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Introduction to Fluids and Continuum

• Fluid mechanics deals with the study of all fluids under static and 
dynamic situations. 

• Fluid mechanics is a branch of continuous mechanics which deals 
with a relationship between forces, motions, and static conditions 
in a continuous material.

• This study area deals with many and diversified problems such as 
surface tension, fluid statics, and flow in enclose bodies, or flow 
round bodies (solid or otherwise), flow stability, etc. In fact, 
almost any action a person is doing involves some kind of a fluid 
mechanics problem. 



• There are two main approaches of presenting an introduction of 
fluid mechanics materials. 

• The first approach introduces the fluid kinematic and then the 
basic governing equations, to be followed by stability, turbulence, 
boundary layer, and internal and external flow. 

• The second approach deals with the Mathematical Analysis to be 
followed with Differential Analysis, and continue with Empirical 
Analysis



Fluid mechanics is a sub discipline of 
continuum mechanics



Solids, liquids and gases

• In general matter can be distinguished by the physical forms 
known as solid, liquid, and gas. 

• The liquid and gaseous phases are usually combined and given a 
common name of fluid. 

• Solids differ from fluids on account of their molecular structure 
(spacing of molecules and ease with which they can move). 

• The intermolecular forces are large in a solid, smaller in a liquid 
and extremely small in gas.



Fluids

• A fluid is a substance that continually deforms (flows) under an applied 
shear stress, no matter how small. 

• Fluids are a subset of the phases of matter and include liquids, gases, 
plasmas and, to some an extent, plastic solids.

• In common usage, ‘fluid’ is often used as a synonym for ‘liquid‘, with no 
implication that gas could also be present.

• For static fluids:According to this definition, if we apply a shear force to 
a fluid it will deform and take up a state in which no shear force exists. 
Therefore, we can say: 

• If a fluid is at rest there can be no shearing forces acting and therefore 
all forces in the fluid must be perpendicular to the planes in which they 
act.



• Consider the fluid shown flowing along a fixed surface. At the 
surface there will be little movement of the fluid (it will ‘stick’ to 
the surface), whilst further away from the surface the fluid flows 
faster (has greater velocity)

• If one layer of is moving faster than another layer of fluid, there 
must be shear forces acting between them. For example, if we 
have fluid in contact with a conveyor belt that is moving we will 
get the behaviour shown:





Density or Mass Density 

• Density or Mass density of a fluid is defined as the ratio of mass 
and volume. Thus mass per unit volume of a fluid is called density 
and is denoted by ρ . The SI unit of density is  kg /m3

• The density of liquids may be considered as constant while that of 
gases changes with the variation of pressure and temperature. 
Mathematically, mass density if written as 

• ρ =Mass of fluid/ Volume of fluid



DIMENSIONS AND UNITS

• Dimension = A dimension is the measure by which a physical 
variable is expressed quantitatively. 

• Unit = A unit is a particular way of attaching a number to the 
quantitative dimension. 

• Thus length is a dimension associated with such variables as 
distance, displacement, width, deflection, and height, while 
centimeters or meters are both numerical units for expressing 
length



Fluid as a continuum

• Fluid mechanics is supposed to describe motion of fluids and 
related phenomena at macroscopic scales, which assumes that a 
fluid can be regarded as a continuous medium. This means that 
any small volume element in the fluid is always supposed so large 
that it still contains a very great number of molecules

• For the continuum model to be valid, the smallest sample of 
matter of practical interest must contain a large number of 
molecules so that meaningful averages can be calculated. In the 
case of air at sea-level conditions, a volume of 10-9 mm3 contains 
3×107 molecules. In engineering sense, this volume is quite small, 
so the continuum hypothesis is valid.



• Matter is made up of atoms that are widely spaced in the gas phase. Yet it is very convenient 
to disregard the atomic nature of a substance and view it as a continuous, homogeneous 
matter with no holes, that is, a continuum. 

• The continuum idealization allows us to treat properties as point functions and to assume the 
properties vary continually in space with no jump discontinuities.

• This idealization is valid as long as the size of the system we deal with is large relative to the 
space between the molecules. 

• This is the case in practically all problems.
• In this text we will limit our consideration to substances that can be modeled as a continuum.
Despite the relatively large gaps between molecules, a substance can be treated as a continuum 
because of the very large number of molecules even in an extremely small volume.





Density of Ideal Gases
• Equation of state: Any equation that relates the pressure, 

temperature, and density (or specific volume) of a substance.
• Ideal-gas equation of state: The simplest and best-known 

equation of state for substances in the gas phase.



Properties of Fluid 

• Any characteristic of a system is called property. 
• It may either be intensive (mass independent) or extensive (that 

depends on size of system). 
• The state of a system is described by its properties. 
• The number of properties required to fix the state of the system is 

given by state postulates. 



