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PLANE CURVES

A curve 1s an integral part of any design and an engineer needs to draw one or other
type of curves or curved surfaces applicable to many engineering components used in

automotive, aerospace and hydrospace industries.

Different types of shape constraints (e.g., continuity and/or curvature) are imposed to

accomplish specific shapes of the curve or curved surfaces.

A large variety of techniques are available for drawing and sketching the curves
manually with tools like pencils, brushes, knives, French curves, compasses, splines,

templates, etc.

Each tool is used for the specific work. None of the single tool is sufficient to draw all

types of curves.
When a curve is two-dimensional, it lies entirely in a plane known as planar curve.

However, three-dimensional curve lies in space called space curve.
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PLANE CURVES...

» In general, engineering applications require smooth curves. A smooth curve can be

generated by reducing the spacing between the data points.
» The data points may be equally spaced or non-evenly spaced (Figure).

» The connection of evenly spaced points by small line segments results into poor

representation of a curve.

» The advantage of non-evenly spaced data points can be visualized for generating the

smooth curve as shown in Figure.

» Increasing the density of data points in the region where radius of the curvature is small

improves the quality, as regards to the smoothness, of the curve.

Large

\ curvature curvature
\

(@) (b)
(a) Evenly Spaced data points (b) Non-evenly spaced data points

MED, M. M. M. University of Technology, Gorakhpur (UP)



CURVE REPRESENTATION

There are two techniques for the curve representation.

Analytic Curves

Analytic curves can be represented by the analytical (mathematical) equations such as

lines, circles and conics. This type of curve representation has the following advantages:
e Precise and easy evaluation of the intermediate points

e Mathematical representation of curve is computer friendly, i.e., compact storage of

curve
e Curve properties such as slope and radius of curvature can be easily evaluated
e Drawing of curves is easy from the storage data

e Alteration / manipulation of curve is easy to meet the modified design criteria
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CURVE REPRESENTATION...

Synthetic Curves

Unfortunately, it is not possible to represent all types of curves required in engineering
applications analytically; therefore, the method based on the data points (synthetic
curves) is very useful in designing the objects with curved shapes such as ship hull, car

body, aerofoil section, automobile components, etc.

» Synthetic curves such as Bezier curves and splines are described by a set of data

points known as control points.
» Parametric polynomials usually fit the control points.

» Synthetic curves provide greater flexibility to the designer just by changing the

positions of the control points.

» Moreover, it is possible to achieve a local control and global control of the shape

of the curve.
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CURVE REPRESENTATION...

Synthetic Curves
The data (control) point representation of curve suffers from the following disadvantages:

» Slope of the curve is obtained using numerical differentiation, a well-known

inaccurate procedure.

» A good quality circle requires a minimum of 32 points on its circumference; therefore,
a huge storage is required as compared to the analytical representation of circle in

which centre and radius is sufficient to represent the circle.

» Intermediate points are obtained using the interpolation techniques. The resulting

intermediate points do not actually lie on the curve.

» It is not possible to calculate the exact property of the curve because exact shape of

the curve is not known.

» Difficult to handle the transformations of curve due to the large number of data points.
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INTERPOLATION AND APPROXIMATION

Interpolation

» The interpolation is a technique by which a curve, represented with known set of data

points, can be defined analytically.

» The data points may be obtained through the experimental measurements or from

some known function.

» When curve passes through all the data points, it is said to fif the data.

» ‘Piecewise polynomial approximation’ technique of curve fitting is used to determine

the coefficient of polynomials of some degree.

» The curve shape between the data points depends upon the degree of polynomial and

the associated boundary conditions.
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INTERPOLATION AND APPROXIMATION...

Approximation

» If data points (control points) are only approximation to some true values (e.g.,
measurement points, etc.) then the curve does not necessarily pass through the data

points rather than it approximates or fairs the data points.
» The curve depicts the trend of data points.

» Least square approximation is a common curve fairing technique, which produces the
curve of the form y = f(x) , which minimizes the sum of y squared deviations between

the data and the derived curve.

» Depending upon the information about the phenomenon that produces the data points,

the curve y = f(x) may be
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INTERPOLATION AND APPROXIMATION...

. Power functions y= ax’

¢  Exponential functions y=a.e™

. Polynomial functions y=C, +C,x+C,x" +......+C, X"

. Trigonometric functions, and

o Probability distributions, etc.
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Interpolation and Approximation of data points (a) curve fitting (b) curve fairing
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INTERPOLATION AND APPROXIMATION...

* Interpolation Curve — over constrained - lots of (undesirable?) oscillations

* Approximation Curve — more reasonable?
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CLASSICAL REPRESENTATION OF CURVES

Mathematically, non-parametric and parametric equations are used for the representation of

planar curves or space curves

Non-parametric Curves

» A non-parametric curve representation may be explicit or implicit. In explicit form,

coordinate(s) of a point y and/or z are explicitly represented as function of x.

Explicit, non-parametric planar curve is represented as y = f (x)

For example, equation of a straight-line y = mx + b. For each x value, there is only
one y value

»  Explicit, non-parametric space curve is represented as x =x, y =f(x) and z =f (x)

» The above equation has one-to-one relationship. Therefore, this is not suitable for the

representation of closed or multivalued curves.

»  Closed or multiple valued planar curves, ¢.g., a circle, parabola, ellipse, etc. gives two

values of y for each value of x.
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CLASSICAL REPRESENTATION OF CURVES...

Non-parametric Curves...

» This form of curve representation is known as implicit non-parametric form of the

curve.
» Thus, a general implicit non-parametric planar curve can be represented as f'(x, y) =0
» For example, a general second-degree implicit non-parametric equation is written as
ax’ +2hxy +by? +2ax +2f +c=0

» Above equation gives a variety of two-dimensional (planar) curves called conic
sections. The three forms of conic sections are parabola, hyperbola and ellipse.

» Circle is a special case of an ellipse whereas a straight line is obtained if coefficients
a=h=b=0

» Depending upon the values of coefficients in the equation, a planar curve may be.

described by specifying the following conditions:
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CLASSICAL REPRESENTATION OF CURVES...

Non-parametric Curves...

* Positions and slopes at the two endpoints of the curve segment
* Positions of the two endpoints and slopes either at the beginning or at the end of curve

segment

» The implicit non-parametric representation for space curves may be obtained by the

intersection of two surfaces f(x, y,z) =0and g (x, y,z ) =0

Properties

I.  Explicit and implicit non-parametric curve representations are axis dependent.

II. A non-parametric representation of curve results into unequal distribution of points on

the curve, which in turn, affects the guality and accuracy of the curve.

