers: The main accumulator (A) and six
other registers (B, C, D, E, H, and L).

e 14-bit program counter (PC).

e Seven-level push-down address call stack. Eight registers are actually
used, with the top-most register being the PC.

* Four condition code status flags: carry (C), even parity (P), zero (Z), and
sign (S).

* Indirect memory access using the H and L registers (HL) as a 14-bit data
pointer (the upper two bits are ignored).

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-12


https://en.wikipedia.org/wiki/Call_stack

Elementary Discussion on Modem Computers

INTA RST6S  TRAP

INTR RSTSS RST 7S SiD S(t)D
Interrupt Coatrol 7 Senal 1O Controd

2 Tl O

-
—J

Accumulator Temp. Reg {\ nstruction i
" (8) (%) Regiier (§) 1 =
W (8) Z lJ‘-’. .‘
Temp. Reg. Temp. Reg.
B (8 C (8§
4 Reg Reg
- D 8 E %)
Instrection
; § Reg. Reg
and ‘ H ® L ® Register
% - -
- - Maching o Reg Reg. Amay
S 16)
Encoding Stack Poumer
- (16)
Program Counter
—— Incrememer/Deceemenscs
Puorwer Suwly—{. (;NI) Address Latch (16) J

| Py
Tirung and Controd J ; q L
fer (G)l

X, CLK Reset r_‘

8085 architectural block diagram

(8)
l
ux ouT ﬁ?i E?i AL[ \ HL D\ as.sr‘r ouT . AD,
'\'Al (4
READY HOLD RESET IN s ADy- s

13



16-bit and 8-bit Microprocessors

e 8086 (16-bit) & 8088 (8-bit)
e 20-bit addresses

* Two processors which consisted of: Bus Interface
Unit and Execution Unit

* Segmented Memory

14



Elementary Discussion on Modem Computers

e HE K
. “ |
I “
- y
f 2553 | < |
| " __
“ ” | &z | !
“ PR d Bl Bl B _ mm % “
I I _
. _ |
I [ i
%_ i . |
| “ LY
| m 2
i |g | L “
m 5 _. w “
1 |||||._“ “
“ I "
| 1 I
| ! _
1 I |
i I I
[ 1 H
i i I
| I i
I I 1
[ 1 :
[ _ :
! - J2ll2 “
| i

____-.l.-| 1 o I
: A m V A =1 | m
| A 1 "
i “ :
L | 3
1 i 1
I i = _
I I - i
I ] i
N a

wp4bpip ¥20(q [D4N3IAYIID 8808



80286 & 80386

e Two modes
8086 Real Address Mode
* Protected Virtual Address Mode

* Protected Virtual Address Mode

* More address space

e Multi-user protection
* Dedicated 286; task

* Virtual memory
* Interrupt handler

16



Introduction to 80486

* Increased speed (2 x 80386)

e 80386 with an internal math coprocessor
* Upgradeable (Compatibility)

 Utilize new technology (RISC, cache)

17



80486 Processor

Intel 80486DX2 Architecture

FPU

Floating
Point
Register
File

Barrel Segmentation|
Shifter Unit
Register - Descriptor
File Registers
Limit and
ALU Attribute
PLA

Micro-Instruction

64 Bit Interunit Transfer Bus

Control &
Protection
Test Unit
Decoded
Instruction Path
Control
ROM

Parity Generation
and Control

Boundary
Scan

Control

Core
Clock
Clock Clock
- Multiplier [
2 A31-A2
——®| Ccache ” Adgress BE3# - BEO#
pzoBim))  Unit CE 2 e
Paging _
Unit z:)éswal ‘ Write Buffers
ress 4x 32
8 KiB
'[ranlflat'lt;)n S Data Bus D31-D0
OE‘;U;ZL e Tranceivers —
Bus Control ADS#, WIR¥, DIC#, M/IO#,
PCD, PWT, RDY#, LOCK#,
PLOCK#, BOFF#, A20M#,
|| BREQ, HOLD, HLDA, RESET,
Displacement Bus SRESET, INTR, NMI, SMI#,
Brefetch SMIACT#, FERR¥, IGNNE¥,
refetcher Request STPCLK#
Sequencer |
32 Byte Code Burst Bus BRDY#, BLAST#
Gezzmm|  Queve Control |
Instruction
Decode |Code Stream |5 y 16 Byie :
( yte) Bus Size BS16#, BS8#
Control | (Y
o | KEN#, FLUSH#, AHOLD,
ache EADS#
Control

|

DP3 - DP0, PCHK#

|

TCK, TMS, TDI, TDO

|




Intel Pentium

* Introduced in '93 but was expected in 1992
* 60/66 MHz Bus Speed

* Improved cache structure

e Re-organized to form two caches that are each 8K bytes
in size

* One for caching data
* Another for caching instructions

 Wider data bus width
* Increased from 32 bit to 64 bits

19



Intel Pentium

 Faster numeric processor

* Operates about 5 times faster than the
486 numeric processor

* A dual integer processor
e Often allows two instructions per clock
* Branch prediction logic

* MMX instructions --- a later introduction to
Pentium

20



Intel Pentium

 Pentium has two execution lines
 U-line --- can execute any Pentium instruction
 V-line --- only executes simple instructions.