• 1. Pressure ( p) : It is the normal force exerted by a fluid per unit 
area. More details will be available in the subsequent section 

• 2. Density: The density of a substance is the quantity of matter 
contained in unit volume of the substance. 

• 3.Temperature (T ): It is the measure of hotness and coldness of a 
system. In thermodynamic sense, it is the measure of internal 
energy of a system. Many a times, the temperature is expressed in 
centigrade scale (°C) where the freezing and boiling point of 
water is taken as 0°C and 100°C, respectively. In SI system, the 
temperature is expressed in terms of absolute value in Kelvin scale 
(K = °C+ 273)



• 4.Viscosity (µ ): When two solid bodies in contact, move relative 
to each other, a friction force develops at the contact surface in 
the direction opposite to motion. The situation is similar when a 
fluid moves relative to a solid or when two fluids move relative to 
each other. The property that represents the internal resistance of 
a fluid to motion (i.e. fluidity) is called as viscosity

• 5.Thermal Conductivity(k ): Thermal conductivity varies with 
temperature for liquids as well as gases in the same manner as 
that of viscosity. The reference value of thermal conductivity (k0 ) 
for water and air at reference temperature is taken as, 0.6 W/m.K
and 0.025 W/m.K, respectively



• . 6.Coefficient of compressibility/Bulk modulus(Ev ): It is the 
property of that fluid that represents the variation of density with 
pressure at constant temperature. 

• 7.Coefficient of volume expansion(β ): It is the property of that 
fluid that represents the variation of density with temperature at 
constant pressure. It can be shown easily that Ev for an ideal gas 
at a temperature T is equivalent to inverse of the absolute 
temperature.



• 8.Specific heats: It is the amount of energy required for a unit mass of a 
fluid for unit rise in temperature. Since the pressure, temperature and 
density of a gas are interrelated, the amount of heat required to raise 
the temperature depends on whether the gas is allowed to expand 
during the process so that the energy supplied is used in doing the work 
instead of raising the temperature.

• 9.Speed of sound (c): An important consequence of compressibility of 
the fluid is that the disturbances introduced at some point in the fluid 
propagate at finite velocity. The velocity at which these disturbances 
propagate is known as “acoustic velocity/speed of sound”



• The speed of sound in air increases with temperature. At 
typical outside temperatures, c is about 340 m/s. In round 
numbers, therefore, the sound of thunder from a lightning 
strike travels about 1 km in 3 seconds. If you see the 
lightning and then hear the thunder less than 3 seconds 
later, you know that the lightning is close, and it is time to 
go indoors!





• 10. Vapor pressure ( pv ) : It is defined as the pressure exerted by 
its vapor in phase equilibrium with its liquid at a given 
temperature. For a pure substance, it is same as the saturation 
pressure. In a fluid motion, if the pressure at some location is 
lower than the vapor pressure, bubbles start forming. This 
phenomenon is called as cavitation because they form cavities in 
the liquid.  



VAPOR PRESSURE AND CAVITATION

• Saturation temperature Tsat: The temperature at which a pure 
substance changes phase at a given pressure. 

• Saturation pressure Psat: The pressure at which a pure substance 
changes phase at a given temperature.

• Vapor pressure (Pv): The pressure exerted by its vapor in phase 
equilibrium with its liquid at a given temperature. It is identical to
the saturation pressure Psat of the liquid (Pv = Psat). 

• Partial pressure: The pressure of a gas or vapor in a mixture with 
other gases. For example, atmospheric air is a mixture of dry air 
and water vapor, and atmospheric pressure is the sum of the 
partial pressure of dry air and the partial pressure of water vapor.



• There is a possibility of the liquid pressure in liquid-flow systems 
dropping below the vapor pressure at some locations, and the resulting 
unplanned vaporization. 

• The vapor bubbles (called cavitation bubbles since they form “cavities” 
in the liquid) collapse as they are swept away from the low-pressure
regions, generating highly destructive, extremely high-pressure waves. 

• This phenomenon, which is a common cause for drop in performance and 
even the erosion of impeller blades, is called cavitation, and it is an 
important consideration in the design of hydraulic turbines and pumps.



ENERGY AND SPECIFIC HEATS

• Energy can exist in numerous forms such as thermal, mechanical, 
kinetic, potential, electric, magnetic, chemical, and nuclear, and 
their sum constitutes the total energy, E of a system. 

• Thermodynamics deals only with the change of the total energy. 
• Macroscopic forms of energy: Those a system possesses as a 

whole with respect to some outside reference frame, such as 
kinetic and potential energies.

• Microscopic forms of energy: Those related to the molecular 
structure of a system and the degree of the molecular activity.

• Internal energy, U: The sum of all the microscopic forms of 
energy.



• Kinetic energy, KE: The energy that a system possesses as a result 
of its motion relative to some reference frame.

