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PLANE CURVES

 A curve is an integral part of any design and an engineer needs to draw one or other

type of curves or curved surfaces applicable to many engineering components used in

automotive, aerospace and hydrospace industries.

 Different types of shape constraints (e.g., continuity and/or curvature) are imposed to

accomplish specific shapes of the curve or curved surfaces.

 A large variety of techniques are available for drawing and sketching the curves

manually with tools like pencils, brushes, knives, French curves, compasses, splines,

templates, etc.

 Each tool is used for the specific work. None of the single tool is sufficient to draw all

types of curves.

 When a curve is two-dimensional, it lies entirely in a plane known as planar curve.

 However, three-dimensional curve lies in space called space curve.
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PLANE CURVES…

 In general, engineering applications require smooth curves. A smooth curve can be

generated by reducing the spacing between the data points.

 The data points may be equally spaced or non-evenly spaced (Figure).

 The connection of evenly spaced points by small line segments results into poor

representation of a curve.

 The advantage of non-evenly spaced data points can be visualized for generating the

smooth curve as shown in Figure.

 Increasing the density of data points in the region where radius of the curvature is small

improves the quality, as regards to the smoothness, of the curve.

 

Small 
curvature 

Large 
curvature 

(a) (b) 

(a) Evenly Spaced data points (b) Non-evenly spaced data points 
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CURVE REPRESENTATION

There are two techniques for the curve representation.

Analytic Curves

Analytic curves can be represented by the analytical (mathematical) equations such as

lines, circles and conics. This type of curve representation has the following advantages:

 Precise and easy evaluation of the intermediate points

 Mathematical representation of curve is computer friendly, i.e., compact storage of

curve

 Curve properties such as slope and radius of curvature can be easily evaluated

 Drawing of curves is easy from the storage data

 Alteration / manipulation of curve is easy to meet the modified design criteria
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CURVE REPRESENTATION…

Synthetic Curves

Unfortunately, it is not possible to represent all types of curves required in engineering

applications analytically; therefore, the method based on the data points (synthetic

curves) is very useful in designing the objects with curved shapes such as ship hull, car

body, aerofoil section, automobile components, etc.

 Synthetic curves such as Bezier curves and splines are described by a set of data

points known as control points.

 Parametric polynomials usually fit the control points.

 Synthetic curves provide greater flexibility to the designer just by changing the

positions of the control points.

 Moreover, it is possible to achieve a local control and global control of the shape

of the curve.
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CURVE REPRESENTATION…

Synthetic Curves

The data (control) point representation of curve suffers from the following disadvantages:

 Slope of the curve is obtained using numerical differentiation, a well-known

inaccurate procedure.

 A good quality circle requires a minimum of 32 points on its circumference; therefore,

a huge storage is required as compared to the analytical representation of circle in

which centre and radius is sufficient to represent the circle.

 Intermediate points are obtained using the interpolation techniques. The resulting

intermediate points do not actually lie on the curve.

 It is not possible to calculate the exact property of the curve because exact shape of

the curve is not known.

 Difficult to handle the transformations of curve due to the large number of data points.
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INTERPOLATION AND APPROXIMATION

 The interpolation is a technique by which a curve, represented with known set of data

points, can be defined analytically.

 The data points may be obtained through the experimental measurements or from

some known function.

 When curve passes through all the data points, it is said to fit the data.

 ‘Piecewise polynomial approximation’ technique of curve fitting is used to determine

the coefficient of polynomials of some degree.

 The curve shape between the data points depends upon the degree of polynomial and

the associated boundary conditions.

Interpolation
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INTERPOLATION AND APPROXIMATION…

Approximation

 If data points (control points) are only approximation to some true values (e.g.,

measurement points, etc.) then the curve does not necessarily pass through the data

points rather than it approximates or fairs the data points.

 The curve depicts the trend of data points.

 Least square approximation is a common curve fairing technique, which produces the

curve of the form , which minimizes the sum of y squared deviations between

the data and the derived curve.

 Depending upon the information about the phenomenon that produces the data points,

the curve may be

)(xfy 

)( xfy 
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INTERPOLATION AND APPROXIMATION…

 

(a) (b) 

 
 

 

 

   
 

 

 

 
  

 

 

  

 
 

 

 

 
 

Control 
points 

Interpolation and Approximation of data points (a) curve fitting (b) curve fairing

 Power functions bxay .  

 Exponential functions bxeay .  

 Polynomial functions n
n xCxCxCCy .......... 1

2
321   

 Trigonometric functions, and 

 Probability distributions, etc. 
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• Interpolation Curve – over constrained → lots of (undesirable?) oscillations

• Approximation Curve – more reasonable?

INTERPOLATION AND APPROXIMATION…



Non-parametric Curves

 A non-parametric curve representation may be explicit or implicit. In explicit form,

coordinate(s) of a point y and/or z are explicitly represented as function of x.

Explicit, non-parametric planar curve is represented as y = f (x)

For example, equation of a straight-line y = mx + b. For each x value, there is only
one y value

 Explicit, non-parametric space curve is represented as x = x, y = f (x) and z = f (x)

 The above equation has one-to-one relationship. Therefore, this is not suitable for the

representation of closed or multivalued curves.

 Closed or multiple valued planar curves, e.g., a circle, parabola, ellipse, etc. gives two

values of y for each value of x.
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CLASSICAL REPRESENTATION OF CURVES

Mathematically, non-parametric and parametric equations are used for the representation of 

planar curves or space curves

.

x



Non-parametric Curves…

 This form of curve representation is known as implicit non-parametric form of the

curve.

 Thus, a general implicit non-parametric planar curve can be represented as f (x, y) = 0

 For example, a general second-degree implicit non-parametric equation is written as

 Above equation gives a variety of two-dimensional (planar) curves called conic
sections. The three forms of conic sections are parabola, hyperbola and ellipse.

 Circle is a special case of an ellipse whereas a straight line is obtained if coefficients

a = h = b = 0

 Depending upon the values of coefficients in the equation, a planar curve may be

described by specifying the following conditions:
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CLASSICAL REPRESENTATION OF CURVES…x

0222 22  cfygxbyhxyax



Non-parametric Curves…

• Positions and slopes at the two endpoints of the curve segment

• Positions of the two endpoints and slopes either at the beginning or at the end of curve

segment

 The implicit non-parametric representation for space curves may be obtained by the

intersection of two surfaces f ( x, y, z) = 0 and g (x, y ,z ) =0

Properties

I. Explicit and implicit non-parametric curve representations are axis dependent.

II. A non-parametric representation of curve results into unequal distribution of points on

the curve, which in turn, affects the quality and accuracy of the curve.

III. If a curve is to be displayed as a series of points or straight-line segments, the

computations involved could be expensive.
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CLASSICAL REPRESENTATION OF CURVES…
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CLASSICAL REPRESENTATION OF CURVES…x

x

0.0 0.2 0.4 0.6 0.8 1.0 1.2

y

0 .0

0 .2

0 .4

0.6

0.8

1.0

1.2

Explicit non-parametric representation of a unit radius origin centered circle 
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PARAMETRIC CURVES

 Parametric representations of closed or multivalued curves overcome the difficulties

associated with the non-parametric representations.

 Parametric representations for commonly used curves such as conic sections employ

polynomials in place of equations involving the square root calculations.

 Thus, parametric representations for the curves are more general and suitable for the

CAD applications due to the ease in computations.

 In parametric form, each point on the curve is expressed as a function of

single parameter.

 Thus, position vector of a point on the curve is fixed by a single parameter.

For two-dimensional (planar) curve with t as a parameter, the Cartesian coordinates of a

point on the curve is expressed as

and or)(txx  )(tyy 









)(

)(
)(

ty

tx
tP
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PARAMETRIC CURVES…

 A single non-parametric curve equation (in terms of x and y) may be obtained from two

parameter equations by eliminating the parameter t.

 The tangent vector (or derivative) for a parametric curve is defined as

 Therefore, the slope of the parametric curve is given by

 With parametric representations, the infinite slope condition ( ) can easily be

obtained by substituting

 Since a point on the curve is specified by a single parameter t; therefore, the parametric

curves are axis independent. Mostly

 The position and slope at the endpoints of the curve is specified by the parameter t,

which is fixed within the parameter range.










)('

)('
)('
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tx
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dtdx
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The position vector P (t) has a parametric representation x (t) and y (t) ; therefore

Lines

The parametric representation of a straight line connecting the two position vectors and

is given by
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PARAMETRIC RERESENTATION OF 
ANALYTIC CURVES

1P

2P

tPPPtP ).()( 121 
, 10  t   

txxxtx ).()( 121  10  t

tyyyty ).()( 121  10  t

Moreover, tangent vector of the line is given as

where

12)(' PPtP 

12)(' xxtx 

12)(' yyty 

Thus, the tangent vector of the line is independent of the parameter t. The infinite slope

(vertical line) condition and zero slope (horizontal line) condition can be obtained from

above eqn.



Circles

The parametric equation of origin centered circle in standard trigonometric form is given as
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PARAMETRIC RERESENTATION OF 
ANALYTIC CURVES

cos.ax 

sin.ay 

0z
 20 

where parameter  is the angle measured in ccw direction from the positive x–axis. The

parametric equation of non-origin centered circle is given as

cos.axx c 

sin.ayy c   20 

czz 

where coordinates                      is the centre of the circle.  ),,( ccc zyx

 The parametric representation for a curve is not unique.

 A computationally less expensive parametric representation technique uses the

polynomials for representing the curves.



Circles…
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PARAMETRIC RERESENTATION OF 
ANALYTIC CURVES

The polynomial form of parametric representation of a circle is expressed as

and
2

2

1

1

t

t
x




 10  t21

2

t

t
y




 Although, this results into unequal perimeter lengths on the circumference of a circle

for equal increments in parameter t but the quality of circle is much better than the

explicit nonparametric representation.

 However, the quality of circle obtained with polynomial representation is not as good

as the standard trigonometric representation.