* Each line has 5 stages
i. Pre-fetch
ii. Instruction Decode
iii. Address Generation
iv. Execute, Cache, and ALU Access
v. Write back

21



Elementary Discussion on Modem Computers

B

Branch [ TLE |

S_, Target Instruction Caches
S Bufier BE. Z-way
'_E 4—256
= FPraefetch Buffars
A= .
o Dt E 1_; Instruction Decods Mig&ﬁﬁde
Bus =
o <= s Iy I
E ’Eéddr' Control Linit
LEsS I
Bus 1 !
& =2 '._I l"l.lt == e e o =1
S Addrass Address i) FPU i
4+ Control Geaenarate | Genarate [ [ —_— o
Q S U-pipe WV-pipe Control
Q || FFP Register File ||
) - — | L T _
P Mata oo | Integer Register File | ¥ £
= a4 | T Amar i - .
Q I e ALU ]
-pipe
B Barrel =
E Fages Taz Yaz i e i
S nit =
c— p ]
=2 Dual-Acoess Data Cache
C Bk, 2-way
Q | TLE .
: JFM

22



Elementary Discussion on Modem Computers

’Silstem Bus {Extemﬂ L2 Cache
] = Cache Bus
™
Bus Interface Unit
‘l’ ‘L Mext IP
Instruction Fetch Unit Instruction Cache (L1) - Unit
; ey

m Instruction Decoder Target Buffer

| Simple Simple Complex Bulfor y

- Instuction Instuction Instuction ,

[ Decoder Decoder Decoder | pe——m Microcode From

Q Instruction Integer

Q Sequencer Unit

—~ ] L | ¥ L BN
'.E Register Alias Table

h J
E : : Retirement
S Retirement Unit Register File Data Cache
™  (Intel Arch. Unit (L1)

Q i Reorder Buffer (Instruction Pool) Registers)

L
.U ‘ L
5 Reservation Station
E Execution Unit

SIMD FP | | Floating- Memory
Unit | | Point Unit | | "teger | | Inte9er | | jnierfae |
(FPU) {(FPU) Unit
Dr. P K Sin ' T 1 5-29(1)-23

Internal Data-Results Buses




Classification of Parallel Architectures

e Classification based on Architectural schemes

* Flynn’s classification

* Itis based upon the number of concurrent instruction (or control)
and data streams available in the architecture:

* Feng’s classification

» This classification is mainly based on degree of parallelism to
classify parallel computer architecture.

* Handle’s classification

 Handler’'s proposed an elaborate notation for expressing the
pipelining and parallelism of computers. He divided the computer
at three levels such as Processor Control Unit(PCU), Arithmetic
Logic Unit(ALU), Bit Level Circuit(BLC)

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-24



Flynn’s classification

* Single instruction, single data stream (SISD)
IS

il
e}

, IS — DS

* Single instruction, multiple data streams (SIMD)
e vector computers with scalar and vector hardware

" PE, [ " LM,
— CU * IS : :
DS DS
» PE_| o M

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-25



Flynn’s classification

* Multiple instructions, single data stream (MISD): systolic arrays

IS IS ] 1
3 L I
CU, Cy, eee Ccu,
Memory
IS IS IS
(Program , + 3
DS DS DS
And Data) » PU, MPU, [ & o e Pl >
1 DS
'O l
* Multiple instructions, multiple data streams (MIMD): parallel
computers
IS J
» CU PU g
o . - IS . - DS Shared .
: : Memory :
IS DS
Lo cu, » P

IS —‘

Among parallel machines, MIMD is most popular, followed by SIMD, and finally MISD.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-26



Feng’s classification

 Feng suggested the use of degree of parallelism to
classify various computer architectures.

« The maximum number of binary digits that can be
processed within a unit time by a computer system is
called the maximum parallelism degree P.

A bit slice is a string of bits one from each of the words at
the same vertical position.