III. If a curve is to be displayed as a series of points or straight-line segments, the

computations involved could be expensive.
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CLASSICAL REPRESENTATION OF CURVES...

1.2

Explicit non-parametric representation of a unit radius origin centered circle
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PARAMETRIC CURVES

» Parametric representations of closed or multivalued curves overcome the difficulties

associated with the non-parametric representations.

» Parametric representations for commonly used curves such as conic sections employ

polynomials in place of equations involving the square root calculations.

» Thus, parametric representations for the curves are more general and suitable for the

CAD applications due to the ease in computations.

> In parametric form, each point on the curve is expressed as a function of

single parameter.
» Thus, position vector of a point on the curve is fixed by a single parameter.

For two-dimensional (planar) curve with ¢ as a parameter, the Cartesian coordinates of a

point on the curve is expressed as

y(t)
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PARAMETRIC CURVES...

» A single non-parametric curve equation (in terms of x and y) may be obtained from two

parameter equations by eliminating the parameter ¢.

» The tangent vector (or derivative) for a parametric curve is defined as

x'(1)
P'(f) =
) {y'(t)}

» Therefore, the slope of the parametric curve is given by
dy dyldt y'(t)
dx dx/dt x'(t)
» With parametric representations, the infinite slope condition ( dy/dx = ) can easily be

obtained by substituting x'(z)=0

» Since a point on the curve is specified by a single parameter ¢; therefore, the parametric

curves are axis independent. Mostly 0<¢<1

» The position and slope at the endpoints of the curve is specified by the parameter z,

which is fixed within the parameter range.
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PARAMETRIC RERESENTATION OF
ANALYTIC CURVES

Lines
The parametric representation of a straight line connecting the two position vectors £ and
P, is given by
PO)=FR+(H-P)t  0<r<l
The position vector P (f) has a parametric representation x () and y (¢) ; therefore
©)=x+(x-x)i  0<7<]

y(O) =y +(, =) 0<r<l1

Moreover, tangent vector of the line is given as

P'(t)=P,—- P

' £) = .
where x'() Y274

V(O=y-n

Thus, the tangent vector of the line is independent of the parameter t. The infinite slope
(vertical line) condition and zero slope (horizontal line) condition can be obtained from
above eqn.
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PARAMETRIC RERESENTATION OF
ANALYTIC CURVES

Circles

The parametric equation of origin centered circle in standard trigonometric form is given as

X=a.cos 6

y =a.sin 6 0<6<L2r

z=0
where parameter 0 is the angle measured in ccw direction from the positive x—axis. The
parametric equation of non-origin centered circle is given as

X=Xx,+a.cosd

y=y.+a.sinf 0<0<2rx

z =z,

where coordinates (x,, Y., z.) is the centre of the circle.

» The parametric representation for a curve is not unique.

» A computationally less expensive parametric representation technique uses the
polynomials for representing the curves.
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PARAMETRIC RERESENTATION OF
ANALYTIC CURVES

Circles...

The polynomial form of parametric representation of a circle is expressed as

1-¢° _ 2
x= s and -y =-—; 0<r<l1

» Although, this results into unequal perimeter lengths on the circumference of a circle
for equal increments in parameter ¢ but the quality of circle is much better than the

explicit nonparametric representation.

» However, the quality of circle obtained with polynomial representation is not as good

as the standard trigonometric representation.

» Polynomial form of parametric representation is computationally less
expensive and it may be considered as a compromise between the quality and

computations.
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PARAMETRIC RERESENTATION OF
ANALYTIC CURVES
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Parametric Representations of circles in first quadrant

(a) Trigonometric (b) Polynomial
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PARAMETRIC RERESENTATION OF
ANALYTIC CURVES

Ellipse

The parametric representation of non-origin centered ellipse is given as

~

x=x,+a.cosd

y=y.+bsinb . 0<0<L2rx
z=2z,

Parabola

In rectangular coordinates, the non-parametric representation of origin centered parabola
opening to the right is

2
y° =4ax
A parametric representation, in trigonometric form, is given as

y=12+/a.tan 0<0<rx/2

An alternative parametric representation, in polynomial form, is given as

xzxv+at2
y:yv+2at 0<t<Lw
z=2z,
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PARAMETRIC RERESENTATION OF
ANALYTIC CURVES

Hyperbolas

The parametric representation of hyperbola is given as

~

x=x, 6 tasecl
y:yvibtang N 0<0<rx/2

z=2z,
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SPACE CURVES

» Space (three-dimensional) curves and surfaces are mostly used in the design of

automobile bodies, aerospace wings, ship hulls, propeller blades, shoes, bottles, etc.
» These applications require curves and surfaces as basic entities.

» Curve is the collection of points and they form basic entities of the surfaces. Surfaces
can be obtained by digitizing the physical model or a drawing, followed by curve

fitting through the set of data points.

» Mathematically, curve fitting (interpolation) and curve fairing (approximation)

techniques are used for generating the curves in computer graphics.

» The analytical form of planar curves is not suitable for designing the complex three-

dimensional curves and surfaces used for designing the complex shaped objects.

» The designer prefers the synthetic curve, which passes through the set of data points,

because designer has full control on its shape as per the new design requirements.
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PROPERTIES FOR CURVE DESIGN

% In computer graphics, a curve is represented in such a manner that it must be

mathematically tractable and computationally convenient.

4

L)

» The experiences of designer suggest that the curve must possess the following

L)

important properties for the design and representation in computer graphics:

Control points

» The control points govern the shape of the curve in a predictable manner.

» It is possible to control the shape of the curve interactively through proper location of

the control points.

» A curve must interpolate (pass) the control points.

Axis Independence
» The shape of curve must not change if control points are measured in different

coordinate system.
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PROPERTIES FOR CURVE DESIGN

Axis Independence...
» For example, if control points rotate by 30°, the entire curve must rotate by 30°,

keeping the shape unchanged.

» Due to its axis independent nature, it is possible to transform a parametric curve

into a curve of the same shape but with different orientations.

Local Control and Global Control

» In computer graphics, it is frequently required to modify the portion of the curve.

» The curve may change its shape only in the portion near to the control point or the

shape of entire curve may change.

» The first modification in the curve shape is termed /ocal control whereas second

modification as global control.