• Potential energy, PE: The energy that a system possesses as a 
result of its elevation in a gravitational field.

Specific Heats:
-Specific heat at constant volume, cv: The energy required to raise 

the temperature of the unit mass of a substance by one degree as 
the volume is maintained constant.

Specific heat at constant pressure, cp: The energy required to raise 
the temperature of the unit mass of a substance by one degree as 
the pressure is maintained constant.



Specific heat is the energy required to raise the 
temperature of a unit mass of a substance by one degree 
in a specified way.



COMPRESSIBILITY AND SPEED OF SOUND

• Coefficient of Compressibility
We know from experience that the volume (or density) of a fluid changes with a change 
in its temperature or pressure. 
Fluids usually expand as they are heated or depressurized and contract as they are 
cooled or pressurized.
But the amount of volume change is different for different fluids, and we need to define 
properties that relate volume changes to the changes in pressure and temperature. 
Two such properties are:
the bulk modulus of elasticity 
the coefficient of volume expansion .





Coefficient of compressibility 

(also called the bulk modulus of 
compressibility or bulk modulus of 
elasticity) for fluids

The coefficient of compressibility represents the
change in pressure corresponding to a fractional 
change in volume or density of the fluid while the 
temperature remains constant. 
What is the coefficient of compressibility of a 
trusubstance (v = constant)?
A large value of  indicates that a large change in 
pressure is needed to cause a small fractional 
change in volume, and thus a fluid with a large 
is essentially incompressible. 
This is typical for liquids, and explains why liquids
are usually considered to be incompressible.



VISCOSITY

• Viscosity: A property that represents the internal resistance
of a fluid to motion or the “fluidity”.

• Drag force: The force a flowing fluid exerts on a body in the 
flow direction. The magnitude of this force depends, in part, 
on viscosity

• The viscosity of a fluid is a measure of its “resistance to deformation.”
• Viscosity is due to the internal frictional force that develops between 

different layers of fluids as they are forced to move relative to each 
other.



32

The behavior of a fluid in laminar flow 
between two parallel plates when the upper 
plate moves with a constant velocity.

Newtonian fluids: Fluids for 
which the rate of deformation is 
proportional to the shear 
stress.

Shear 
stress

Shear force

 coefficient of viscosity
Dynamic (absolute) viscosity
kg/m  s  or  N  s/m2  or  Pa  s
1 poise = 0.1 Pa  s 
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The rate of deformation (velocity gradient) 
of a Newtonian fluid is proportional to 
shear stress, and the constant of 
proportionality is the viscosity.

Variation of shear stress with the rate
of deformation for Newtonian and
non-Newtonian fluids (the slope of a 
curve at a point is the apparent
viscosity of the fluid at that point).



SURFACE TENSION AND CAPILLARY 
EFFECT

• Liquid droplets behave like small balloons filled with the liquid on a solid 
surface, and the surface of the liquid acts like a stretched elastic 
membrane under tension. 

• The pulling force that causes this tension acts parallel to the surface and 
is due to the attractive forces between the molecules of the liquid. 

• The magnitude of this force per unit length is called surface tension (or 
coefficient of surface tension) and is usually expressed in the unit N/m. 

• This effect is also called surface energy [per unit area] and is expressed 
in the equivalent unit of N  m/m2.
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Stretching a liquid film with a U-
shaped wire, and the forces acting
on the movable wire of length b.

Surface tension: The work done per unit 
increase in the surface area of the liquid.
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Capillary Effect

The meniscus of colored water in a
4-mm-inner-diameter glass tube. 
Note that the edge of the meniscus 
meets the wall of the capillary tube 
at a very small contact angle.

Capillary effect: The rise or fall of a liquid in a small-diameter tube inserted into 
the liquid. 
Capillaries: Such narrow tubes or confined flow channels.
The capillary effect is partially responsible for the rise of water to the top of tall 
trees. 
Meniscus: The curved free surface of a liquid in a capillary tube



Introduction to Rheology

• Introduction to the Rheology of Fluids
• Rheology
• Study of deformation and flow of matter

• A fluid is a substance that deforms continuously under the action of a shearing 
force.

• Intuitively, a fluid flows!

• Inquiry into the flow behavior of complex fluids

• Complex fluids do not follows Newton’s Law or Hooke’s Law (of elasticity)



Newton and Simple Fluids

• Reflected upon the resistance of liquids to a cylinder rotating in a vessel.

• Newton (-Stokes) Law 
• Deformation rate is expected to be proportional to stress and the constant coefficient of 

proportionality is called viscosity.

• The study of simpler fluids have their own well-defined field, called fluid mechanics.

• Purely viscous fluid.

 



What is Rheology Anyway? 
An answer for your baffled family and friends. *

• “Rheology is the study of the flow of materials that behave in an 
interesting or unusual manner. Oil and water flow in familiar, normal 
ways, whereas mayonnaise, peanut butter, chocolate, bread dough, and 
silly putty flow in complex and unusual ways. In rheology, we study the 
flows of unusual materials.”