« Under above classification
« Word Serial and Bit Serial (WSBS)
« Word Parallel and Bit Serial (WPBS)
» Word Serial and Bit Parallel(WSBP)
« Word Parallel and Bit Parallel (WPBP)

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-27



Feng’s classification

« WSBS has been called bit parallel processing because
one bit is processed at a time.

« WPBS has been called bit slice processing because m-
bit slice Is processes at a time.

« WSBP is found in most existing computers and has been
called as Word Slice processing because one word of n-
bit processed at a time.

 WPBP Is known as fully parallel processing in which an
array on nxme-bits is processes at one time.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-28



Handle’s classification

« Handler’s proposed an elaborate notation for expressing
the pipelining and parallelism of computers. He divided
the computer at three levels.

* Processor Control Unit(PCU)
 Arithmetic Logic Unit(ALU)
 Bit Level Circuit(BLC)

PCU corresponds to CPU, ALU corresponds to a functional unit or PE’s in
an array processor. BLC corresponds to the logic needed for performing
operation in ALU.

He uses three pairs of integers to describe computer:
Computer = (k*k’,d*d , w*w’)
Where,
k= no. of PCUs k'=no. of PCUs which are pipelined;
d=no. of ALUs control by each PCU d’'=no. of ALUs that can be pipelined
w=no. of bits or processing elements in ALU w'=no. of pipeline segments

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-29



Shor’s Classification:

* In this classification computers are classified on the basis of
organization of the constituent elements in the computer. He
proposed 6 machines which are recognized and distinguished
by numerical designators.

e Machinel:

Control Unit

l

Processing Unit

Il

e

Memory (Word Slice)

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-30



Shor’s Classification:

Machine?2:

Control Unit Processing Unit fo’fff \\\\
l (vertical)
I i PU |- PU PU

>
P ssing Unit : :
rocessing uni Memﬂry I

(Horizontal) .
MU MU MU
Ccu
== \ .
,,,/ \\\H Machine3:

PU — — PU PU

MU | MU MU
Machine4:

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-31



Modern classification(sima, Fountain, Kacsuk)

* Classify based on how parallelism is achieved
* by operating on multiple data: data parallelism

* by performing many functions in parallel: function
parallelism

e Control parallelism, task parallelism depending on the level of the
functional parallelism.

Parallel architectures

Data-parallel Function-parallel
architectures architectures

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-32



Data parallel architectures

* \Vector processors, SIMD (array processors), systolic
arrays.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-33



Function Parallel Architectures

Function-parallel
architectures

_— | T

Instruction level Thread level Process level
Parallel Arch Parallel Arch Parallel Arch
(LPs) T e (MIMDs)
Pipelined  VLIWSs Superscalar Distributed Shared
processors Processors Memory MIMD Memory
MIMD

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-34



Categories of Parallel Computers(MIMD)

* Considering their architecture only, there are two
main categories of parallel computers:

e systems with shared common memories, and
* systems with unshared distributed memories.

Shared-Memory Multiprocessors

e Shared-memory multiprocessor models:
e Uniform-memory-access (UMA)
* Nonuniform-memory-access (NUMA)
e Cache-only memory architecture (COMA)

* These systems differ in how the memory and
peripheral resources are shared or distributed.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-35



Categories of Parallel Computers(MIMD)

MPP
MNon-shared memory
Clusters
MIMD |— Uniform memory access
PVP
Shared memory SMP
Non-Uniform memory access

CC-NUMA
NUMA
COMA

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-36



The UMA Model

* Physical memory uniformly shared by all processors, with equal access
time to all words.

* Processors may have local cache memories.
* Peripherals also shared in some fashion.

* Tightly coupled systems use a common bus, crossbar, or multistage
network to connect processors, peripherals, and memories.

* Many manufacturers have multiprocessor (MP) extensions of uniprocessor
(UP) product lines.

* Synchronization and communication among processors achieved through shared
variables in common memory.

e Symmetric MP systems — all processors have access to all peripherals, and any
processor can run the OS and I/O device drivers.

* Asymmetric MP systems — not all peripherals accessible by all processors; kernel
runs only on selected processors (master); others are called attached processors
(AP).

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-37



The UMA Multiprocessor Model

o o

i,

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-38




Performance Calculation

* Consider two loops. The first loop adds corresponding elements of two N-
element vectors to yield a third vector. The second loop sums elements of
the third vector. Assume each add/assign operation takes 1 cycle, and
ignore time spent on other actions (e.g. loop counter
incrementing/testing, instruction fetch, etc.). Assume interprocessor
communication requires k cycles.

* On a sequential system, each loop will require N cycles, for a total of 2N
cycles of processor time.