» A designer is always interested in /ocal control because altering the position of

control point does not propagate the change in the remaining portion of the curve.
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PROPERTIES FOR CURVE DESIGN

Local Control and Global Control...

modified o
control point Original curve
Moo
’ > \ N S
/,
/
original Altered curve

control point

(a) (®)

Shape control of curve (a) Local (b) Global

Variation Diminishing Property
» A curve is said to be smooth if it has a tendency to pass through the control points

smoothly.
» If curve oscillates about the control points it is usually nof desirable.
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PROPERTIES FOR CURVE DESIGN

Variation Diminishing Property...
» Thus, the curve which passes through the control points smoothly and does not show
the tendency to amplify the irregularities in the form of oscillations, is said to possess

the variation diminishing property.

(a) (b)
(a) Variation diminishing property

(b) Curve with undesirable oscillations about the control points

Versatility
» The mathematical model for curve representation should allow the designer to change

its shape by either adding or removing the control points..
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PROPERTIES FOR CURVE DESIGN

Versatility...
» This implies the versatility of the curve, i.e., addition of the control points defining the
curve gives additional shapes to the curve depending upon the position of additional

control points.

Order of Continuity
» It is difficult to achieve the complex shape of object with a single curve.

» Usually, several curves are joined together end to end to accomplish the complex shape.
» The order of continuity decides the exact shape of the joint.

» The parametric continuity results by matching the parametric positions and the

parametric derivatives of adjoining curves at their common boundary.

There are three types of order of continuity:
Zero Order Continuity or C° Continuity

Zero order continuity exists when adjoining curves simply meet to form a joint, i.e., parameter ¢ at the

joint, for the two adjoining curves are same. Figure (a) shows the zero order (position) continuity.
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PROPERTIES FOR CURVE DESIGN

Order of Continuity...
First Order Continuity or C' Continuity

= First order continuity exists when first order derivatives (i.e., tangent) for two adjoining curves, at

their joining point, are same.

= The rate of change of the tangent vectors (second derivatives) can be quite different so that general

shapes of the two adjacent sections can change abruptly.

= A joint with continuity also possesses C° and C : continuity. Figure (b) shows the first order
(tangent) continuity.

n=1 =0 tangent

n=1

I
S

A
(a) (b) (c)
Parametric continuities at the junction point of two curves

(a) Zero Order Continuity (b) First Order continuity (c) Second Order Continuity
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PROPERTIES FOR CURVE DESIGN

Order of Continuity...

Second Order Continuity or c* Continuity

= First order continuity is generally sufficient for digitizing the drawings whereas second order

continuity is required for setting up animation paths for the camera motion.

= A camera moving in C' continuity or tangent continuity with equal steps in parameter ¢
experiences acceleration at the joint of two adjoéining curve sections, leading to the discontinuity

in motion in the form of jerks.

= Therefore, C* continuity or curvature continuity is desirable for camera motion during the

animation.
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SYNTHETIC CURVES

Space (three-dimensional) curves are mostly used in the design of automobile

bodies, aerospace wings, ship hulls, propeller blades, shoes, bottles, etc.
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PARAMETRIC REPRESENTATION OF
SYNTHETIC CURVES

Synthetic curves are highly suitable for defining the complex curves and surfaces. The

designer, mainly in the following situations, prefers them:

e When the space curve is represented with the help of data points (control points) and
its shape changes by shifting the data points (defining the curve) to meet the new

design requirement.

e When a designer needs the space curve representation in such a way that shifting of
one or more data points, changes its shape by the processes of twisting (non-planar),

bending and stretching.

» Mathematically, synthetic curve generation is a curve fitting/fairing problem wherein

smooth curves generate through a set of known measured data points.

» The order of continuity is very important for generating a complex shape smooth

curve because it 1s modeled by joining several curve segments end to end.
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PARAMETRIC REPRESENTATION OF
SYNTHETIC CURVES...

» Typically, synthetic curves are represented in polynomial forms because it is easy to
apply various orders of continuity conditions such as position (C°), slope (C') and

curvature (C?) at the boundaries of small curve segments.

» Polynomials are easy to differentiate/integrate; therefore, speed up the computation

Process.

In polynomial form, the x variation of parameter for the first, second and third order
polynomials, respectively, may be expressed as

First order (line segment) ; x(t)=at+b
Second order (quadratic polynomial) ; x(t)=at’ +bt+c
Third order (cubic polynomial) : x(t)=at’ +bt*> +ct+d
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PARAMETRIC REPRESENTATION OF
SYNTHETIC CURVES...

» The lowest degree polynomials such as first order polynomial requires the
determination of two coefficients @ and b which can be calculated from the endpoint

coordinates (two boundary conditions) of the line segment.

» For the line segment, the line and slope (derivative) at the endpoints are same;
therefore, the endpoints coordinates, and tangents (slopes) at the endpoints, cannot

control the shape of curve (line), independently.

» With quadratic polynomials, three coefficients a, b and ¢ can be calculated, using two
endpoint conditions and one boundary condition such as slope (tangent) at one
endpoint or one additional point outside the curve, which controls the tangent at the

endpoint.

» If three points describe the quadratic polynomial then polynomial lies in a plane

defined by the three points; therefore, interpolation becomes difficult.
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PARAMETRIC REPRESENTATION OF
SYNTHETIC CURVES...

» A cubic polynomial is the lowest degree polynomial, which generates the curve with
C°, C!and C? continuities.
» The cubic polynomials represent a non-planar (twisted) space curve.

» The curves and surfaces with higher degree polynomials experience oscillations about

the control points.

» The higher degree polynomials are computationally expensive and require large

amount of storage.

» However, they are preferred in the design of car bodies and aerospace and hydrospace
structures because aerodynamically efficient shape requires the control of /igher

degree derivatives at the boundaries of the curve/surface segments.
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SPLINE CURVES

» Physically, spline is a long flexible strip of metal/plastic/wood used to produce the

curve through the known set of data points.

» The curved shape of the strip is obtained by pulling it into the transverse direction
using the lead weights or pegs. The lead weights or pegs hold the strip into the curved

position.

» The spline shape of the strip can be obtained by varying the number of lead weights

and its positions on the board by the drafters.
» The resulting curve appears smooth and fits the pegs (data points).

» The term spline curve was originally referred to a curve drawn in this manner by a

drafter. This spline curve is a natural cubic spline possessing C* continuity.
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Physical Spline Shape

Pegs or
Lead weights

N

SPLINE CURVES...