• “… all normal or Newtonian fluids (air, water, oil, honey) follow the same 
scientific laws. On the other hand, there are also fluids that do not 
follow the Newtonian flow laws. These non-Newtonian fluids, for 
example mayo, paint, molten plastics, foams, clays, and many other 
fluids, behave in a wide variety of ways. The science of studying these 
types of unusual materials is called rheology



Examples of Complex Fluids

• Foods
• Emulsions (mayonaisse, ice cream)
• Foams (ice cream, whipped cream) 
• Suspensions (mustard, chocolate)
• Gels (cheese)

• Biofluids
• Suspension (blood)
• Gel (mucin)
• Solutions (spittle)

• Personal Care Products
• Suspensions (nail polish, face scrubs)
• Solutions/Gels (shampoos, conditioners)
• Foams (shaving cream)

• Electronic and Optical  Materials
• Liquid Crystals (Monitor displays)
• Melts (soldering paste)

• Pharmaceuticals
• Gels (creams, particle precursors)
• Emulsions (creams)
• Aerosols (nasal sprays)

• Polymers



Rheology’s Goals

1. Establishing the relationship between applied forces 
and geometrical effects induced by these forces at a 
point (in a fluid).

• The mathematical form of this relationship is called the 
rheological equation of state, or the constitutive equation.

• The constitutive equations are used to solve macroscopic 
problems related to continuum mechanics of these materials.

• Any equation is just a model of physical reality.



Rheology’s Goals

1. Establishing the relationship between rheological 
properties of material and its molecular structure 
(composition). 

• Related to:
• Estimating quality of materials
• Understanding laws of molecular movements
• Intermolecular interactions

• Interested in what happens inside a point during deformation of the 
medium. 

What happens inside a point?



Material Structure

• More or less well-organized and regularly spaced shapes

• Arrangements, organization or intermolecular interactions

• Structured Materials – properties change due to the influence of applied of 
applied forces on the structure of matter 

• Rheology sometimes is referred to as mechanical spectroscopy.

• “Structure Mechanisms” are usually proposed, analogous to reaction 
mechanisms in reaction kinetics

• Structural probes are used to support rheological studies and proposed 
mechanisms.



Rheological analysis is based on the use of 
continuum theories

meaning that:
• There is no discontinuity in transition from one geometrical point to another, 

and the mathematical analysis of infinitesimal quantities can be used; 
discontinuities appear only at boundaries

• Properties of materials may change in space (due to gradients) but such 
changes occur gradually

• changes are reflected in space dependencies of material properties entering 
equations of continuum theories

• Continuity theories may include an idea of anisotropy of properties of material 
along different directions. 



Rheology as an Interdisciplinary Science



Rheology as an Interdisciplinary Science



Rheology as an Interdisciplinary Science

Physics

Mechanics 
of

Continuum



Rheological Properties

• Stress
• Shear stress
• Normal stress
• Normal Stress differences

• Viscosity                                                                                     most commonly sought rheological 
quantity

• Steady-state (i.e. shear)
• Extensional
• Complex

• Viscoelastic Modulus
• G’ – storage modulus
• G” – loss modulus

• Creep, Compliance, Decay
• Relaxation times
• and many more …



Common Non-Newtonian Behavior

• shear thinning
• shear thickening
• yield stress
• viscoelastic effects

• Weissenberg effect
• Fluid memory
• Die Swell



Shear Thinning and Shear Thickening

• shear thinning – tendency of some materials to decrease 
in viscosity when driven to flow at high shear rates, 
such as by higher pressure drops



Shear Thickening

• shear thickening – tendency of some materials to 
increase in viscosity when driven to flow at high shear 
rates



Quicksand – A Non-Newtonian Fluid

• Quicksand is a colloid hydrogel (sand, clay and salt water).

• When undisturbed behaves as a solid gel, but minor changes in the stress will cause a sudden 
decrease in its viscosity

• After the initial perturbation, water and sand separate and dense regions of sand sediment
• High volume fraction regions -> viscosity increases

• Sufficient pressure must be applied to reintroduced water into the compacted sand.

• The forces required to remove a foot from quicksand at a speed of 1 cm/s are about the same 
as “that needed to lift a medium-sized car.”