 Polynomial form of parametric representation is computationally less

expensive and it may be considered as a compromise between the quality and

computations.



Circles…
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PARAMETRIC RERESENTATION OF 
ANALYTIC CURVES

. 

Parametric Representations of circles in first quadrant

(a)  Trigonometric (b) Polynomial



Ellipse
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PARAMETRIC RERESENTATION OF 
ANALYTIC CURVES

. 

The parametric representation of non-origin centered ellipse is given as

cos.axx c 

sin.byy c 

czz 
 20 

Parabola

In rectangular coordinates, the non-parametric representation of origin centered parabola
opening to the right is  

axy 42 

A parametric representation, in trigonometric form, is given as

tan.2 ay  2/0  

An alternative parametric representation, in polynomial form, is given as 
2atxx v 

atyy v 2  t0

vzz 



Hyperbolas
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PARAMETRIC RERESENTATION OF 
ANALYTIC CURVES

. 

The parametric representation of hyperbola is given as

2/0  

secaxx v 

tanbyy v 

vzz 
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SPACE CURVESor 

 Space (three-dimensional) curves and surfaces are mostly used in the design of

automobile bodies, aerospace wings, ship hulls, propeller blades, shoes, bottles, etc.

 These applications require curves and surfaces as basic entities.

 Curve is the collection of points and they form basic entities of the surfaces. Surfaces

can be obtained by digitizing the physical model or a drawing, followed by curve

fitting through the set of data points.

 Mathematically, curve fitting (interpolation) and curve fairing (approximation)

techniques are used for generating the curves in computer graphics.

 The analytical form of planar curves is not suitable for designing the complex three-

dimensional curves and surfaces used for designing the complex shaped objects.

 The designer prefers the synthetic curve, which passes through the set of data points,

because designer has full control on its shape as per the new design requirements.
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PROPERTIES FOR CURVE DESIGNor 

 In computer graphics, a curve is represented in such a manner that it must be

mathematically tractable and computationally convenient.

 The experiences of designer suggest that the curve must possess the following

important properties for the design and representation in computer graphics:

Control points

 The control points govern the shape of the curve in a predictable manner.

 It is possible to control the shape of the curve interactively through proper location of

the control points.

 A curve must interpolate (pass) the control points.

Axis Independence

 The shape of curve must not change if control points are measured in different

coordinate system.
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PROPERTIES FOR CURVE DESIGNor 

Axis Independence…

 For example, if control points rotate by 30o, the entire curve must rotate by 30o,

keeping the shape unchanged.

 Due to its axis independent nature, it is possible to transform a parametric curve

into a curve of the same shape but with different orientations.

Local Control and Global Control

 In computer graphics, it is frequently required to modify the portion of the curve.

 The curve may change its shape only in the portion near to the control point or the

shape of entire curve may change.

 The first modification in the curve shape is termed local control whereas second

modification as global control.

 A designer is always interested in local control because altering the position of

control point does not propagate the change in the remaining portion of the curve.
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PROPERTIES FOR CURVE DESIGNor 

Local Control and Global Control…

 

(a) (b) 

original 
control point 

 
 

 
 

 

  

 

modified 
control point 

Altered curve 

 
  

   
 

Original curve 

Shape control of curve (a) Local (b) Global  

Variation Diminishing Property

 A curve is said to be smooth if it has a tendency to pass through the control points

smoothly.

 If curve oscillates about the control points it is usually not desirable.
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PROPERTIES FOR CURVE DESIGNor 

Variation Diminishing Property…

 Thus, the curve which passes through the control points smoothly and does not show

the tendency to amplify the irregularities in the form of oscillations, is said to possess

the variation diminishing property.

(a) Variation diminishing property 

(b) Curve with undesirable oscillations about the control points 

Versatility

 The mathematical model for curve representation should allow the designer to change

its shape by either adding or removing the control points..



Zero Order Continuity or Continuity
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PROPERTIES FOR CURVE DESIGNor 

Versatility…

 This implies the versatility of the curve, i.e., addition of the control points defining the

curve gives additional shapes to the curve depending upon the position of additional

control points.

Order of Continuity

 It is difficult to achieve the complex shape of object with a single curve.

 Usually, several curves are joined together end to end to accomplish the complex shape.

 The order of continuity decides the exact shape of the joint.

 The parametric continuity results by matching the parametric positions and the

parametric derivatives of adjoining curves at their common boundary.

There are three types of order of continuity:

0C

Zero order continuity exists when adjoining curves simply meet to form a joint, i.e., parameter t at the

joint, for the two adjoining curves are same. Figure (a) shows the zero order (position) continuity.
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PROPERTIES FOR CURVE DESIGNor 

First Order Continuity or Continuity

Order of Continuity…

1C

 First order continuity exists when first order derivatives (i.e., tangent) for two adjoining curves, at

their joining point, are same.

 The rate of change of the tangent vectors (second derivatives) can be quite different so that general

shapes of the two adjacent sections can change abruptly.

 A joint with continuity also possesses and continuity. Figure (b) shows the first order

(tangent) continuity.

1C0C

 

(a) (b) 

   

(c) 

t1 = 0 

t2 = 0 

t2 = 1 

t1 = 1 tangent 

Parametric continuities at the junction point of two curves 

(a) Zero Order Continuity (b) First Order continuity (c) Second Order Continuity 
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PROPERTIES FOR CURVE DESIGNor 

Order of Continuity…

 First order continuity is generally sufficient for digitizing the drawings whereas second order

continuity is required for setting up animation paths for the camera motion.

 A camera moving in continuity or tangent continuity with equal steps in parameter t

experiences acceleration at the joint of two adjoining curve sections, leading to the discontinuity

in motion in the form of jerks.

 Therefore, continuity or curvature continuity is desirable for camera motion during the

animation.

1C

2C

,

Second Order Continuity or Continuity2C



Space (three-dimensional) curves are mostly used in the design of automobile

bodies, aerospace wings, ship hulls, propeller blades, shoes, bottles, etc.
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SYNTHETIC CURVES
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PARAMETRIC REPRESENTATION OF 

SYNTHETIC CURVES

or 

Synthetic curves are highly suitable for defining the complex curves and surfaces. The

designer, mainly in the following situations, prefers them:

 When the space curve is represented with the help of data points (control points) and

its shape changes by shifting the data points (defining the curve) to meet the new

design requirement.

 When a designer needs the space curve representation in such a way that shifting of

one or more data points, changes its shape by the processes of twisting (non-planar),

bending and stretching.

 Mathematically, synthetic curve generation is a curve fitting/fairing problem wherein

smooth curves generate through a set of known measured data points.

 The order of continuity is very important for generating a complex shape smooth

curve because it is modeled by joining several curve segments end to end.
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PARAMETRIC REPRESENTATION OF 

SYNTHETIC CURVES…

or 

 Typically, synthetic curves are represented in polynomial forms because it is easy to

apply various orders of continuity conditions such as position , slope and

curvature at the boundaries of small curve segments.

 Polynomials are easy to differentiate/integrate; therefore, speed up the computation

process.

)( 0C )( 1C

)( 2C

In polynomial form, the x variation of parameter for the first, second and third order
polynomials, respectively, may be expressed as

First order (line segment)   : battx )(   

Second order (quadratic polynomial) : cbtattx  2)(  

Third order (cubic polynomial)  : dctbtattx  23)(   
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PARAMETRIC REPRESENTATION OF 

SYNTHETIC CURVES…

or 

,

 The lowest degree polynomials such as first order polynomial requires the

determination of two coefficients a and b which can be calculated from the endpoint

coordinates (two boundary conditions) of the line segment.

 For the line segment, the line and slope (derivative) at the endpoints are same;

therefore, the endpoints coordinates, and tangents (slopes) at the endpoints, cannot

control the shape of curve (line), independently.

 With quadratic polynomials, three coefficients a, b and c can be calculated, using two

endpoint conditions and one boundary condition such as slope (tangent) at one

endpoint or one additional point outside the curve, which controls the tangent at the

endpoint.

 If three points describe the quadratic polynomial then polynomial lies in a plane

defined by the three points; therefore, interpolation becomes difficult.
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PARAMETRIC REPRESENTATION OF 

SYNTHETIC CURVES…

or 

 A cubic polynomial is the lowest degree polynomial, which generates the curve with

, and continuities.

 The cubic polynomials represent a non-planar (twisted) space curve.

 The curves and surfaces with higher degree polynomials experience oscillations about

the control points.

 The higher degree polynomials are computationally expensive and require large

amount of storage.

 However, they are preferred in the design of car bodies and aerospace and hydrospace

structures because aerodynamically efficient shape requires the control of higher

degree derivatives at the boundaries of the curve/surface segments.

0C 1C 2C
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SPLINE CURVES

 Physically, spline is a long flexible strip of metal/plastic/wood used to produce the

curve through the known set of data points.

 The curved shape of the strip is obtained by pulling it into the transverse direction

using the lead weights or pegs. The lead weights or pegs hold the strip into the curved

position.

 The spline shape of the strip can be obtained by varying the number of lead weights

and its positions on the board by the drafters.

 The resulting curve appears smooth and fits the pegs (data points).

 The term spline curve was originally referred to a curve drawn in this manner by a

drafter. This spline curve is a natural cubic spline possessing continuity.2C
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SPLINE CURVES…

 

Pegs or 
Lead weights 

Narrow Metal/wood 
strip 

Physical Spline Shape
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SPLINE CURVES…

A piecewise      continuous cubic 

spline interpolation of (n+1) 

control points

 The curve fitting for the (n+1) control points require n curve segments.

 A parametric cubic spline has four coefficients.

 Thus, a total of 4n coefficients are required for the n curve segments.

 The main problem with the natural or drafting spline is the local control.

 If any one of the control point shifts, the entire curve is affected; therefore, does not

allow local control for the natural spline curves.