Narrow Metm
strip
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SPLINE CURVES...

The curve fitting for the (n+1) control points require 7 curve segments.
A parametric cubic spline x(¢) = at”> + bt*> + ct +d has four coefficients.
Thus, a total of 4n coefficients are required for the » curve segments.

The main problem with the natural or drafting spline is the local control.

>
>
>
>
>

If any one of the control point shifts, the entire curve is affected; therefore, does not

allow local control for the natural spline curves.

» The designer does not prefer the natural cubic spline because it is not possible to

restructure part of the curve without affecting the entire curve.

A piecewise C’continuous cubic

P n+1
(n+ 1) control
points

C'and C?

spline interpolation of (n+1) \
Continuity at P,

curve 3

control points
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SPLINE CURVES.

In modern computer graphics, splines are preferred for the following applications:

Design of various types of curves

Design of surface shapes

Digitization of drawings for the computer storage

Specification of animation paths for the camera or eyes

Design of aerodynamic efficient automobile bodies

Design of aerospace structures such as surface of aecroplanes, rockets, etc.
Design of hydrospace structures such as surface of ship hulls, submarines, etc.

Design of curved shape products such as shoes, bottles, etc.
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SPLINE CURVES

Specifications of spline curves
There are three methods for characterizing the spline curves:
¢ On the basis of set of imposed boundary conditions

¢ On the basis of a matrix that characterizes the specific spline curve

/7

** On the basis of blending (or basis) functions that characterizes the spline curve

These three spline specifications may be illustrated by assuming the cubic polynomial

parametric representation, for x, y and z coordinates along the spline path in parameter ¢ as
x()=a .t +b.t’ +c t+d,
V() =a,t’ +b, 1" +c, 1 +d, 0<t<1

Z()=a.t +b t +c.t+d,
In matrix form, we have

-

a, a, a,

b. b, b

@) y@) Z(r)}:[ts I 1]< A
c, ¢, ¢,

\dx dy d,
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SPLINE CURVES...

Specifications of spline curves...
or Pt)=T.C
where C 1s the polynomial coefficient matrix. For each polynomial x (¢), y (¢) and z (?), it is

required to calculate four coefficients a, b, ¢, and d.
= Therefore, four boundary conditions are required for the four unknown coefficients.

= These constants are evaluated by imposing the sufficient boundary conditions at the

junction of two curve segments

The boundary conditions may be:
e Constraints (positions) at the endpoints
e Tangents (slopes) at the endpoints

e Continuity at the junction between the curve segments
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CLASSIFICATIONS OF SPLINE CURVES

Based upon the techniques for the evaluation of four coefficients a, b, ¢ and d, there are

three major classifications of spline curves:

Hermite Curves

» Hermite curve is also known as cubic curve characterized by the rwo endpoints and

tangent vectors at the endpoints.

» Hermite curve passes (interpolate) through the endpoints of the curve segment and

possesses first order (slope) continuity.
Bezier Curves

» Two endpoints and two additional points outside the curve characterize the Bézier

curves.

» The additional points outside the curve control the endpoints tangent vectors.
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CLASSIFICATIONS OF SPLINE CURVES

Bézier Curves...

» Thus, Bézier curve interpolates the endpoints and approximates the additional points

outside the curve, i.e., they do not pass through the outside points.
» Bezier curves also possess first order (slope) continuity.
B-spline Curves

» B-spline curves are characterized by approximating the endpoints, allowing first and

second order derivatives (C' and C’continuity) to be continuous at the endpoints of the

curve.

» Under certain conditions, the curve may interpolate the endpoints.
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CLASSIFICATIONS OF SPLINE CURVES

» P2
Py
P4 t=1
t=0
L ] P3
Interpolation (Hermite curve) Approximation (Bézier curve)
‘,"‘!’2
*"‘ PT

Approximation (B-Spline curve)
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HERMITE CURVES

A Hermite (named after the mathematician Charles Hermite) or Ferguson’s cubic curve is

an interpolating piecewise cubic polynomial having specified tangents at each end control

points.

Thus,
= Hermite curve is also known as cubic curve
= Characterized by the two endpoints and tangent vectors at the endpoints.

= Passes (interpolates) through the endpoints of the curve segment and

possesses first order (slope) continuity at the endpoints.

» Unlike the natural cubic splines, Hermite curve segments adjusted locally because

shape of each curve segment is dependent only upon its endpoint constraints.

MED, M. M. M. University of Technology, Gorakhpur (UP)



Blending Function Formulation

HERMITE CURVES...

> Let . and. are the point position vectors, and PO' are P3 the tangent vectors at the

two endpoints of the cubic curve segment.

» Itisrequired to find out a relationship among the following matrices

* Hermite basis matrix, My

e Hermite geometry matrix, Gg

* Polynomial coefficient matrix, C,

Where x component of Hermite geometry

matrix (Gy) and polynomial coefficients

matrix (C,) may be expressed as

G, =

X

.

WU, o0 T U

N

d

Q@‘Q/

7 X
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Blending Function Formulation...

HERMITE CURVES...

The cubic polynomial equation for x () may be expressed as

3 2
x(t)=a .t +b .t +c t+d,

( I

a

=[t3 t* 1 1]<b>

QU o

x(t)=T.C,

For Hermite curve, the boundary conditions are

I. Position of endpoints
at t=0,  x(0)=P~,=[0 0 0o 1]c
at 1=1, x)=P, =1 1 1 1]c,

X

MED, M. M. M. University of Technology, Gorakhpur (UP)



HERMITE CURVES...

Blending Function Formulation...

II. Tangent vector (first derivative) at the endpoints is given as
a0 =P 20 1 o]c,

Therefore,

at t=0, x'(0)=P,_=[0 0 1 o]cC,

at t=1, x'()=P_ =3 2 1 o]c,

In matrix form, above four eqns. may be combined as

(P] [0 0 0 1] 2 -2 1 1R

-3 3 -2 —1||P
QP% R c or C-= 151
P, 0 0 1 o] ° 0 0 1 of|P
P 13 2 1 0] 1 0 0 0]A]

or Cx = MH 'GHx

MED, M. M. M. University of Technology, Gorakhpur (UP)



Blending Function Formulation...
Thus, the cubic polynomial equation for x ( ¢ ) may be expressed as
x(t)=T.C,=T.M, .G,
Similarly, y(t) =T.M , .G,
z(t) =T M ,, .G,
Thus, a point on the Hermite curve i1s defined as
P ={x(t) y(t) z()}=T.M,G,

Now, the expansion of x ( ¢) gives

(2 -2 1 1](P)]

-3 3 -2 —1||P
xO=TM, G, =l * ¢t 1 430
() H Hx [ ]O O 1 0 PO

10 0 0_\133'”

x(1)=P, (27 =3t + 1)+ P, (=21 + 3t )+ P. (£’ =2t> + )+ P,_(t’ —t7)

MED, M. M. M. University of Technology, Gorakhpur (UP)
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HERMITE CURVES...