* On an M-processor system, we can partition each loop into M parts, each
having L = N / M add/assigns requiring L cycles. The total time required is
thus 2L. This leaves us with M partial sums that must be totaled.

¢ Computing the final sum from the M partial sums requires / = log,(M)
additions, each requiring k cycles (to access a non-local term) and 1 cycle
(for the add/assign), for a total of / x (k+1) cycles.

* The parallel computation thus requires
2N [/ M + (k + 1) log,(M) cycles.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-39



Performance Calculation

* Assume N = 229,
* Sequential execution requires 2N = 22! cycles.

* If processor synchronization requires k = 200 cycles,
and we have M = 256 processors, parallel execution
requires

2N / M + (k + 1) log,(M)

221 /28 +201 x 8

213 + 1608 = 9800 cycles

* Comparing results, the parallel solution is 214 times
faster than the sequential, with the best theoretical
speedup being 256 (since there are 256 processors).
Thus the efficiency of the parallel solution is 214 /
256 = 83.6 %.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-40



The NUMA Model

* Shared memories, but access time depends on the location of the data
item.

e The shared memory is distributed among the processors as local
memories, but each of these is still accessible by all processors (with
varying access times).

* Memory access is fastest from the locally-connected processor, with the
interconnection network adding delays for other processor accesses.

* Additionally, there may be global memory in a multiprocessor system,
with two separate interconnection networks, one for clusters of
processors and their cluster memories, and another for the global shared
memories.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-41



Shared Local Memories

* The shared memory is physically distributed to all processors, called local

memories. The collection of all local Memories forms a global address
space accessible by all processors.

* It is faster to access a local memory with a local processor. The access of

remote memory attached to other processors takes longer time due to the
added delay through the interconnection network.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-42



Hierarchical Cluster Model

* In the hierarchically structured multiprocessor the processors are divided into
several cluster. Each cluster is itself an UMA or a NUMA multiprocessor.

* The clusters are connected to global shared-memory modules. The entire system is
considered a NUMA multiprocessor.

* All processors belonging to the same cluster are allowed to uniformly access the

cluster shared-memory modules. - - -

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-43



The COMA Model

* In the COMA(Cache-Only Memory Architecture) model, processors only
have cache memories; the caches, taken together, form a global address

space.

* Each cache has an associated directory that aids remote machines in their
lookups; hierarchical directories may exist in machines based on this

model.

* |nitial data placement is not critical, as cache blocks will eventually
migrate to where they are needed.

Dr. P K Singh

MMMUT, Gorakhpur

BCS-29(1)-44



Distributed-Memory Multicomputers

This system consists of multiple computers, often called nodes, inter-
connected by a message-passing network. Each node is an autonomous
computer consisting of a processor, local memory and sometimes
attached disks or /O peripherals.

The message-passing network provides point-to-point static connections
among the nodes.

All local memories are private and are accessible only by local processors.
For this reason, traditional multicomputers have also been called no-
remote-memory-access(NORMA) machines.

Internode communication is carried out by passing messages through the
static connection network. With advances in interconnection and network
technologies, this model of computing has gained importance.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-45



Distributed-Memory Multicomputers

- - -

Message-passing

iInterconnection

network

: B

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-46




Programming Environments

* Programmability depends on the programming environment provided to
the users.

* Conventional computers are used in a sequential programming
environment with tools developed for a uniprocessor computer.

e Parallel computers need parallel tools that allow specification or easy
detection of parallelism and operating systems that can perform parallel
scheduling of concurrent events, shared memory allocation, and shared
peripheral and communication links.

* Implicit Parallelism:
* Explicit Parallelism

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-47



Programming Environments

* Implicit Parallelism:

» Use a conventional language (like C, Fortran, Lisp, or Pascal) to write the
program.

* Use a parallelizing compiler to translate the source code into parallel code.
* The compiler must detect parallelism and assign target machine resources.

* Success relies heavily on the quality of the compiler.

* Explicit Parallelism

* Programmer write explicit parallel code using parallel dialects of common
languages.

* Compiler has reduced need to detect parallelism, but must still preserve
existing parallelism and assign target machine resources.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-48



System Attributes to Performance

* Performance depends on

Dr P K Singh

hardware technology
architectural features

efficient resource management
algorithm design

data structures

language efficiency
programmer skill

compiler technology

TCS-802 Advance Computer
Architecture

Slide-1.49



Performance Indicators

* Turnaround time depends on:
* disk and memory accesses
* input and output
e compilation time

e operating system overhead
* CPU time

* Since 1/0 and system overhead frequently overlaps
processing by other programs, it is fair to consider only
the CPU time used by a program, and the user CPU time
is the most important factor.