 The designer does not prefer the natural cubic spline because it is not possible to

restructure part of the curve without affecting the entire curve.

dctbtattx  23)(

 

Po 

P1 

P2 

P3 
P4 

Pn 

Pn+1 

curve 1 

curve 2 

curve 3 

curve n 

C1 and C2 
Continuity at P1 

(n + 1) control 
points 

2C



40MED, M. M. M. University of Technology, Gorakhpur (UP)

SPLINE CURVES…

In modern computer graphics, splines are preferred for the following applications:

 Design of various types of curves

 Design of surface shapes

 Digitization of drawings for the computer storage

 Specification of animation paths for the camera or eyes

 Design of aerodynamic efficient automobile bodies 

 Design of aerospace structures such as surface of aeroplanes, rockets, etc. 

 Design of hydrospace structures such as surface of ship hulls, submarines, etc.

 Design of curved shape products such as shoes, bottles, etc.  
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SPLINE CURVES

There are three methods for characterizing the spline curves:

 On the basis of set of imposed boundary conditions  

 On the basis of a matrix that characterizes the specific spline curve

 On the basis of blending (or basis) functions that characterizes the spline curve

These three spline specifications may be illustrated by assuming the cubic polynomial

parametric representation, for x, y and z coordinates along the spline path in parameter t as

  xxxx dtctbtatx  ...)( 23   

  yyyy dtctbtaty  ...)( 23   10  t   

  zzzz dtctbtatz  ...)( 23      

In matrix form, we have

   


























zyx

zyx

zyx

zyx

ddd

ccc

bbb

aaa

ttttztytx .1)()()( 23

Specifications of spline curves
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or CTtP .)( 

where C is the polynomial coefficient matrix. For each polynomial x (t), y (t) and z (t),  it is 

required to calculate four coefficients a, b, c, and d. 

 Therefore, four boundary conditions are required for the four unknown coefficients. 

 These constants are evaluated by imposing the sufficient boundary conditions at the 

junction of two curve segments 

The boundary conditions may be:

 Constraints (positions) at the endpoints

 Tangents (slopes) at the endpoints

 Continuity at the junction between the curve segments

SPLINE CURVES…

Specifications of spline curves…
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CLASSIFICATIONS OF SPLINE CURVES

Based upon the techniques for the evaluation of four coefficients a, b, c and d, there are

three major classifications of spline curves:

Hermite Curves

 Hermite curve is also known as cubic curve characterized by the two endpoints and

tangent vectors at the endpoints.

 Hermite curve passes (interpolate) through the endpoints of the curve segment and

possesses first order (slope) continuity.

Bézier Curves

 Two endpoints and two additional points outside the curve characterize the Bézier

curves.

 The additional points outside the curve control the endpoints tangent vectors.
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CLASSIFICATIONS OF SPLINE CURVES

Bézier Curves…

 Thus, Bézier curve interpolates the endpoints and approximates the additional points

outside the curve, i.e., they do not pass through the outside points.

 Bezier curves also possess first order (slope) continuity.

B-spline Curves

 B-spline curves are characterized by approximating the endpoints, allowing first and

second order derivatives ( and continuity) to be continuous at the endpoints of the

curve.

 Under certain conditions, the curve may interpolate the endpoints.

1C 2C
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Approximation (B-Spline curve)

Interpolation (Hermite curve) Approximation (Bézier curve)

CLASSIFICATIONS OF SPLINE CURVES
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A Hermite (named after the mathematician Charles Hermite) or Ferguson’s cubic curve is

an interpolating piecewise cubic polynomial having specified tangents at each end control

points.

Thus,

 Hermite curve is also known as cubic curve 

 Characterized by the two endpoints and tangent vectors at the endpoints. 

 Passes (interpolates) through the endpoints of the curve segment and

possesses first order (slope) continuity at the endpoints.

 Unlike the natural cubic splines, Hermite curve segments adjusted locally because 

shape of each curve segment is dependent only upon its endpoint constraints.      
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HERMITE CURVES
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HERMITE CURVES…

Blending Function Formulation

 Let       and      are the point position vectors, and are      the tangent vectors at the 
two endpoints of the cubic curve segment. 

 It is required to find out a relationship among the following matrices

• Hermite basis matrix, 

• Hermite geometry matrix, 

• Polynomial coefficient matrix,

oP 3P '
oP '

3P

HM

HG

xC

Where x component of Hermite geometry

matrix and polynomial coefficients

matrix may be expressed as
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)( xC
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HERMITE CURVES…

Blending Function Formulation…

The cubic polynomial equation for x (t) may be expressed as

xxxx dtctbtatx  ...)( 23

 

x
d

c

b

a

ttt

























 .123

xCTtx .)( 

For Hermite curve, the boundary conditions are

I. Position of endpoints

  xx CPx .1000)0( o at  t = 0, 

at  t = 1,   xx CPx .1111)1( 3 
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HERMITE CURVES…

Blending Function Formulation…

II. Tangent vector (first derivative) at the endpoints is given as

  xCtttx .0123)(' 2

Therefore,  

  xx CPx .0100)0(' '
o at t = 0,

at t = 1,   xx CPx .0123)1(' '
3 

In matrix form, above four eqns. may be combined as
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HERMITE CURVES…

Thus, the cubic polynomial equation for x ( t ) may be expressed as 

HxHx GMTCTtx ...)( 

Similarly,  HyH GMTty ..)( 

HzH GMTtz ..)( 

Thus, a point on the Hermite curve is defined as

  HH GMTtztytxtP ..)()()()( 

Now, the expansion of x ( t ) gives
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Blending Function Formulation…
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HERMITE CURVES…

)(.)(.)(.)(.)( 3
'

32
'

o13oo tHPtHPtHPtHPtx xxxx 

)(.)(.)(.)(.)( 3
'

3y2
'

oy13yooy tHPtHPtHPtHPty 

)(.)(.)(.)(.)( 3
'

3z2
'

oz13zooz tHPtHPtHPtHPtz 

or 

Similarly 

Thus, )(.)(.)(.)(.)( 3
'

32
'

o13oo tHPtHPtHPtHPtP 

The above equation represents blending function formulation of Hermite curve.  

The polynomial where k = 0, 1, 2, 3 are referred to as Hermite blending functions

because they blend (control) the boundary constraints (endpoints & and tangent

vectors at the endpoints & ), used to calculate the coordinate positions on the

Hermite curve.

)(tHk

oP 3P
'

oP '
3P

 Figure shows the effect of four Hermite blending functions         ,         ,           and                 

on the coordinate positions along the curve. 

)(o tH )(1 tH )(2 tH )(3 tH

Blending Function Formulation…
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HERMITE CURVES…

Generation of Hermite cubic curve 

(a)   Effect of blending functions

(b) Effect of positions and slopes at the  endpoints 

(c)    Hermite cubic curve

Blending Function Formulation…



 Figure shows the four functions         ,         ,           and weighted by the x

components of geometry vector       and      , and tangent vectors at the endpoints        

and      . 

 As parameter t increases, the other blending functions , and begins to

influence the curve.

0)(o tH At t = 0, the blending function that controls the endpoint, i.e.,               ; hence, it 

affects the shape of the curve.

)(1 tH )(2 tH )(3 tH

 It should be noted that the effect of           is negative.)(3 tH

xPo xP3

'
oxP

'
3xP

)(o tH )(1 tH )(2 tH )(3 tH

 It is obvious that the effect of endpoint tangent vectors have less influence than the end 

position vectors on the shape of Hermite curve segment.

 Figure shows the sum of these blending functions resulting into Hermite curve. 
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HERMITE CURVES…

Blending Function Formulation…



1.  Figure (a) shows the change in the shape of Hermite curve wherein the position of 

control point      has been shifted to the new location 
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HERMITE CURVES…

Shape Control 

There are three ways to modify/control the shape of Hermite (cubic) curves:

1. Change in the location of the control points

2. Change in the magnitudes of the tangent vectors, keeping the same directions

3. Change in the directions of the tangent vectors, keeping the same magnitudes

3P *
3P

Shape control of Hermite curve 

(a) change in location (position) of control point 

(b) change in magnitude of tangent vector (slope) 
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HERMITE CURVES…

Shape Control …

2. Figure (b) shows the shape control of Hermite curves when the magnitude of tangent

vectors is changed at point , keeping the same directions at the ends of the curve.

 It is observed that longer the tangent vectors, the greater their effect on the curve.

 From Figure (b), it has been concluded that the effect of endpoint tangent vectors have

less influence than the endpoints position vectors on the shape of Hermite curves, but

the effect can still be significant.

oP

3. Figure (c) shows series of Hermite curves depicting only the effect of change in

direction of the tangent vectors at the starting point on the shape of cubic curves.

All tangent vectors have the same magnitudes (lengths) either at or

oP

oP 3P
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HERMITE CURVES…

Shape Control …

o0  

o45  
o90  

o135  
o180  o270  

oP  3P  
oP  3P  

3P  

3P  
3P  3P  

oP  

oP  
oP  oP  

(c) Effect of tangent vector directions keeping constant magnitude 

at point         on the shape of family of Hermite curves3P
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HERMITE CURVES…

Effect of Continuities on the Shape …

 Figures show the effects of and continuities on the shape of Hermite curves.

 When a control (data) point (R) in a continuous composite Hermite curve is shifted

to the new location , a change in the shape of maximum of two curve segments on

either side of the shifted control point occurs.

 This results into change in the slope of curve at the junction point; consequently,

changes the shape of Hermite curve as shown in Figure (a).

 Alternatively, composite Hermite curves with continuity possess the local shape

control properties.

 However, altering a control point in continuous composite curves possess a global

shape control properties as shown in Figure (b).

 Thus, all curve segments are affected.