Blending Function Formulation...
or x(t)=P, .H (t)+ P, .H, (t)+ P _.H,(t)+ P, ..H (1)
Similarly y(t)=P,.H (t)+ P, . H (t)+ P, .H,(t)+ Py, .H;(t)
z(t) =P, .H (t)+ P, .H (t)+ P .H,(t)+ P, .H,(t)
Thus, P(t)y=P, .H_ (t)+ P,.H (t)+ P, .H,(t)+ P, .H,(t)
The above equation represents blending function formulation of Hermite curve.

The polynomial H,() where k=0, 1, 2, 3 are referred to as Hermite blending functions
because they blend (control) the boundary constraints (endpoints £, & F; and tangent
vectors at the endpoints?, &, ), used to calculate the coordinate positions on the

Hermite curve.

> Figure shows the effect of four Hermite blending functions H.(¢) H,(¢) &) and L)

on the coordinate positions along the curve.
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Blending Function Formulation...

H,1)

Generation of Hermite cubic curve

(a) Effect of blending functions
(b) Effect of positions and slopes at the endpoints

(¢) Hermite cubic curve

MED, M. M. M. University of Technology, Gorakhpur (UP)
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HERMITE CURVES...

Blending Function Formulation...

» At t =0, the blending function that controls the endpoint, i.e., H (¢)=0; hence, it

affects the shape of the curve.

» As parameter ¢ increases, the other blending functions -, - and - begins to

influence the curve.

> It should be noted that the effect of H,(¢) is negative.

» Figure shows the four functions H,(¢), H,(t), H,(t) and H,(t) weighted by the x
components of geometry vector P_and p, , and tangent vectors at the endpoints P
and P, .

» It is obvious that the effect of endpoint tangent vectors have less influence than the end

position vectors on the shape of Hermite curve segment.

» Figure shows the sum of these blending functions resulting into Hermite curve.
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HERMITE CURVES...

Shape Control

There are three ways to modify/control the shape of Hermite (cubic) curves:
1. Change in the location of the control points
2. Change in the magnitudes of the tangent vectors, keeping the same directions

3. Change in the directions of the tangent vectors, keeping the same magnitudes

1. Figure (a) shows the change in the shape of Hermite curve wherein the position of

control point .has been shifted to the new location.

Shape control of Hermite curve
(a) change in location (position) of control point

(b) change in magnitude of tangent vector (slope)

(a) (b)
MED, M. M. M. University of Technology, Gorakhpur (UP)



HERMITE CURVES...

Shape Control ...

2. Figure (b) shows the shape control of Hermite curves when the magnitude of tangent

vectors is changed at point. keeping the same directions at the ends of the curve.
» lItis observed that longer the tangent vectors, the greater their effect on the curve.

» From Figure (b), it has been concluded that the effect of endpoint tangent vectors have

less influence than the endpoints position vectors on the shape of Hermite curves, but

the effect can still be significant.

3. Figure (c) shows series of Hermite curves depicting only the effect of change in

direction of the tangent vectors at the starting point. on the shape of cubic curves.

All tangent vectors have the same magnitudes (lengths) either at . or .

MED, M. M. M. University of Technology, Gorakhpur (UP)
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(c) Effect of tangent vector directions keeping constant magnitude

at point . on the shape of family of Hermite curves

MED, M. M. M. University of Technology, Gorakhpur (UP)

HERMITE CURVES...



HERMITE CURVES...

Effect of Continuities on the Shape ...
> Figures show the effects of C' and C* continuities on the shape of Hermite curves.

> When a control (data) point (R) in a C' continuous composite Hermite curve is shifted
to the new location (R*) a change in the shape of maximum of two curve segments on

either side of the shifted control point (B*) occurs.

» This results into change in the slope of curve at the junction point; consequently,

changes the shape of Hermite curve as shown in Figure (a).

» Alternatively, composite Hermite curves with .continuity possess the local shape

control properties.

» However, altering a control point in .continuous composite curves possess a global

shape control properties as shown in Figure (b).

» Thus, all curve segments are affected.
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HERMITE CURVES...

Effect of Continuities on the Shape...

P <

y
A

R* R
"
«H o
o - o
o s .
0 . g
4 * -
o * o
R »
.
.
.
.

«— Modified curve K Modified curve

Original curve Original curve

(a) (b)

Effect of continuities on the shape of Hermite curves
(a) original and modified.continuous curve depicting local change in the curve shape

(b) original and modified.continuous curve depicting global change in the curve shape
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HERMITE CURVES...

Limitations

»* Hermite curves are suitable for some digitizing applications where it may not be very

difficult to specify the approximate slope of the curve.

s These curves are preferred in the design of automotive, shipbuilding and aircraft

industries, mechanical and structural components.

In computer graphics, the use of Hermite curves is restricted due to the following reasons:

» Quite cumbersome to select the magnitude / angle of the tangent vectors at the two

endpoints of the curve segment.

» Hermite curves are cubic in nature; therefore, possesses 'C* continuity. Hence, it is

difficult to control the curve due to the global shape control characteristics.

» The order of polynomial is always cubic (constant) irrespective of the number of

control points.

MED, M. M. M. University of Technology, Gorakhpur (UP) m



HERMITE CURVES...

Limitations...

» A curve will be more flexible if a greater number of control points could be added,

thus creating more curves which are all still of cubic order.

» If numbers of control points are large, the computation time required to invert the

tangent vector matrix can be excessive.

» The cubic curves frequently exhibit spurious oscillations. The oscillations occur
because each data point influences the cubic curve locally and third derivative is only

piecewise constant.
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HERMITE CURVES...

Example
The four control points in two-dimensional plane are F,(0,0), F(1,1), B(2,—1) and B(3,0). The

tangent vectors at the endpoints are P,(1,1) and P,(1,1). Determine the intermediate points on the

Hermite curve at t =+ ,3.