TCS-802 Advance Computer

Architecture Slide-1.50

Dr P K Singh



Clock Rate and CPI

CPU is driven by a clock with a constant cycle time t (usually measured in
nanoseconds).

The inverse of the cycle time is the clock rate  (f = 1/t, measured in
megahertz).

|, the number of

2 Ter

The size of a program is determined by its instruction count
machine instructions to be executed by the program.

Different machine instructions require different numbers of clock cycles to
execute. CPI (cycles per instruction) is thus an important parameter.

TCS-802 Advance Computer

Architecture Slide-1.51

Dr P K Singh



Average CPI

* It is easy to determine the average number of cycles
per instruction for a particular processor if we know
the frequency of occurrence of each instruction type.

e Of course, any estimate is valid only for a specific set
of programs (which defines the instruction mix), and
then only if there are sufficiently large number of
instructions.

* In general, the term CPI is used with respect to a
particular instruction set and a given program mix.

TCS-802 Advance Computer

Architecture Slide-1.52

Dr P K Singh



Performance Factors (1)

* The time required to execute a program containing /_
instructions is just T = /. x CPI x .

* Each instruction must be fetched from memory,
decoded, then operands fetched from memory, the
instruction executed, and the results stored.

* The time required to access memory is called the
memory cycle time, which is usually k times the
processor cycle time t. The value of k depends on
the memory technology and the processor-memory
interconnection scheme.

TCS-802 Advance Computer Slide-1.53

Dr P K Singh Architecture



Performance Factors (2)

* The processor cycles required for each instruction
(CPI) can be attributed to

 cycles needed for instruction decode and execution (p),
and

 cycles needed for memory references (m x k).

* The total time needed to execute a program can then
be rewrittenas T=1_x(p+m xk)xr.

TCS-802 Advance Computer

Dr P K Singh Architecture

Slide-1.54



System Attributes

* The five performance factors (/_, p, m, k, t) are
influenced by four system attributes:
* instruction-set architecture (affects /. and p)
* compiler technology (affects /. and p and m)
* CPU implementation and control (affects p x 1)

e cache and memory hierarchy (affects memory access
latency, k x 1)

* Total CPU time can be used as a basis in estimating
the execution rate of a processor.

TCS-802 Advance Computer

Architecture Slide-1.55

Dr P K Singh



MIPS Rate

* If Cis the total number of clock cycles needed to execute
a given program, then total CPU time can be estimated
asT=Cxt=C/f.

* Other relationships are easily observed:
« CPI=C/I,
* T=I_xCPl x7
« T=I_xCPI/f

* Processor speed is often measured in terms of millions
of instructions per second, frequently called the MIPS
rate of the processor.

TCS-802 Advance Computer

Architecture Slide-1.56

Dr P K Singh



MIPS Rate

MIPS rate = E = f

Tx10° CPIx10° Cx10

* The MIPS rate is directly proportional to the clock rate
and inversely proportion to the CPI.

 All four system attributes (instruction set, compiler,
processor, and memory technologies) affect the MIPS
rate, which varies also from program to program.

TCS-802 Advance Computer

Dr P K Singh Architecture

Slide-1.57



Throughput Rate

* The number of programs a system can execute per unit time, W, in
programs per second.

* CPU throughput, W, is defined as

W=
" |_xCP]

¢ In a multiprogrammed system, the system throughput is
often less than the CPU throughpuit.

TCS-802 Advance Computer

Architecture Slide-1.58

Dr P K Singh



Consider the execution of an object code with 200,000 instructions on a 4{
MHz processor. The program instruction mix is as follows:

Instruction Type CPI Instruction mix

Arithmetic and logic 1 60%
18%

Load/Store with cache hit

Branch 12%

|l AN

10%

Memory reference with cache miss

1. Calculate the average CPl when program is executed on uniprocessor

with the above trace result.
2. Calculate the corresponding MIPS rate based in the CPI obtained.

* 6
MIPS,, == 2010 7
CPI*10> 2.24*10




|.=200000 and f=40 MHz
> 1.CPI

CPIl_, . =

S
C

2_1CPI _ 150,000 + 72,000 + 96,000 + 160,000 =448,0000
S'1, =120,000 + 36,000 + 24,000 + 20,000 =220,0000

CPI,,, = 2.24

Jo 6
MIPS,, == 2910 _ 764
CP1*10> 2.24*10

TCS-802 Advance Computer

Architecture Slide-1.60

Dr P K Singh