1C 2C

1C

*)(R

*)(R

2C

1C
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HERMITE CURVES…

Effect of Continuities on the Shape…

(a) 

Original curve 

P 

  

 

Modified curve 

Q R 

S 

R* 

x 

y y 

Original curve 

P 

  

 
Modified curve 

Q R 

S 

R* 

x 

(b) 

Effect of continuities on the shape of Hermite curves

(a) original and modified      continuous curve depicting local change in the curve shape

(b) original and modified      continuous curve depicting global change in the curve shape 

1C

2C



Limitations

 Hermite curves are suitable for some digitizing applications where it may not be very

difficult to specify the approximate slope of the curve.

 These curves are preferred in the design of automotive, shipbuilding and aircraft

industries, mechanical and structural components.

In computer graphics, the use of Hermite curves is restricted due to the following reasons:

 Quite cumbersome to select the magnitude / angle of the tangent vectors at the two

endpoints of the curve segment.

 Hermite curves are cubic in nature; therefore, possesses continuity. Hence, it is

difficult to control the curve due to the global shape control characteristics.

 The order of polynomial is always cubic (constant) irrespective of the number of

control points.

60

2C
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HERMITE CURVES…



Limitations…

 A curve will be more flexible if a greater number of control points could be added,

thus creating more curves which are all still of cubic order.

 If numbers of control points are large, the computation time required to invert the

tangent vector matrix can be excessive.

 The cubic curves frequently exhibit spurious oscillations. The oscillations occur

because each data point influences the cubic curve locally and third derivative is only

piecewise constant.
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HERMITE CURVES…
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HERMITE CURVES…

The four control points in two-dimensional plane are )0 ,0(0P , )1 ,1(1P , )1 ,2(2 P  and )0 ,3(3P . The 

tangent vectors at the endpoints are )1 ,1('0P  and )1 ,1('3P . Determine the intermediate points on the 

Hermite curve at ., 3
2

3
1t    

Example 

Solution: A Hermite curve, in blending function formulation, is expressed as   

  )(.)(.)(.)(.)( 3
'

32
'

o13oo tHPtHPtHPtHPtP       

where Hermite blending functions are  

 132)( 23
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HERMITE CURVES…
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BÉZIER CURVES
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 Hermite curves are based on the interpolation techniques, i.e., curve passes through

the existing data points.

 Bézier curves (named after a French Engineer Pierre Etienne Bézier for use in the

design of Renault automobile bodies) are another alternative to generate curves based

on the approximation techniques, produces the curves that do not pass through the

given data (control) points.

 The outside data points control the shape of Bézier curves.

 In Bézier curve, we do not directly decide the magnitudes and angles of the tangent

vectors; rather, we define the tangent vectors indirectly, by defining two additional

control points outside the curve.

 In fact, two outside points control the shape of Bézier curves.
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Following are the major differences between the Bézier curve and Hermite curve:

 Its defining points control the shape of Bézier curve. This allows a much better feel for

the relationship between the input (control points) and output (curve shape)

parameters.

 Hermite curve is always cubic in nature. The degrees of polynomial are not related to

the number of control points.

 The degrees of polynomial for the Bézier curve are variable and related to the number

of control points defining the curve. For example, nth degree curve requires (n + 1)

control points.

 Higher degree Bézier curves permits higher order continuity.

 For Hermite curve, first derivatives are used for the curve development.

BÉZIER CURVES…



67MED, M. M. M. University of Technology, Gorakhpur (UP)

 Hermite curve possesses a maximum of second order continuity at the junction point of

composite Hermite curves.

 Bézier curve is smoother than Hermite curve because it has higher order derivatives.

 Bézier curves are preferred for the ab initio design, i.e., design problems depending

upon both aesthetic and functional requirements. For example, design of car bodies,

aircraft fuselages, glassware, etc.

 Hermite curves are based on curve fitting techniques; therefore, not effective for the ab

initio design problems.

BÉZIER CURVES…
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Nomenclature

Bézier curve is obtained by defining a characteristic polygon. Figure shows the

nomenclature of a cubic (four control points) Bézier curve. The following observations

can be made for the Bézier curves:

1. The curve is defined in terms of positions of the control points, the vertices of Bézier

characteristics polygon.

2. The characteristics polygon uniquely defines the shape of the Bézier curve.

3. The Bézier curve interpolates only the endpoints and approximates the remaining data

points.

4. The number of control points defining the curve determines the shape of Bézier

curves.

BÉZIER CURVES…
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Nomenclature…

5. The Bézier curve is tangent to the first and last polygon segment of the characteristic

polygon.

6. The Bézier curve follows the shape of characteristic polygon.

7. The arrow is directed from the parameter value t = 0 to t = 1. The direction of arrow

shows the parametric direction of Bézier curve.

 

0t  
oP  

3P  

1P  
2P  

1t  

t  

characteristic 
polygon 

control point 
(vertex) 

Cubic Bézier curve
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Effects of Position of Control Point
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Effect of position of control points on the shape of cubic Bézier curves 
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Blending Functions Formulation
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The blending function formulation for defining the Bézier curve is most convenient. This

requires the determination of Bézier basis matrix that characterizes the Bézier curve.BM

 Let us consider a plot for a cubic Bézier curve in x-direction only. The Bézier curve is

like Hermite curve but the method of evaluation of cubic polynomial coefficients

,….. etc. is different.

 In Bézier curves, the two additional

control points and outside the

curve, control the tangents at the

endpoints.

,xa ,xb ,xc xd

xP1( )2xP

xP0  

xP1  

xP2  

xP3  

)(tx  

t  0
  

3
1

  
3

2

  

1  

New control point 

(controls tangent at xP0 )  

New control point 

(controls tangent at xP3 )  

The x(t) component of a cubic 
Bézier curve 
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Let defines a relation between Hermite geometry matrix and Bézier geometry

matrix as

The tangent vectors and at the endpoints of Bézier curve, in terms of the

position of control points, is expressed as

at t = 0,

at t = 1,

 Thus, four control points (two endpoints and , and two additional points outside

the curve and , are used to decide the shape of Bézier curve.
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as
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when

And 

The polynomials, weights on each control points in the above equation, are termed

Bernstein polynomial or blending functions. The Bernstein polynomial is defined as

ini
i

n
in ttCtB  )1(  )(, in 

0 when in 

where Bernstein polynomial              is known as ith-nth order Bernstein basis function )(, tB in

)!(!

!

ini

n
Ci

n




nwhere degree of the defining Bernstein basis function, i.e., degree of polynomial of

curve segment, one less than the number of control points, in the defining

Bézier characteristic polygon

 1n numbers of control points (vertices) 

i particular control point (vertex) in the order (sequence)

BÉZIER CURVES…

Blending Functions Formulation…



where P (t) is any point on the Bézier curve and is a control point. The Bernstein

polynomial works as blending or basis function for the Bézier curve. The values of

Bernstein polynomial for i = 0 to i = n may be obtained as

i = 0 and t = 0,

and t = 0,
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For example, for cubic Bézier curve, i.e., n = 3 ; the number of control points (vertices)

are n + 1, i.e., 4. Thus, for n + 1 control points, the parametric Bézier curve of degree n

is defined as
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i = n and t = 1,

and t = 1,

where and
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Thus, above equation determines the parametric Bézier curve using Bernstein polynomial

as blending function.

For quadratic polynomial (n = 2), the Bézier curve is expressed as
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For cubic polynomial (n = 3), the Bézier curve is expressed as

or 

)()()()( )(.)( 3,332,321,310,3o
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For quartic polynomial (n = 4), the Bézier curve is expressed as
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Therefore, the position of a point on the Bézier curve, defined by P (t), is just the

weighted average of control points defining the curve.

Mathematically, for any value of parameter t , the summation of Bernstein

basis functions is precisely equal to unity, i.e.
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Figure  a, b & c, respectively, show the plots for the Bézier/Bernstein blending functions 

for three, four and five control points. 

10  tFor                      the following observations can be made from eqns. 

1. The sum of Bernstein polynomials is unity everywhere

2. Every polynomial is non-negative everywhere

)10(  t
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(a) Bézier/Bernstein blending functions for three control points 
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(b) Bézier/Bernstein blending functions for four control points 

)(0,3 tB

)(1,3 tB )(2,3 tB

)(3,3 tB
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(c) Bézier/Bernstein blending functions for five control points 

)(0,4 tB

)(1,4 tB )(2,4 tB )(3,4 tB

)(4,4 tB
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 In curve fitting techniques (Hermite curves), the designer does not have proper

control over the shapes of the curve because they are uniquely defined within a

specified interval.

 It is difficult to set up the magnitudes and directions of tangent vector at the

endpoints.

 The Bézier curves are interpolating (passes through the endpoints) and approximating

(approximates outside control points) polynomials.

 In Bézier curves, the designer has sufficient control over the shape of the curve. That

is why these curves are preferred for the aesthetic design of a component where

styling is required.

 The designer can set up the desired style/shape simply by controlling positions of the

control points outside the Bézier curve.

 The properties of Bézier curves depend upon the properties of Bernstein polynomials.

BÉZIER CURVES…
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PROPERTIES OF BÉZIER CURVES…

The properties of Bézier curve are 

 The curve interpolates the first and last control points, i.e., it passes through      and  

control points corresponding to the parameter t = 0 and t = 1, respectively.

 Bézier curve is tangent to the first and last segments of the characteristic polygon;

therefore, it maintains tangent vectors continuity at the endpoints when joined with

other segment of the Bézier curve.

 The Bernstein blending functions are real.

 The curve generally follows the shape of the characteristic polygon. The curve is

tangent to the first and last segments of the characteristic polygon.

 The number of control points specified within the curve segment defines the degree of

a Bézier curve. For (n + 1) data points within the specified curve segment, the degree

of polynomial defining the Bézier curve will be n.

oP nP

)( 1C
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 The shape (hence, degree) of a Bézier curve can be modified by adding or deleting the

control points. This is the most useful property usually desired by the designer.

 Compared to Hermite curves, the blending functions for the Bézier curve are all

positive and their sum is always equal to unity.

 Due to this property, the curve lies within the convex of the defining polygon, i.e., it

remains within the convex hull.