Solution: A Hermite curve, in blending function formulation, is expressed as
P(t) = P,.H,(t) + P.H, (1) + P,.H,(t) + P,.H,(?)
where Hermite blending functions are

H (1)=2=-3t"+1; H,(t)=-26+3t"; H,(t)=t -2t +t; H,(t)=t -1

at t:%’ Ho(%)=§—(7), Hl(%)zziw Hz(%):% and H3(%):5_%
at 1=+, H,(3) =7, H($)=%, H,(3)=+  and Hy(3) =%

MED, M. M. M. University of Technology, Gorakhpur (UP)



HERMITE CURVES...
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Unit-I1I: Space Curves
(7 Lectures)

Properties for curve design, Parametric
continuity,
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BEZIER CURVES

» Hermite curves are based on the interpolation techniques, i.e., curve passes through

the existing data points.

» Bézier curves (named after a French Engineer Pierre Etienne Bézier for use in the
design of Renault automobile bodies) are another alternative to generate curves based
on the approximation techniques, produces the curves that do not pass through the

given data (control) points.
» The outside data points control the shape of Bézier curves.

» In Bézier curve, we do not directly decide the magnitudes and angles of the tangent
vectors; rather, we define the tangent vectors indirectly, by defining two additional

control points outside the curve.

» In fact, two outside points control the shape of Bézier curves.

MED, M. M. M. University of Technology, Gorakhpur (UP)



BEZIER CURVES...

Following are the major differences between the Bézier curve and Hermite curve:

» Its defining points control the shape of Bézier curve. This allows a much better feel for
the relationship between the inputr (control points) and output (curve shape)

parameters.

» Hermite curve is always cubic in nature. The degrees of polynomial are not related to

the number of control points.

» The degrees of polynomial for the Bézier curve are variable and related to the number
of control points defining the curve. For example, n” degree curve requires (n + 1)

control points.
» Higher degree Bézier curves permits /iigher order continuity.

» For Hermite curve, first derivatives are used for the curve development.

MED, M. M. M. University of Technology, Gorakhpur (UP) m



BEZIER CURVES...

» Hermite curve possesses a maximum of second order continuity at the junction point of

composite Hermite curves.
» Bézier curve is smoother than Hermite curve because it has higher order derivatives.

» Bézier curves are preferred for the ab initio design, 1.e., design problems depending
upon both aesthetic and functional requirements. For example, design of car bodies,

aircraft fuselages, glassware, etc.

» Hermite curves are based on curve fitting techniques; therefore, not effective for the ab

initio design problems.

MED, M. M. M. University of Technology, Gorakhpur (UP)



BEZIER CURVES...

Nomenclature

Bézier curve i1s obtained by defining a characteristic polygon. Figure shows the
nomenclature of a cubic (four control points) Bézier curve. The following observations

can be made for the Bézier curves:

1. The curve is defined in terms of positions of the control points, the vertices of Bézier

characteristics polygon.
2. The characteristics polygon uniquely defines the shape of the Bézier curve.

3. The Bézier curve interpolates only the endpoints and approximates the remaining data

points.

4. The number of control points defining the curve determines the shape of Beézier

Ccurves.

MED, M. M. M. University of Technology, Gorakhpur (UP) m
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BEZIER CURVES...

Nomenclature...

5. The Bézier curve is tangent to the first and last polygon segment of the characteristic

polygon.

6. The Bézier curve follows the shape of characteristic polygon.

7. The arrow is directed from the parameter value = 0 to t = 1. The direction of arrow

shows the parametric direction of Bézier curve.

/::.. ........................................... [ ]

control point
(vertex)

" 4— Characteristic
| polygon

Cubic Bézier curve




BEZIER CURVES...

Effect of position of control points on the shape of cubic Bézier curves

MED, M. M. M. University of Technology, Gorakhpur (UP)



BEZIER CURVES...

Blending Functions Formulation

The blending function formulation for defining the Bézier curve is most convenient. This

requires the determination of Bézier basis matrix M z that characterizes the Bézier curve.

» Let us consider a plot for a cubic Bézier curve in x-direction only. The Bézier curve is
like Hermite curve but the method of evaluation of cubic polynomial coefficients

,..... etc. 1s different. a,, b, ¢, d,

X2 7X?

» In Bézier curves, the two additional

x(t)4 New control point
. . trols t tat £
control points (B, and P, ) outside the .y (conupls tangentat i, )
1 1 1
1 1 1
curve, control the tangents at the A | |
endpoints. : : :
1 1 |
L ! P3x
: : :
= POx : 1 :
The x(f) component of a cubic : L i
Bézier curve ! i New control point
i Py, + /T_(controls tangent at /5 )
0 Y % 1 r
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BEZIER CURVES...

Blending Functions Formulation...

» Thus, four control points (two endpoints 2, and B, , and two additional points outside

the curve B, and P,_, are used to decide the shape of Bézier curve.

The tangent vectors (P, and B,) at the endpoints of Bézier curve, in terms of the

position of control points, is expressed as

' ' P - P
at £ =0, Pl —x (O):dx(t) =txfor _3p _p )

' ' P - P

PO

, . . . Pl

The x component of Bézier geometry matrix (Gg) is definedas ~ Gpe =1, ¢
2
P3

7 X

Let M,z defines a relation between Hermite geometry (G, ) matrix and Bézier geometry

matrix (Gp) as

as
MED, M. M. M. University of Technology, Gorakhpur (UP)



Blending Functions Formulation...

GHx = MHB'GBx
(PO \ Po \ r Po |
P P P
or GHX :4 3' & _ 3 G 3
P, 3(P,—-P,) ~3P, +3P,
P |3(P,-P)|_  (-3P,+3P,]
(1 0 0 0]
0 0 0 1
Thus, M, =
HE 1 _3 3 0 0
0 0 -3 3]

For Hermite curve, we have

where Bézier basis matrix, M, = M, M

as
MED, M. M. M. University of Technology, Gorakhpur (UP)
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BEZIER CURVES...
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Blending Functions Formulation...

-1 3 -3 1
. w3 6 30
-3 3 0 0
|1 0 0

Thus, parametric form of Bézier curve is expressed as

-1 3 =3 1|(P)]
3 -6 3 0||A
P)=TM,G, = * ¢ 1 40
0 srs [ ]—3 30 0|]P
1 0 0|~

or P(t)=(-P, +3P, =3P, + P,)t’ + (3P, —6P, +3P,)t* + (3P, +3P)t+ P,

=P (1-1> +3t% =3t)+ P (3t —61* +3t) + Py(=3t° +3t%) + Pyt°

or P(t)y=P,(1-1) +P3t(1-t)* + P,.3t>.(1-1)+ P,.t°

as
MED, M. M. M. University of Technology, Gorakhpur (UP)

BEZIER CURVES...