Phenomenological Modeling of Shear Thinning 
and Thickening

• Generalized Newtonian Equation:

•
• Power Law Model:

• m = m n = 1 Newtonian
• m n > 1 Shear Thickening, Dilatant
• m n < 1 Shear Thinning

• Slope of log h vs log g is constant
• Advantages: simple, success at predicting Q vs DP
• Disadvantages: does not describe Newtonian Plateau at small shear rates

 )(
1 nm  



Modeling of Shear Thinning and Thickening

 Carreau-Yasuda Model

a – affects the shape of the transition region
l – time constant determines where it changes from constant to power law
n – describes the slope of the power law
h0, h∞ - describe plateau viscosities

 Advantages: fits most data
 Disadvantages: contains 5 parameters, do not give molecular insight into polymer 

behavior
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Yield Stress

• Tendency of a material to flow only when stresses are above a threshold stress

• Bingham Model:

ty = yield stress, always positive
m0 = viscosity at higher shear rates
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Elastic and Viscoelastic Effects

• Weissenberg Effect (Rod Climbing Effect)
• does not flow outward when stirred at high speeds



Elastic and Viscoelastic Effects

• Fluid Memory
• Conserve their shape over time periods or seconds or minutes
• Elastic like rubber
• Can bounce or partially retract
• Example: clay (plasticina)



Elastic and Viscoelastic Effects

• Viscoelastic fluids subjected to a stress deform
• when the stress is removed, it does not instantly vanish
• internal structure of material can sustain stress for some time
• this time is known as the relaxation time, varies with materials
• due to the internal stress, the fluid will deform on its own, even 

when external stresses are removed
• important for processing of polymer melts, casting, etc.. 



Elastic and Viscoelastic Effects – Die Swell

 as a polymer exits a die, the diameter of liquid stream increases by up 
to an order of magnitude

 caused by relaxation of extended polymer coils, as stress is reduced 
from high flow producing stresses present within the die to low 
stresses, associated with the extruded stream moving through 
ambient air 



Fluid Statics

• When a surface is submerged in a fluid at rest, hydrostatic forces 
develop on the surface due to the fluid pressure.  These forces 
must be perpendicular to the surface since there is no shear 
action present.  These forces can be determined by integrating 
the static pressure distribution over the area it is acting on.

Pressure distribution in a static fluid and its effects on solid 
surfaces and on floating and submerged bodies.
• Fluid either at rest or moving in a manner that there is no relative motion 

between adjacent particles.
• No shearing stress in the fluid
• Only pressure (force that develop on the surfaces of the particles)



2.1 Pressure at a point N/m2 (Force/Area)
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Pressure at a pt. in a fluid at rest, or in motion, is
independent of direction as long as there are no shearing
stresses present.          (Pascal’s law)



2.2 Basic equation for Pressure Field

Surface & body forces acting on small fluid element
pressure weight

How does the pressure in a fluid which there are no shearing stresses 
vary from pt. to pt.? 
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Newton’s second law
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2.3 Pressure variation in a fluid at rest
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General equation of motion for a fluid in which there
are no shearing stresses.
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2.3.1 Incompressible
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The required equality of pressures at equal elevations
Throughout a system.
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Troposphere:
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2.4  Standard Atmosphere



vaporatm phγp 
(Mercury barometer)
Example 2.3
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2.6 Manometry
1. Piezometer Tube: 
2. U-Tube Manometer:
3. Inclined-tube manometer

gasa not liquid, 3.  reasonable is h 2.  1 1 不大aa pppp. 
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see examples

*explain Fig. 2.11 Differential U-tube manometer 

113322 hγhγhγpp BA  Example 2.5

2.5   Measurement of Pressure
See Fig. 2.7
Absolute &
Gage pressure



Ex. 2.5
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2.6.3 Fig. 2.12  Inclined tube manometer

θsinγ
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


 Small difference in gas pressure
If pipes A & B contain a gas



2.7 Mechanical and Electronic Pressure Measuring Device

. Bourdon pressure gage (elastic structure)
Bourdon Tube

,p  curved tube  straight

deformation  dial

.A zero reading on the gage indicates that the measured
pressure 

. Pressure transducer－pressure V.S. time
Bourdon tube is connected to a linear variable 
differential transformer(LVDT), Fig. 2.14

coil; voltage

.Aneroid barometer－measure atmospheric pressure
(absolute pressure)



This voltage is linear function of the pressure, and could
be recorded on an oscillograph, or digitized for storage
or processing on computer. 

Disadvantage-elastic sensing element
meas. pressure are static or only changing 
slowly(quasistatic).

relatively mass of Bourdon tube

<diaphragm>

*strain-gage pressure transducer *
Fig. 2.15 (arterial blood pressure)

piezo-electric crystal. (Refs. 3, 4, 5 )

1Hz



2.8 Hydrostatic Force on a Plane Surface

pAFR 

Storage tanks, ships

Fig. 2.16 Pressure and resultants hydrostatic force
developed on the bottom of an open tank. 

. For fluid at rest we know that the force must be 
perpendicular to the surface, since there are no shearing
stress present.