 In 2D, the convex hull is a closed polygon.

 It can be considered a rubber band stretched around the positions of all the control

points so that each control point is either on the perimeter of the hull or inside it.

 In 3D, the convex hull is a balloon (polyhedron) touching all the control points in

space. The region inside the balloon is convex hull.

.

PROPERTIES OF BÉZIER CURVES…
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 The volume of the region changes with the positions of control points.

 Size of the convex hull provides an upper bound on the size of Bézier curve itself, i.e.,

the curve lies within the convex hull.

 Convex hulls provide a measure for the deviation of two-dimensional curves or three-

dimensional surfaces from the region bounded by the control points.

 The convex hull ensures the smoothness of the curves/surfaces following the control

points without any deviation or oscillations.

 Figure shows the convex hulls shown by the closed polygons.

0P  

1P  

2P  

3P  

0P  

1P  

2P  

3P  

0P  

1P  

2P  

3P  

Convex hull 
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.

 The Bézier curve exhibits the variation diminishing property because of the convex

hull property.

 This means that the curve never oscillates widely away from the defining control

points of the characteristic polygon because the curve is guaranteed to lie within

the convex hull.

 Alternatively, the curve does not oscillate about any straight line (generally the

sides of the characteristic polygon) more often than the sides of its defining

polygon.

 The Bézier curve is invariant under an affine transformation.

 An affine transformation is a combination of linear transformations, e.g., rotation

followed by the translation.

 For an affine transformation, the last row in a general 4x4 transformation matrix is

[0 0 0 1].

PROPERTIES OF BÉZIER CURVES…
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 Any affine transformation can be applied to the curve, by applying it to the

defining polygon vertices, i.e., the curve is transformed by transforming vertices of

the characteristic polygon.

PROPERTIES OF BÉZIER CURVES…

 Parametric transformation of Bézier curve is possible. If transformation parameter is

changed from to , then parameter t should be replaced by10  t bta  )/()( abat 

 The Bézier curve is symmetric with respect to the parameter t and (1 - t). Thus, the

shape of the curve remains same if sequence of control points, defining the curve, is

reversed.

 A closed Bézier curve can be generated by making first and last control points to

coincide.

 For any degree of Bézier curve, the sum of Bernstein blending functions associated

with the control points is always equal to unity, for any value of parameter t (i.e.,

. This property checks the numerical computations during the software

development.

10  t

).
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PROPERTIES OF BÉZIER CURVES…

2P *
2P

 Bézier curves do not provide local control, i.e., movement of any control point changes

the entire shape of the curve. This is because of the property of Bernstein functions.

 The shape of Bézier curve modifies by changing the position of one or more vertices of

the characteristic polygon. Figure (a) depicts change in the shape of Bézier curve when

vertex is pulled to the new location .

.

2kP  

Multiple coincident 
control point 

1P  

oP  
3P  
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PROPERTIES OF BÉZIER CURVES…

 The shape of Bézier curve can be modified by specifying the multiple coincident

control points at a vertex, keeping the characteristic polygon fixed.

 Figure (b) depicts change in the shape of Bézier curve when the vertex is assigned

a multiplicity of k. Higher the multiplicity, more the curve pulled towards the control

point .

2P

2P

Composite Bézier curves 

 Many CAD applications require the composite Bézier curves in which various curve

segments are joined to generate a longer curve.

 They require maintaining the continuity of various orders between the curve segments.

 Figure shows the two curve segments defined by the two sets of control points, i.e.

and joined at .

 Four control points result into a cubic Bézier curve whereas five control points define

a Bézier curve comprising of fourth degree polynomial.

,oP

,1P ,2P 3P ,3P ,4P ,5P ,6P 7P 3P
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Zero Order Continuity or   Continuity  0C First Order Continuity or Continuity1C

Common point and its two adjacent points must be
collinear

For Continuity, the common point and its four adjacent points must be collinear2C

COMPOSITE BÉZIER CURVES 

Position continuity exists when one of the
end control point of the two curve segments
is common

)( oC

)( 3P
The tangent continuity at the common (junction)
point exists if end slope of first curve segment is
equal to the starting slope of the second curve
segment.

)( 1C

)( 3P



The tangent vectors at the endpoints of degree Bézier curve, defined by the (n + 1)
control points, is given as
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COMPOSITE BÉZIER CURVES… 

 Alternatively, when tangent vectors for the two curve segments at the common

(junction) point relates each other by a constant then continuity exists for the

composite Bézier curves.

 In other words, continuity at the common point requires that the last segment of the

first characteristic polygon and first segment of the second characteristic polygon are

collinear (forms a straight line). Thus, control points are collinear.

1C

1C

,2P ,3P
4P

thn

)()0( o1
' PPnP   at 0t  

)()1( 1
'

 nn PPnP  at 1t  
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COMPOSITE BÉZIER CURVES… 

For continuity at the common point, the collinearity requires that1C


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

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Here, for the first curve segment )(3)1( 23
' PPP   

And, for the second curve segment )(4)0( 34
' PPP   

 Thus,   )(3 23 PP  )(4 34 PP      

or  )( 343
4

23 PPPP   

Therefore, tangent vectors at the common control point         for the two Bézier curves 

segments, defined by                         and                                control points, are related to 

each other by a constant equal to 4/3.  

)( 3P

321o ,,, PPPP 76543 ,,,, PPPPP
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BÉZIER CURVES… 

Example: Draw a Bézier curve defined by the four control points )2 ,1(0P  , )4 ,3(1P  , )6- ,6(2P  and

)7 ,9(3P .  

Solution: The parametric form of Bézier curve, defined by the four control points, is given as 

  )()()()( )(.)( 3,332,321,310,3o

3

0

, tBPtBPtBPtBPtBPtP
i

ini 


 

or 3
3

2
2

2
1

3
o )1(3)1(3)1()( tPttPttPtPtP        

Therefore, any point )(tP  on Bézier curve is given by   
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On simplification, )(tx  and )(ty  coordinates are given as 

 3223 9)1(18)1(9)1()( tttttttx   
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BÉZIER CURVES… 

For step size t = 0.1, the corresponding values of x (t) and y (t) coordinates are tabulated in

Table. Figure shows the plot for Bézier curve segment.

t )(tx  )(ty  t )(tx  )(ty  

0.0 1.000 2.000 0.6 5.464 0.200 
.1 1.629 2.275 0.7 6.327 0.565 

0.2 2.312 2.040 0.8 7.208 1.680 
0.3 3.043 1.505 0.9 8.101 3.755 
0.4 3.816 0.880 1.0 9.000 7.000 
0.5 4.625 0.375 - - - 

 

Table Calculation of )(tx and )(ty  coordinates for step size 1.0t   
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BÉZIER CURVES… 
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DRAWBACKS OF COMPOSITE

BÉZIER CURVES… 

A designer faces the following problems while using the composite Bézier curve segments:

 With Bézier curves, only control (data) points are specified. The curve segments have

no local control (local change affects the entire shape of the curve) due to the properties

of Bernstein (blending) functions. Therefore, the designer cannot selectively change

parts of the curve.

 The Bézier curve does not interpolate the control points (except the endpoints), which

may be inconvenient to the designer. Interpolation is useful in design or engineering

results such as displaying the stress distribution in a component obtained from finite

element analysis.

 Composite Bézier curves impose constraints on the location of control points. For

example, slope continuity at the common point requires that the common point and

its two adjacent control points on either side of the curve segment must be collinear.

)( 1C
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DRAWBACKS OF COMPOSITE

BÉZIER CURVES… 

 continuity (slope derivative) at the common point of composite Bézier curves

further extends the constraint on the location of control points.

 It requires four control points, in addition to the common point, to lie on a plane;

therefore, restrict the freedom of choosing the data points for the composite Bézier

curves.

 Thus, it is difficult to achieve continuity for the composite Bézier curves, with lower

degree polynomials.

 Keeping this in view, the designer prefers Bézier curve segments with an order 6 or 8

(hence, degree 5 or 7, respectively) for most of the CAD applications.

2C

2C



 The number of specified polygon vertices fixes the order (hence, degree) of the resulting

polynomial defining the Bézier curve.

 For example, a cubic curve by the four vertices and three spans.

 A fifth degree Bézier curve requires six vertices in the characteristic polygon.

 Thus, degrees of polynomial have been liked with the number of vertices.

 Therefore, to reduce degrees of the curve (also reduces the computation time) is to

reduce the number of vertices in the polygon.

 Alternatively, the degree of curve can only be increased, by increasing the number of

control points.

100MED, M. M. M. University of Technology, Gorakhpur (UP)

DRAWBACKS OF COMPOSITE

BÉZIER CURVES… 
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ESSENTIAL REQUIREMENTS FOR 

SYNTHETIC CURVES

1. Local modification over any segment of the curve

The designer should be able to change the positions of the control points in an intuitive

way without changing the overall shape (global change) of the entire curve segment.

2. Delink the number of control points and the degree of polynomial

The designer should be able to use lower degree polynomial segments still maintaining

the shape of curve using large number of control points.

In computer graphics, the designer can use a curve in a more comfortable way if the

following facilities are available: 
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ESSENTIAL REQUIREMENTS FOR 

SYNTHETIC CURVES

3. Parametric piecewise curve fitting with continuity

This is desirable for a curve to be inherently continuous throughout the length.

4. Finer shape control of curve by the knots insertions

Knots provide additional tool for designing and local editing of the curve shape.

2C

2C
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B-SPLINE CURVES

Those polynomials (or spline blending functions) that gives minimum span 

or maximum possible control over the curve are termed B-Splines

Characteristics

 B-spline curves are characterized by approximating the endpoints, allowing first and      

second order derivatives to be continuous at the endpoints of the curve. 

 Under certain conditions, the curve may interpolate the endpoints.  

 Piecewise joining of polynomials gives splines. 