BEZIER CURVES...

Blending Functions Formulation...

The polynomials, weights on each control points in the above equation, are termed

Bernstein polynomial or blending functions. The Bernstein polynomial 1s defined as

B, ,()="C,t'A-t)""" when n 21

= 0 when n<i

where Bernstein polynomial B, ; (¢) is known as i”-n" order Bernstein basis function

And ¢ ZL
oil(n=i)!

where n = degree of the defining Bernstein basis function, i.e., degree of polynomial of
curve segment, one less than the number of control points, in the defining
Bézier characteristic polygon
n + 1 = numbers of control points (vertices)

[ = particular control point (vertex) in the order (sequence)

MED, M. M. M. University of Technology, Gorakhpur (UP)



BEZIER CURVES...

Blending Functions Formulation...

For example, for cubic Bézier curve, 1.e., n = 3 ; the number of control points (vertices)

are n+ 1, 1.e., 4. Thus, for n + 1 control points, the parametric Bézier curve of degree n
1s defined as

P(t) = Zn P;.B, ;(t)
i=0

where P (f) is any point on the Bézier curve and £ is a control point. The Bernstein

polynomial works as blending or basis function for the Bézier curve. The values of
Bernstein polynomial for i = 0 to i = n may be obtained as

|
=0 and =0, B,,(0)=—" 0)°(1-0)"°"=1
i=0 an 0 (0) = G )1 0)
| . )
i#0and t=0, B,;(0)=———(0)'.(1-0)"""=0
’ i'.(n —1)!

MED, M. M. M. University of Technology, Gorakhpur (UP)



BEZIER CURVES...

Blending Functions Formulation...

(1) "(0)" " =1

i=n and =1, B, )= 01

| . .
i#=n andr=1, B,,()=—2 _DH'(1-1)""=0
’ i'.(n—1)!

where (0)°=1 and 0!= 1

Thus, above equation determines the parametric Bézier curve using Bernstein polynomial

as blending function.

For quadratic polynomial (n = 2), the Bézier curve is expressed as

2
P(t)= ) P.B, ;(1)= P,B, (1) + PBy (1) + P,B, 5 (1)
i=0

or  P(t)=P,(1-1t)>+ P 2t(l —t)+ Pyt*

MED, M. M. M. University of Technology, Gorakhpur (UP)



BEZIER CURVES...

Blending Functions Formulation...

For cubic polynomial (n = 3), the Bézier curve is expressed as

3
P(t)= Y BB, (t)=P,Byo(t) + BBy, () + P,Bs 5 (t) + P,By (1)
i=0

or  P(t)=P,(1-1) + P3t(1—1)* + B,3t*(1—1) + Pt
For quartic polynomial (n = 4), the Bézier curve is expressed as

4
P(t) = ZPz‘-Bn,i ()= PF,Bs (1) + BBy () + PoBy 5 (1) + BBy 5(8) + 4By 4 (1)
i=0

or  P(t)=P,(1-1)* +P4t(1—1)’ + P,6t*(1—1)* + P4’ (1—1) + Pyt”

MED, M. M. M. University of Technology, Gorakhpur (UP)



BEZIER CURVES...

Blending Functions Formulation...

Figure a, b & c, respectively, show the plots for the Bézier/Bernstein blending functions

for three, four and five control points.
For (0 < ¢ < the following observations can be made from eqns.

1. The sum of Bernstein polynomials 1s unity everywhere

2. Every polynomial 1s non-negative everywhere

Therefore, the position of a point on the Bézier curve, defined by P (), is just the

weighted average of control points defining the curve.

Mathematically, for any value of parameter ¢ (0 < ¢ < 1), the summation of Bernstein

basis functions is precisely equal to unity, 1.e.

Zn: Bn,i(t) =1
i=0

MED, M. M. M. University of Technology, Gorakhpur (UP)



BEZIER CURVES...

B, (0

(a)

(a) Bézier/Bernstein blending functions for three control points
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(b) Bézier/Bernstein blending functions for four control points

MED, M. M. M. University of Technology, Gorakhpur (UP)
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(c) Bézier/Bernstein blending functions for five control points
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BEZIER CURVES...

» In curve fitting techniques (Hermite curves), the designer does not have proper

control over the shapes of the curve because they are uniquely defined within a

specified interval.

» It is difficult to set up the magnitudes and directions of tangent vector at the

endpoints.

» The Bézier curves are interpolating (passes through the endpoints) and approximating

(approximates outside control points) polynomials.

» In Bézier curves, the designer has sufficient control over the shape of the curve. That

is why these curves are preferred for the aesthetic design of a component where

styling is required.

» The designer can set up the desired style/shape simply by controlling positions of the

control points outside the Bézier curve.

» The properties of Bézier curves depend upon the properties of Bernstein polynomials.

MED, M. M. M. University of Technology, Gorakhpur (UP)



PROPERTIES OF BEZIER CURVES...

The properties of Bézier curve are

» The curve interpolates the first and last control points, i.e., it passes through P, and P,

control points corresponding to the parameter 1 = 0 and ¢ = 1, respectively.

» Bézier curve is tangent to the first and last segments of the characteristic polygon;
therefore, it maintains tangent vectors continuity (C') at the endpoints when joined with

other segment of the Bézier curve.
» The Bernstein blending functions are rea/.

» The curve generally follows the shape of the characteristic polygon. The curve is

tangent to the first and last segments of the characteristic polygon.

» The number of control points specified within the curve segment defines the degree of
a Bézier curve. For (n + 1) data points within the specified curve segment, the degree

of polynomial defining the Bézier curve will be n.

MED, M. M. M. University of Technology, Gorakhpur (UP)



PROPERTIES OF BEZIER CURVES...

» The shape (hence, degree) of a Bézier curve can be modified by adding or deleting the

control points. This 1s the most useful property usually desired by the designer.

» Compared to Hermite curves, the blending functions for the Bézier curve are all

positive and their sum 1s always equal to unity.

» Due to this property, the curve lies within the convex of the defining polygon, i.e., it

remains within the convex hull.
= In 2D, the convex hull is a closed polygon.