. Pressure varies linearly with depth if incompressible

g
dz
dp

  hp  for open tank, Fig. 2.16

The resultant force acts through the centroid of the area

* Exercise 1.66

dARd i
torque shearing stress
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hdAdF 

constants. are  , if

sin



 
A AR dAyhdAF


AR ydAF  sin

first moment of the area
∫A cAy=ydA

AhAyF cCR   sin 
Indep. Of  

The moment of the resultant force must equal the moment of the
Distributed pressure force

 AARR dAyydFyF 2sin 
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dAy

yAF
c

A
RCR


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         sin 
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2.18 Fig. seeect  ,          

          

   xycxcc
cA

xyc
R

cRc
cA

xc
R

IIx
y
I

x

yyy
y
Iy





Note: Ixy-the product of inertia wrt the x& y area. 
Ixyc-the product of inertia wrt to an orthogonal

coord. system passing through the centroid 
of the area.

If the submerged area is symmetrical wrt an axes passing
through the centroid and parallel to either the x or y axes,
the resultant force must lie along the line x=xc,  
since Ixyc= 0.

Center of pressure (Resultant force acts points)



Example 2.6 求a. 
b. ),( ; RRR yxF
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0    2.20 2.19, Eq.
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2.9 Pressure Prism
the pressure varies linearly with depth. See Fig. 2.19

Ahbhh

e prismof pressurvolumeF

AhAPF
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



No matter what the shape of the pressure prism is, the resultant
force is still equal in magnitude to the volume of the pressure 
Prism, and it passes through the centroid of the volume.

First, draw the pressure prism out. 
dz
dp

0pzp  
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Example 2.8



2.10 Hydrostatic Force on a Curved Surface

. Eqs. Developed before only apply to the plane surfaces
magnitude and location of

RF
. Integration: tedious process/ no simple, general formulas can be 

developed.

. Fig. 2.23

surface plane→F ;F 21

)gravity  of C.G(center through ;xVW

fluid. on the exerts                 
 tank that theforce of compoments The , VH FF

For equilibrium, ;2FFH 
WFFV  1

collinear. through pt
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gravity)
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See Fig. 2.18

Example 2.9 排水管受力情形



Fluid at rest

• hydrostatic condition: when a fluid velocity is zero, the 
pressure variation is due only to the weight of the fluid.



Pressure forces (pressure gradient)
• Assume the pressure vary arbitrarily in a fluid, p=p(x,y,z,t). 



Equilibrium

• The pressure gradient must be balanced by gravity force, 
or weight of the element, for a fluid at rest.

•

• The gravity force is a body force, acting on the entire 
mass of the element. Magnetic force is another example 
of body force.  



Gage pressure and vacuum

• The actual pressure at a given position is called the 
absolute pressure, and it is measured relative to 
absolute vacuum. 

Patm

Pgage

Pabs

Absolute 
(vacuum) = 0

P

Pvac



Hydrostatic pressure distribution
• Recall: ∇p is perpendicular everywhere to surface of constant 

pressure p. 
• In our customary coordinate z is “upward” and the gravity 

vector is: 



Hydrostatic pressure distribution
• Pressure in a continuously distributed uniform static fluid varies only 

with vertical distance and is independent of the shape of the container.
• The pressure is the same at all points on a given horizontal plane in a 

fluid



The mercury barometer

Mercury has an extremely small vapor pressure at room temperature (almost 
vacuum), thus p1 = 0.  One can write:

Patm = 761 mmHg 



Hydrostatic pressure in gases



Manometry



Hydrostatic forces on surfaces



Hydrostatic forces on surfaces



Hydrostatic forces on surfaces



Hydrostatic forces: curved surfaces



Buoyancy



Archimedes 1st law 



Buoyancy force 



Archimedes 2nd law



Example



Pressure in rigid-body motion



Rigid-body motion cont’d



Rigid-body rotation



Rigid-body motion cont’d



Pressure measurement



Dimensional Analysis



Dimensional Analysis

It is a pure mathematical technique to establish a relationship
between physical quantities involved in a fluid phenomenon by
considering their dimensions.
In dimensional analysis, from a general understanding of fluid
phenomena, we first predict the physical parameters that will
influence the flow, and then we group these parameters into
dimensionless combinations which enable a better understanding
of the flow phenomena. Dimensional analysis is particularly
helpful in experimental work because it provides a guide to those
things that significantly influence the phenomena; thus it
indicates the direction in which experimental work should go.



Dimensional Analysis

Dimensional Analysis refers to the physical
nature of the quantity (Dimension) and the
type of unit used to specify it.

Distance has dimension L.

Area has dimension L2.

Volume has dimension L3.

Time has dimension T.

Speed has dimension L/T



Application of Dimensional Analysis

• Development of an equation for fluid phenomenon
• Conversion of one system of units to another
• Reducing the number of variables required in an

experimental program
• Develop principles of hydraulic similitude for model

study



Dimensional Reasoning & Homogeneity
• Principle of Dimensional Homogeneity

The fundamental dimensions and their respective powers
should be identical on either side of the sign of equality.