 The letter ‘B’ stands for the basis, since the splines are represented as

weighted sums of the polynomial basis (blending) functions, in contrast to the

natural splines.  
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 )(.)(
0





n

k

kk tRPtP 10  t

A point defined by the hypothetical blending functions may be expressed as

Consider blending functions designated by blending function like Bernstein

polynomial in a Bézier curve. It is some hypothetical blending function having the

variation within the range

)(tRk

10  t

B-SPLINE CURVES

For n + 1 = 6 vertices or n = 5 degrees of polynomial of blending functions, the points on

the hypothetical curve is given as

 tRPtRPtRPtRPtRPRPtRPtP
k

kk )()()()()()(.)( 5544332211oo

5

0

 

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Figure show the variations of hypothetical blending functions and the corresponding

curve. It can be observed that

)(tRk

B-SPLINE CURVES…

)()( oo tRPtP 

)()( 55 tRPtP 

at t = 0

at t = 1
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B-SPLINE CURVES…

In contrast to Bernstein blending functions (nonzero for )10  t , the hypothetical blending functions, 

),(tRi  are non-zero only for small intervals. we observed that 

  )(o tR  is non-zero only for the span from 25.00t , 

  )(1 tR  is non-zero only for the span from 50.00t , 

  )(2 tR  is non-zero only for the span from 75.00t , 

  )(3 tR  is non-zero only for the span from 0.125.0 t , 

  )(4 tR  is non-zero only for the span from 0.150.0 t , and 

  )(5 tR  is non-zero only for the span from 0.175.0 t . 

 Hence, if range of the blending functions is less than t = 0 – 1, we have better control

over the shape of the curve.

 Alternatively, the curve behave like non-global, i.e., portion of the curve can be

modified without changing the overall shape of the entire curve.

,
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B-SPLINE CURVES…

,

Polynomials are preferred as a blending function due to following reasons:

 Easier to control

 Easier to check for the continuity
(easy differentiation compared to other types of functions)

 B-spline curves have ability to interpolate or approximate the given set of control

points.

 In many engineering applications, interpolation is useful, e.g., displacements or

stress distribution in a component under the load.

 Interpolation is also useful if designer has measured the data points, and a curve

passing through these data points is generated.

 Similarly, approximation is used for drawing the free-form curves.
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B-SPLINE CURVES…

,

Advantages over the Bézier curves

 The degree of B-spline polynomial can be set independently of number of control
points.

 The B-spline curves delink the degrees of resulting curves from the number of

control points.

 For example, four control points always result into a cubic Bézier curve; but four

control points in B-spline curve can generate a linear, quadratic or cubic curves.

 This flexibility in B-spline curves is obtained by choosing the blending functions

with additional degree of freedom, which is not available with Bernstein blending

functions
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B-SPLINE CURVES…

,

Advantages over the Bézier curves…

B-spline functions allow local control over the shape of the curve.

 The polynomial coefficient depends on just a few control points, leading to local

control over the shape of the curve.

 Bernstein blending functions is a special case of B-spline blending functions.

 B-spline curves have continuity, like natural splines, but do not interpolate their

control points.

2C
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1. Non- Rational B-Splines

a) Periodic Uniform Knot Vector

b) Open Uniform Knot Vector

c) Non -Uniform Knot Vector

2. Rational B-Splines

Projection of non-rational defined in 4D homogeneous coordinate space (often called 

weights on blending functions) into 3D physical space

a) Periodic Uniform Knot Vector

b) Open Uniform Knot Vector

c) Non-Uniform Knot Vector

MED, M. M. M. University of Technology, Gorakhpur (UP)

TYPES OF B-SPLINE CURVES…
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B-Spline Blending Functions
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Let, the quadratic (m = 2 ) spline function is defined as

Knots are provided at 3 ,2 ,1 ,0t

)1()1( ba  )1(')1(' ba  )1('')1('' ba 

)2()2( cb  )2(')2(' cb  )2('')2('' cb 

and

and 

• mth degree spline is a piecewise polynomial of 

mth degree, 

• which has its first  (m-1)  derivatives continuous. 
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NON-RATIONAL B-SPLINE CURVES…
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)(1 tg )(2 tg )(3 tg )(4 tg

Shifted quadratic               spline 

blending functions

)2( m
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NON-RATIONAL B-SPLINE CURVES…

 The spline functions are used as blending functions in B-splines.

 The shifted splines can be used as blending functions, i.e., other spline blending

functions can be written as

)()( itgtgi 

Each blending functions are simply translate of the others. The number of spline

blending functions depends upon the number of control points. For example, the

quadratic blending functions corresponding to the four control points are expressed as
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NON-RATIONAL B-SPLINE CURVES…

for 1i   )(tg  or )(1 tg  are same 

for 2i  )1()(2  tgtg , )(2 tg  is same as )(tg  or )(1 tg  but shifted at 1t  

for 3i  )2()(3  tgtg , )(3 tg  is same as )(tg  or )(1 tg  but shifted at 2t  

for 4i  )3()(4  tgtg , )(4 tg  is same as )(tg  or )(1 tg  but shifted at  

 Quadratic splines can be used as blending functions for the generation of 2D B-splines.

 To generate the curve, at least four control points are required, and each blending

function will weight one control point.

 The B-spline curve can be expressed as

 )()(
1

1







n

i

ii tgPtP maxmin ttt 

where i represents a knot or control point. 
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NON-RATIONAL B-SPLINE CURVES…

For quadratic spline blending functions (m = 2) with four control points (knots), i.e.,

n + 1 = 4 or n = 3, the B-spline function is expressed as

, )()(
1

1







n

i

ii tgPtP )()()()( 44332211 tgPtgPtgPtgP  6..,30 eint 

From Figure, the different points )(tP  on B-spline curve may be calculated as 

at 0t ,  0)()()()( 4321  tgtgtgtg ;   0)( tP  is the first point (origin itself) 

at 1t ,   
2
1

1 )( tg  and 0)()()( 432  tgtgtg ;  2
1)( PtP    

at 2t , 
2
1

21 )()(  tgtg  and 0)()( 43  tgtg ;  2
21)( PPtP    

at 3t , 
2
1

32 )()(  tgtg  and 0)()( 41  tgtg ;  
2

32)( PPtP    

at 4t , 
2
1

43 )()(  tgtg  and 0)()( 21  tgtg ;  2
43)( PPtP    

at 5t , 
2
1

4 )( tg  and 0)()()( 321  tgtgtg ;  2
4)( PtP    

at 6t , 0)()()()( 4321  tgtgtgtg ;   0)( tP  is the last point (origin itself) 
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B-spline curve with quadratic shifted splines as blending functions
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NON-RATIONAL B-SPLINE CURVES…

Figure shows B-spline curve generated by joining the above points. In general, parameter t

ranges from t = 0 to t = n + 3, i.e., 6
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NON-RATIONAL B-SPLINE CURVES…

 The drawback of B-spline curve is that it is not passing through the endpoints, i.e.,

endpoints and , as obtained in Bézier curve.

 In Bézier curve, the designer can fix the two extreme values of parameter t for the

endpoints, and curve passes through the endpoints; therefore, easy to control the curve

shape.

 However, in B-spline curves, the first endpoint occurs at the middle point of line

joining the first endpoint with the origin.

 Similarly, the last endpoint occurs at the middle point of line joining the last endpoint

with the origin.

 To make the curve to pass through the endpoints (say, first endpoint ), the designer

can select the first endpoint so that falls at the endpoint . This is obtained

by using the multiplicity of control points.

1P 4P

1P

1P
2

21 PP 
1P

..
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NON-RATIONAL B-SPLINE CURVES…

 Moreover, the origin can be avoided if parameter t ranges from , instead of

 For example, for quadratic spline blending functions with four control points, i.e.,

n + 1 = 4 or n = 3. (order of B-spline function), parameter range is considered.

12  nt

10  nt

)2( m

42  t

 )(.)(
1

1

,





n

i

mii tNPtP maxmin ttt  12  nm

The general expression for the calculation of coordinate positions on a B-spline

curve may be expressed as

)(tP

Position vectors (coordinates) of (n + 1) vertices defining the polygon control
points

iP

)(, tN mi Normalized B-spline blending (basis) functions

B-spline Blending Function Formulation
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B-SPLINE BLENDING FUNCTION FORMULATION

B-spline curve is defined as a polynomial spline function of order        (hence, degree           ) 

because it satisfies the following two conditions: 

• B-spline function is a polynomial of degree on each interval

• B-spline function and its derivatives of order 1, 2, 3 … are all continuous

over the entire curve

m

)1( m)(tP 1 ii xtx

)2( m)( tP

1m

m

 1m

Order of B-spline blending functions

Degree of polynomials of B-spline blending functions
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B-SPLINE BLENDING FUNCTION FORMULATION

I. Fourth order )4( m  B-spline curve is a piecewise cubic )1( m  spline blending function (e.g., 

dctbtat  23 ) and curve possesses second order )2( m , i.e. 2C  continuity. 

II. Third order )3( m  B-spline curve is a piecewise quadratic )1( m  spline blending function (e.g., 

cbtat 2 ) and curve possesses first order )2( m , i.e. 1C  continuity. 

III. Second order )2( m  B-spline curve is a piecewise linear )1( m  spline blending function (e.g., 

bat ) and curve possesses zero order )2( m , i.e. 0C  continuity. 

IV. First order )1( m  B-spline curve is a piecewise zero degree )1( m  spline blending function; 

hence, the curve is just a point plot of the control point. 

Thus,
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The blending function for B-spline curve is defined by the recursive formula

)(
)(

)(
)(

)( 1,1

1

1,

1

, tN
xx

tx
tN

xx

xt
tN mi

imi

mi
mi

imi

i
mi 






 














0

1
)(1, tN i otherwise

 if 1 ii xtx

B-spline blending function of order one by Cox-deBoor as)1( m
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B-SPLINE BLENDING FUNCTION FORMULATION

The Cox-deBoor formula is used to calculate B-spline blending functions in a recursive

relation, a blending function of a given order m depends on the lower order blending

functions down to order 1

For given blending function , Figure shows that this dependency on lower order

blending functions forms a triangular pattern. Each higher order B-spline blending

function, finally depends on the blending functions of order one.

miN ,



122

Dependency Diagram for Blending Function
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1,iN 1,1iN 1,2iN 1,3iN 1,1miN

2, miN 2,1  miN 2,2  miN

1, miN 1,1  miN

miN ,

thm )2( 
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B-SPLINE BLENDING FUNCTION FORMULATION



COMPUTER AIDED DESIGN 
(BME-42)

Unit-III: Space Curves

(7 Lectures)

• Properties for curve design, Parametric 

continuity, 

• Parametric representation of synthetic 

curves, Spline curves and specifications, 

Parametric representation of synthetic 

curves 

• Hermite curves-Blending functions 

formulation, shape control, properties, 

• Bezier curves-Blending functions 

formulation, properties, Composite 

Bezier curves, 

• Non-rational B-spline curves- Blending 

functions formulation, knot vector, B-

spline blending functions, properties 

Lecture 25

Topics Covered

Prepared By

Prof. S. K. SRIVASTAVA

MED, MMMUT, Gorakhpur (UP)
sksme@mmmut.ac.in

Non-Rational B-Spline Curves

Knot Vector

Types of Knot Vector

Periodic Uniform Knot Vector

Open Uniform Knot Vector

Non-uniform Knot Vector



Where           and          depends on the number of control points. 
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1 ii xx

 Local control of B-spline curve is obtained by defining the spline blending functions

over the m subintervals of total range of parameter.

 The selected set of subinterval endpoints for the range of parameter t is referred to

as knot vector.

 The knot vector is selected such that

 Knot vectors are real numbers and monotonically increases in the range of parameter t

. 

The general knot vector is defined as

Knot Vector

NON-RATIONAL B-SPLINE CURVES…

ix

 ......][ 1321  ii xxxxxX

minx maxx
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The general knot vector is defined as

]......43210[]......[][ 54321  xxxxxX

NON-RATIONAL B-SPLINE CURVES…

Knot Vector…

 The choice of knot vector has a significant influence on the spline blending

functions  )(, tN mi

In the following, spline blending functions of various orders have been determined:

Spline blending functions of order 1

m = 1 means one subinterval for each blending function. 

Degree of spline blending function, m – 1 = 0

Hence, from blending function eqn., we have                   for            1)(1, tN i 1 ii xtx
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. NON-RATIONAL B-SPLINE CURVES…

Therefore, successive blending functions of order 1 are given by  

1......)()()( 1,31,21,1  tNtNtN  (constant)  for 1 ii xtx  

Figure shows three constant blending functions.

Spline blending functions for m = 1 and  ]...3210[][ X

Knot Vector…
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. NON-RATIONAL B-SPLINE CURVES…

Spline blending functions of order 2

2m  means two subintervals for each blending function. 

Degree of spline blending function, 11 m  (linear) 

Hence, from eqn. we have

)(
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)(
)(

)( 1,1
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1

, tN
xx
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xt
tN mi
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







For 1i , 2m , we have 

   )(
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)( 1,2
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3
1,1

12

1
2,1 tN

xx

tx
tN

xx

xt
tN





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
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12
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01

)0(
1,21,1 tN

t
tN

t











or   )().2()(.)( 1,21,12,1 tNttNttN      (triangular shape) 

Similarly, )().3()().1()( 1,31,22,2 tNttNttN         (triangular shape shifted at 1t ) 

Knot Vector…
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NON-RATIONAL B-SPLINE CURVES…

Figure shows the shape of two triangular shape blending functions.

Spline blending functions for m = 2 and  ]...3210[][ X

Knot Vector…
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NON-RATIONAL B-SPLINE CURVES…

Spline blending functions of order 3

3m  means three subintervals for each blending function. 

Degree of spline blending function, 21m  (quadratic) 

For 1i , 3m , eqn. gives 

   )(
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)(
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3,1 tN

xx

tx
tN

xx

xt
tN









                 )(

2

3
)(

2
2,22,1 tN

t
tN

t 
  

Figure shows the shape of quadratic blending function.

Spline blending functions for 

m = 3 and  ]...3210[][ X

Knot Vector…
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1. Periodic Uniform Knot Vector 

]....6543210[][ X

]....3.02.01.001.02.03.0[ 

][][ 4
4

4
3

4
2

4
1

4
0X

]175.05.025.00[

TYPES OF KNOT VECTOR

In general, uniform knot vector starts at 0 to some maximum value with an equal

increment of 1, e.g.

]43210[][ X

In normalized form, we have

For given order of spline blending function )(m , uniform knot vector results into periodic uniform 

blending functions, i.e., each blending function is a translate of the other.  
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Mathematically, it is expressed as

)1()1()( ,1,1,   tNtNtN mimimi

For example, for 3m  (number of subintervals) and four control points 41( n or )3n , the number 

of knot values are 71331 mn ; hence, seven knot vectors are expressed as 

]6543210[][][ 7654321  xxxxxxxX

Periodic uniform spline blending functions for m = 1, n + 1 = 4, ],6543210[][ X

TYPES OF KNOT VECTOR…

1. Periodic Uniform Knot Vector… 
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Periodic uniform spline blending functions for m = 2, n + 1 = 4, 

],6543210[][ X

1. Periodic Uniform Knot Vector… 

TYPES OF KNOT VECTOR…
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Periodic uniform spline blending functions for m = 3, n + 1 = 4, 

],6543210[][ X

TYPES OF KNOT VECTOR…

1. Periodic Uniform Knot Vector… 
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. 

2. Open Uniform Knot Vector

 An open uniform knot vector has multiplicity of knots. 

 The ends knot values in open uniform knot vector is equal to the order m of the spline 

blending (basis) function and internal knot values are equidistant for the entire range of 

parameter t.

 In general, open uniform knot vector is defined as

 0ix   for mi 1  

 mixi   for 11  nim  

 2 mnxi  for 12  mnin  

Table shows the calculations of general open uniform knot vector corresponding to the 

different order of spline blending functions.  

TYPES OF KNOT VECTOR…
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Number of 
vertices 

)1( n  

Order of spline 
functions 

)(m  

0ix  

mi 1  

mixi   

11  nim  

2 mnxi  

12  mnin  

5 2 01 x  

02 x  

1233  mix  

2244  mix  

3255  mix  

422426  mnx

422427  mnx

5 3 01 x  

02 x  

03 x  

1344  mix  

2355  mix  

 

323426  mnx  

323427  mnx  

323428  mnx  

5 4 01 x  

02 x  

03 x  

04 x  

1455  mix  

 

224426  mnx

224427  mnx

224428  mnx  

224429  mnx

 

Table Determination of open uniform knot vector for different order of spline blending functions

TYPES OF KNOT VECTOR…

2. Open Uniform Knot Vector…
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For integer increments, the open uniform knot vectors are calculated as  

 2m  (multiplicity of two-knot values),  ]4432100[][ X  

 3m  (multiplicity of three-knot values),  ]33321000[][ X  

 4m  (multiplicity of four-knot values),  ]222210000[][ X  

In normalized form, we have

2m ,  ]1100[][
4
3

2
1

4
1X  

3m ,  ]111000[][
3
2

3
1X  

4m ,  ]11110000[][
2
1X  

TYPES OF KNOT VECTOR…

2. Open Uniform Knot Vector…
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When number of defining polygon vertices is equal to the order of spline blending 

functions, and an open uniform knot vector is used, the spline blending functions 

are reduced to Bernstein polynomials. Alternatively, B-spline curve converts into a 

Bézier curve.  

Mathematically, when mn 1 , the open uniform knot vector results a Bézier curve. For example, for 

41  mn , the knot vector values are calculated as 

0ix  for mi 1 , i.e., 04321  xxxx  for 41  i  

2 mnxi  for 12  mnin , i.e., 124328765  mnxxxx  

Therefore, knot vector is just m  zeros followed by m  ones, thus  

]11110000[][][ 87654321  xxxxxxxxX

TYPES OF KNOT VECTOR…

2. Open Uniform Knot Vector…
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This results into a cubic Bézier/B-spline curve. Fig. shows the corresponding Bézier/B-

spline blending functions for four control points, n + 1 = m = 4.

04 x 18 x

TYPES OF KNOT VECTOR…

2. Open Uniform Knot Vector…



54321 ,,,, PPPPP

3m 51 n 4n

20  mnt 30  t

1 mn

]33321000[][][ 87654321  xxxxxxxxX

3,553,44

5

1

3,333,223,113,

1

1

, )(. )(.)( NPNPNPNPNPtNPtNPtP
i

ii

n

i

mii  






Five control points

Multiplicity at endpoints : Control points : or

Parameter range : , i.e.

Number of knot values =

Knot vector:

The B-spline curve

, i.e. 4+3+1 = 8

B-Spline curve of third order
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 Let, the order of spline blending function is 3 ( m = 3); therefore, degree of blending

function is quadratic.

 For m = 3 (three subintervals for each blending function), if multiplicity of three at

origin occurs the knot vector for five control points may be obtained as given below:

TYPES OF KNOT VECTOR…

2. Open Uniform Knot Vector…



Fig. shows the B-spline curve for five control points. The curve interpolates the end control

points and because it has multiplicity of 3 (equal to the order of spline blending

function) at the end points.

B-Spline curve of third  order
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1P 5P

TYPES OF KNOT VECTOR…

2. Open Uniform Knot Vector…
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3. Non-uniform Knot Vector

 For this class of splines, any value and spacing between the knots can be specified.

 When internal knots are unequally spaced or have multiple values, it results into

nonuniform blending functions.

 The unequally spaced knot values results into different shapes of B-spline blending

functions for different intervals.

 The increase in multiplicity of knot values introduces substantial modifications in the

shape of curve and even introduces discontinuities.  