• Dimensional reasoning is predicated on the proposition that,
for an equation to be true, then both sides of the equation
must be numerically and dimensionally identical.

• To take a simple example, the expression x + y = z when x
=1, y =2 and z =3 is clearly numerically true but only if the
dimensions of x, y and z are identical. Thus

1 elephant +2 aeroplanes =3 days is clearly nonsense but

1 metre +2 metre =3 metre is wholly accurate.

An equation is only dimensionally homogeneous if all the
terms have the same dimensions.



Fundamental Dimensions
• We may express physical quantities in either mass-

length-time (MLT) system or force-length-time (FLT)
system.
This is because these two systems are interrelated

through Newton’s second law, which states that force
equals mass times acceleration,

F = ma 2nd Law of motion
F = ML/T2

F = MLT-2

• Through this relation, we can covert from one system to
the other. Other than convenience, it makes no
difference which system we use, since the results are
the same.





Dimensions of Some Common 
Physical Quantities

[x], Length – L
[m], Mass – M
[t], Time – T
[v], Velocity – LT-1

[a], Acceleration – LT-2

[F], Force – MLT-2

[Q], Discharge – L3T-1

[], Mass Density – ML-3

[P], Pressure – ML-1T-2

[E], Energy – ML2T-2



Basic Concepts
• All theoretical equations that relate physical quantities must

be dimensionally homogeneous. That is, all the terms in an
equation must have the same dimensions. For example
Q = A.V (homogeneous)
L3T-1 = L3T-1

• We do, however sometimes use no homogeneous equation,
the best known example in fluid mechanics being the Manning
equation.

Mannings equation is an empirical equation. Generally the 
use of such equations is limited to specialized areas.



• To illustrate the basic principles of dimensional analysis, let
us explore the equation for the speed V with which a pressure
wave travels through a fluid. We must visualize the physical
problem to consider physical factors probably influence the
speed. Certainly the compressibility Ev must be factor; also
the density and the kinematic viscosity of the fluid might be
factors. The dimensions of these quantities, written in square
brackets are
V=[LT-1], Ev=[FL-2]=[ML-1T-2], =[ML-3], ν=[L2T-1]
Here we converted the dimensions of Ev into the MLT system

using F=[MLT-2]. Clearly, adding or subtracting such quantities
will not produce dimensionally homogenous equations. We
must therefore multiply them in such a way that their
dimensions balance. So let us write

V=C Ev
a b νd

Where C is a dimensionless constant, and let solve for the
exponents a, b, and d substituting the dimensions, we get



(LT-1)=(ML-1T-2)a (ML-3)b (L2T-1)d

To satisfy dimensional homogeneity, the exponents of each
dimension must be identical on both sides of this equation.
Thus

For M: 0 = a + b
For L: 1 = -a -3b +2d
For T: -1 = -2a – d
Solving these three equations, we get

a=1/2, b=-1/2, d=0
So that V = C √(Ev/)
This identifies basic form of the relationship, and it also

determines that the wave speed is not effected by the
fluid’s kinematic viscosity, ν.
Dimensional analysis along such lines was developed by Lord

Rayleigh.



Methods for Dimensional Analysis

• Rayleigh’s Method
• Buckingham’s ∏-method



Rayleigh’s Method

Functional relationship between variables is expressed in the form 
of an exponential relation which must be dimensionally 
homogeneous
if “y” is a function of independent variables x1,x2,x3,…..xn, then 

In exponential form as
),.......,,( 321 nxxxxfy 

]),.......()(,)(,)[( 321
z

n
cba xxxxy 



Procedure• Write fundamental relationship of the given data
• Write the same equation in exponential form
• Select suitable system of fundamental dimensions
• Substitute dimensions of the physical quantities
• Apply dimensional homogeneity
• Equate the powers and compute the values of the

exponents
• Substitute the values of exponents
• Simplify the expression
• Ideal up to three independent variables, can be used

for four.

Rayleigh’s Method



Buckingham’s ∏ method

• A more generalized method of dimension analysis developed by
E. Buckingham and others and is most popular now. This
arranges the variables into a lesser number of dimensionless
groups of variables. Because Buckingham used ∏ (pi) to
represent the product of variables in each groups, we call this
method Buckingham pi theorem.

• “If ‘n’ is the total number of variables in a dimensionally
homogenous equation containing ‘m’ fundamental dimensions,
then they may be grouped into (n-m) ∏ terms.

f(X1, X2, ……Xn) = 0
then the functional relationship will be written as

Ф (∏1 , ∏2 ,………….∏n-m) = 0
The final equation obtained is in the form of:

∏1= f (∏2,∏3,………….∏n-m) = 0
• Suitable where n ≥ 4
• Not applicable if (n-m) = 0



Procedure

• List all physical variables and note ‘n’ and ‘m’.
n = Total no. of variables
m = No. of fundamental dimensions (That is, [M], [L], [T]) 

• Compute number of  ∏-terms by (n-m)
• Write the equation in functional form
• Write equation in general form
• Select repeating variables. Must have all of the ‘m’ fundamental

dimensions and should not form a ∏ among themselves
• Solve each ∏-term for the unknown exponents by dimensional

homogeneity.

Buckingham’s ∏ method



Example:
• Let us apply Buckingham’s ∏ method to an example problem that of

the drag forces FD exerted on a submerged sphere as it moves
through a viscous fluid. We need to follow a series of following
steps when applying Buckingham’s ∏ theorem.

• Step 1: Visualize the physical problem, consider the factors that are
of influence and list and count the n variables.

We must first consider which physical factors influence the drag
force. Certainly, the size of the sphere and the velocity of the
sphere must be important. The fluid properties involved are the
density ρ and the viscosity μ. Thus we can write

f (FD, D, V, ρ, μ) = 0

Here we used D, the sphere diameter, to represent sphere size,
and f stands for “some function”. We see that n = 5. Note that the
procedure cannot work if any relevant variables are omitted.
Experimentation with the procedure and experience will help
determine which variables are relevant.

Buckingham’s ∏ method



• Step 2: Choose a dimensional system (MLT or FLT) and list the
dimensions of each variables. Find m, the number of fundamental
dimensions involved in all the variables.

Choosing the MLT system, the dimensions are respectively
MLT-2 , L , LT-1 , ML-3 , ML-1T-1

We see that M, L and T are involved in this example. So m = 3.
• Step 3: Determine n-m, the number of dimensionless ∏ groups

needed. In our example this is 5 – 3 = 2, so we can write Ф(∏1. ∏2) =
0

• Step 4: Form the ∏ groups by multiplying the product of the primary
(repeating) variables, with unknown exponents, by each of the
remaining variables, one at a time. We choose ρ, D, and V as the
primary variables. Then the ∏ terms are

∏1 =  Da Vb ρc FD

∏2 = Da Vb ρc μ-1

Buckingham’s ∏ method



• Step 5: To satisfy dimensional homogeneity, equate the
exponents of each dimension on both sides on each pi
equation and so solve for the exponents

∏1 = Da Vb ρc FD = (L)a (LT-1)b (ML-3)c (MLT-2) = M0L0T0

Equate exponents:
L: a +b -3c +1 = 0
M: c +1 = 0
T: -b -2 = 0
We can solve explicitly for

b = -2,    c = -1,   a = -2
Therefore

∏1 = D-2 V-2 ρ-1 FD = FD/(ρ V2 D2)

Buckingham’s ∏ method



Finally, add viscosity to D, V, and ρ to find ∏2 . Select any power
you like for viscosity. By hindsight and custom, we select the power
-1 to place it in the denominator

∏1 = Da Vb ρc μ-1 = (L)a (LT-1)b (ML-3)c (ML-1T-1 )-1 = M0L0T0

Equate exponents:
L: a +b -3c +1 = 0
M: c -1 = 0
T: -b +1 = 0
We can solve explicitly for

b = 1,    c = 1,   a = 1
Therefore, 
∏2 = D1 V1 ρ1 μ-1 = (D V ρ)/(μ) =R = Reynolds Number 
R = Reynolds Number= Ratio of inertia forces to viscous forces

Check that all ∏s are in fact dimensionless

Buckingham’s ∏ method



Rearrange the pi groups as desired. The pi theorem states that
the ∏s are related. In this example hence

FD/(ρ V2 D2) = Ф (R)
So that FD = ρ V2 D2 Ф (R)
We must emphasize that dimensional analysis does not provide
a complete solution to fluid problems. It provides a partial
solution only. The success of dimensional analysis depends
entirely on the ability of the individual using it to define the
parameters that are applicable. If we omit an important variable.
The results are incomplete, and this may lead to incorrect
conclusions. Thus, to use dimensional analysis successfully,
one must be familiar with the fluid phenomena involved.

Buckingham’s ∏ method



Modeling and Similitude

• To develop the procedures for designing models so that the model 
and prototype will behave in a similar fashion……. 



Model vs Prototype Model Prototype



Model vs Prototype 

• With the successful development of a valid model, it is possible to 
predict the behavior of the prototype under a certain set of 
conditions.

• There is an inherent There is an inherent danger in the use of 
models danger in the use of models in that predictions can be 
made that are in error and the error not detected until the can be 
made that are in error and the error not detected until the 
prototype is found not to perform as predicted.

• It is imperative that It is imperative that the model be properly 
designed and tested and the model be properly designed and 
tested and that the results be interpreted correctly.



Similarity of Model and Prototype



Theory of Models



Theory of Models



Theory of Models



Theory of Models



Theory of Models