]174.05.027.00[][ X

]3333.27.1000[][ X

]33311000[][ X

Some examples of nonuniform knot vectors are  

]3333.27.1000[][ X

TYPES OF KNOT VECTOR…
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Nonuniform blending functions with unequally spaced internal knots for 51n , 3m .  

]33321000[][ X

The nonuniform knot vectors have multiplicity of three at the ends 

TYPES OF KNOT VECTOR…

3. Non-uniform Knot Vector…
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Nonuniform blending functions with unequally spaced internal knots for 51 n , 3m .  

]3335.25.0000[][ X

The nonuniform knot vectors have multiplicity of three at the ends 

Any value and spacing between the knots. 

TYPES OF KNOT VECTOR…

3. Non-uniform Knot Vector…
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Nonuniform blending functions with unequally spaced internal knots for 51n , 3m . 

The nonuniform knot vectors have multiplicity of three at the ends 

Any value and spacing between the knots. 

]3333.27.1000[][ X

TYPES OF KNOT VECTOR…

3. Non-uniform Knot Vector…
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The nonuniform knot vectors have multiplicity of three at the ends 

Any value and spacing between the knots. Internal multiplicity occurs at knot value 1. 

Nonuniform blending functions with multiple internal knots for 51n , 3m . 

]33311000[][ X

TYPES OF KNOT VECTOR…

3. Non-uniform Knot Vector…
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The nonuniform knot vectors have multiplicity of three at the ends 

Any value and spacing between the knots. Internal multiplicity occurs at knot value 2.

Nonuniform blending functions with multiple internal knots for 51n , 3m . 

]33322000[][ X

TYPES OF KNOT VECTOR…

3. Non-uniform Knot Vector…
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. SHAPE CONTROL OF NON-RATIONAL 

B-SPLINE CURVES

The following methods may be used for controlling the shape of nonrational

B-spline curves.

I. Changing the type of knot vector, i.e., periodic uniform, open uniform and

nonuniform, alternatively, the shape of spline blending functions.

II. Changing the number (n + 1) and location (i.e., knot values) of the defining

polygon vertices.

III. Changing the order (m) of B-spline blending function, i.e., quadratic (m = 2),

cubic (m = 3) and so on (Figure)

1m  results into zero degree curves, i.e., point plot of the control points. 

2m  results into one-degree (linear) curve, i.e., polygon segments themselves. 

3m  results into two-degree (quadratic) B-spline curve.  

4m  results into three-degree (cubic) B-spline curve, i.e., a Bézier curve.  
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. SHAPE CONTROL OF NON-RATIONAL 

B-SPLINE CURVES

1P  

2P  

3P  
4P  

5P  

6P  

7P  

8P  
2m (linear) 

3m (quadratic) 
4m (cubic) 
6m (quintic) 

tightening of 
curve 

1P  

2P  

3P  

4P  

2m (linear) 

3m (quadratic) 

4m (cubic) 

(a) 

(b) 

Effect of varying order (degree) of B-spline curves on its Shape
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. SHAPE CONTROL OF NON-RATIONAL 

B-SPLINE CURVES

IV. Using the internal multiplicity and ends multiplicity of knots

The internal multiplicity induces a cusp in one of the blending functions; moreover, the

location of cusp changes with the change in the values of multiple internal knot vectors

IV. Using multiplicity of polygon vertices

Internal multiplicity of knot values induces the regions of high curvature in B-spline curve 

All the curves are of 
fourth order (m = 4) 
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. SHAPE CONTROL OF NON-RATIONAL 

B-SPLINE CURVES

Lowest curve defined by the four polygon vertices 4321 ,,, PPPP  with knot vector 

  ]11110000[][ X  

Middle curve defined by the five polygon vertices 43221 ,,,, PPPPP  (two coincident/multiple 

vertices at 2P ) with knot vector 

  ]222210000[][ X   

Highest curve (polygon itself) defined by the six polygon vertices 432221 ,,,,, PPPPPP  (three 

coincident/multiple vertices at 2P ) with knot vector 

  ]3333210000[][ X   
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SHAPE CONTROL OF NON-RATIONAL 

B-SPLINE CURVES

• The B-spline curve pulls more towards the control point      by increasing its multiplicity 

• A sharp corner can be created by keeping the number of multiple vertices equal to m-1.

• Thus, in the present situation, a sharp corner is created at the vertex using a multiplicity 

of 3 (m - 1 = 4 - 1 = 3). 

• It should be noted that a linear segment occurs on both sides of multiple vertex 

2P

Polygon itself has multiplicity of 3, i.e.,     ,     ,    
2P 2P 2P
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PROPERTIES OF NON-RATIONAL 

B-SPLINE CURVES…

 The shapes of B-spline curves depend upon the shapes of spline blending functions.

 Alternatively, the properties of B-spline curves depend upon the properties of spline

blending functions, and the way their shapes are controlled.

 It is very difficult to control and calculate the B-spline curve accurately when higher

degree polynomials are used; therefore, cubic B-spline curves are generally preferred

for large number of CAD applications.  

The properties of B-spline functions are  

1. The B-spline function )(tP  is a polynomial of degree 1m  (where m is the order of spline 

blending functions) on each interval 1 ii xtx . 

2. The B-spline functions )(tP  and its derivatives of order 1, 2, 3, …., 2m  are all continuous over 

the entire range of parameter t . 
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PROPERTIES OF NON-RATIONAL 

B-SPLINE CURVES…

3. Each spline blending functions has precisely one peak value except for 1m , where the peak 

value is constant, i.e., ‘1’ for the entire range of parameter t . 

4. The sum of spline blending functions is unity for any value of parameter t  )10(  t . 

Mathematically, we have 

    1 )(
1

1

, 




n

i

mi tN       

  

 Each blending function is either positive or zero for all values of parameter t , i.e. 0)(, tN mi .

  

5. Each blending function )(. tN mi  is defined over m  subintervals of the total range of parameter t

for 1 ii xtx .  

6. If order of B-spline curve is equal to the number of defining polygon vertices (i.e., 1 nm ), the 

spline blending functions are termed as Bernstein polynomials; consequently, B-spline curve 

reduces to a Bézier curve. 

7. The curve generally follows the shape of the defining polygon.   
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PROPERTIES OF NON-RATIONAL 

B-SPLINE CURVES…

8. The B-spline curve exhibits the variation diminishing property. Thus, the curve does not oscillate 

about any straight line more often than the sides of its characteristic polygon.  

9. The B-spline curve is invariant under an affine transformation. An affine transformation is a 

combination of linear transformations, e.g., rotation followed by the translation. For an affine 

transformation, the last row in a general 4x4 transformation matrix is ]1000[ . Any affine 

transformation can be applied to the curve by applying it to the defining polygon vertices, i.e., the 

curve is transformed by transforming the defining polygon vertices.  

10. The B-spline curve is described with 1n  blending functions corresponding to the 1n  control 

points.  

11. The range of parameter t  is divided into m  subintervals by the 1 mn  knot values specified 

in the knot vector. 

12. Each section of B-spline curve is influenced by the m  control points. Conversely, one control 

point can affect the shape of the curve at most m  curve sections. For 2.1t , the curve is affected 

by 3m  control points corresponding to the spline blending functions ,3,2N  3,3N  and 3,4N . 
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PROPERTIES OF NON-RATIONAL 

B-SPLINE CURVES…

Dependencies of higher order nonuniform spline blending functions on lower order blending 

functions for 51 n , 3m , ]33322000[][ X  
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PROPERTIES OF NON-RATIONAL 

B-SPLINE CURVES…

13. The curve lies within the convex hull of its defining polygon.  

The convex hull property of B-spline curves is stronger than that of the Bézier curves. A point on 

B-spline curve must lie within the convex hull of m  successive control points. Therefore, all 

points on the curve must lie within the union of all convex hulls, formed by considering m

successive defining polygon vertices. Figure illustrates the convex hull of B-spline curves, shown 

within the dotted area of the polygons, of different order m . For 2m , the convex hull is the 

defining polygon itself; however, the convex hull for higher order B-spline  curves )6 ,4 ,3( m

is defined as the union of convex hulls of m  successive defining polygon vertices. 
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PROPERTIES OF NON-RATIONAL 

B-SPLINE CURVES…

Convex hull properties of B-spline curves (m = 2 and 3) 
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PROPERTIES OF NON-RATIONAL 

B-SPLINE CURVES…

Convex hull properties of B-spline curves (m = 4 and 6) 
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PROPERTIES OF NON-RATIONAL 

B-SPLINE CURVES…

13. The B-spline curve tightens with an increase in the degree of the curve. Generally, lesser the 

degree, closer is the curve towards the control points. Fig. shows the effect of increase in order 

(degree) of B-spline functions on its shape.   

14. Internal multiplicity of control points induces the regions of high curvature. Alternatively, the 

curve pulls more towards the polygon vertices by increasing its multiplicity. This property helps 

in generating the sharp corners in B-spline curves.  

15. Local modifications over any B-spline curve segment are possible. In general, the curve is affected 

for the curve segments corresponding to 2/m  polygon spans around the displaced polygon 

vertex. Fig. 8.48 shows three B-spline curves, each of order four )4( m , obtained by moving 

vertex 5P , successively to the new locations '
5P  and ''

5P  thereby depicting the local modifications 

(i.e., shape change in the limited region) in the original curve. When vertex 5P  shifts to '
5P , only 

the curve segments corresponding to polygon spans 43PP , 54PP , 65PP  and 76PP  are affected, i.e., 

only two curve segments corresponding to the two polygon spans )22/42/( m  around the 

displaced vertex 5P  are affected. 
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PROPERTIES OF NON-RATIONAL 

B-SPLINE CURVES…

        

1P  

2P  
3P  

4P  

5P  

6P  

7P  

8P  

Original curve 

'
5P  

''
5P  

Modified curve 1 
Modified curve 2 

Local control (modification) of B-spline curves



162MED, M. M. M. University of Technology, Gorakhpur (UP)

, 