= [t can be considered a rubber band stretched around the positions of all the control

points so that each control point is either on the perimeter of the hull or inside it.

= In 3D, the convex hull is a balloon (polyhedron) touching all the control points in

space. The region inside the balloon is convex hull.

MED, M. M. M. University of Technology, Gorakhpur (UP) m



PROPERTIES OF BEZIER CURVES...

= The volume of the region changes with the positions of control points.

= Size of the convex hull provides an upper bound on the size of Bézier curve itself, 1.e.,

the curve lies within the convex hull.

= Convex hulls provide a measure for the deviation of two-dimensional curves or three-

dimensional surfaces from the region bounded by the control points.

= The convex hull ensures the smoothness of the curves/surfaces following the control

points without any deviation or oscillations.

= Figure shows the convex hulls shown by the closed polygons.

Py
L

Convex hull
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PROPERTIES OF BEZIER CURVES...

» The Bézier curve exhibits the variation diminishing property because of the convex

hull property.

=  This means that the curve never oscillates widely away from the defining control
points of the characteristic polygon because the curve is guaranteed to lie within

the convex hull.

=  Alternatively, the curve does not oscillate about any straight line (generally the

sides of the characteristic polygon) more often than the sides of its defining

polygon.

> The Bézier curve is invariant under an affine transformation.

= An affine transformation is a combination of linear transformations, e.g., rotation

followed by the translation.

= For an affine transformation, the last row in a general 4x4 transformation matrix is
[0 0 O 1].
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PROPERTIES OF BEZIER CURVES...

= Any affine transformation can be applied to the curve, by applying it to the
defining polygon vertices, i.e., the curve is transformed by transforming vertices of

the characteristic polygon.

» Parametric transformation of Bézier curve is possible. If transformation parameter is

changed from 0<# <1 toa < ¢ < b , then parameter ¢ should be replaced by (t—a)/(b—a)

» The Bézier curve is symmetric with respect to the parameter ¢ and (1 - 7). Thus, the
shape of the curve remains same if sequence of control points, defining the curve, is

reversed.

» A closed Bézier curve can be generated by making first and last control points to

coincide.

» For any degree of Bézier curve, the sum of Bernstein blending functions associated
with the control points i1s always equal to unity, for any value of parameter¢ (i.e.,
0<t<1. This property checks the numerical computations during the software
development.
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PROPERTIES OF BEZIER CURVES...

» Bezier curves do not provide local control, 1.e., movement of any control point changes

the entire shape of the curve. This is because of the property of Bernstein functions.

» The shape of Bézier curve modifies by changing the position of one or more vertices of
the characteristic polygon. Figure (a) depicts change in the shape of Bézier curve when
vertex P, is pulled to the new location P, .

Final position of
control point

(vertex) Multiple coingident
* control point
or

........................................... . / Inltlal pOSItlon Of
control point

(vertex)

B P, i h \kP

(@) (b)
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PROPERTIES OF BEZIER CURVES...

» The shape of Bézier curve can be modified by specifying the multiple coincident
control points at a vertex, keeping the characteristic polygon fixed.

» Figure (b) depicts change in the shape of Bézier curve when the vertex B is assigned
a multiplicity of k. Higher the multiplicity, more the curve pulled towards the control

point P, .

Composite Bézier curves
» Many CAD applications require the composite Bézier curves in which various curve
segments are joined to generate a longer curve.

» They require maintaining the continuity of various orders between the curve segments.

» Figure shows the two curve segments defined by the two sets of control points, i.e. P,,
P, 5. Pand P, P, PP, P, joined at P,
» Four control points result into a cubic Bézier curve whereas five control points define

a Bezier curve comprising of fourth degree polynomial.
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COMPOSITE BEZIER CURVES

First Order Continuity or C! Continuity

Fy

P} < Junction . P,

P;i,..,
Position continuity (C°) exists when one of the The tangent continuity (C') at the common (junction)
end control point () of the two curve segments point (B) exists if end slope of first curve segment is
1S common equal to the starting slope of the second curve

segment.

Common point and its two adjacent points must be
collinear

For |C* Continuity, the common point and its four adjacent points must be collinear
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COMPOSITE BEZIER CURVES...

» Alternatively, when tangent vectors for the two curve segments at the common
(junction) point relates each other by a constant then C' continuity exists for the

composite Bézier curves.

» In other words, ¢! continuity at the common point requires that the last segment of the
first characteristic polygon and first segment of the second characteristic polygon are

collinear (forms a straight line). Thus, control points 7, B, P, are collinear.

The tangent vectors at the endpoints of 7" degree Bézier curve, defined by the (n + 1)
control points, 1s given as

P(0)=n(P -P,) att=0

P()=n(P,-P, ) att=1
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For (' continuity at the common point, the collinearity requires that

[T angent ve ctor at the last control po intj [T angent ve ctor at the first control po intj

of the first curve s egement of the econd curve s egement

Here, for the first curve segment P (1) = 3(P, —P,)
And, for the second curve segment P (0) = 4(P, —P,)
Thus, 3(P,—P,) =4(P, —P;)
or P,—P,=%(P,~ P)
Therefore, tangent vectors at the common control point (7)) for the two Bézier curves

segments, defined by P, , P,, P,, P, and P,, P,, P,, P,, P, control points, are related to

each other by a constant equal to 4/3.

MED, M. M. M. University of Technology, Gorakhpur (UP)
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BEZIER CURVES...

Example: Draw a Bézier curve defined by the four control points F,(1,2) , F,(3,4) , P,(6,-6) and
RO,7).

Solution: The parametric form of Bézier curve, defined by the four control points, is given as

3
P(t)= ) P.B, (t)= P,Byo(t)+ PB, (1) + P,By, (1) + P,B; 5 (1)

i=0
or Pt)=P(1—-1t) +P3t(1—1t)* + B3t’(1—t)+ Pt’

Therefore, any point P(¢) on Bézier curve is given by

Pz—x(t)—1 1-1¢)° 33t1t2 63t21t 913
()—y(t)—z.(—)+4-(—)+_6. (—)+7.

On simplification, x(¢#) and y(¢) coordinates are given as
x(O)=1-1) +9t(1-1)> +18*(1—1)+9¢°

y()=2(1—-1) +12t(1—1)* = 18> (1—¢) + 7¢°
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For step size ¢t = 0.1, the corresponding values of x (¢) and y (¢) coordinates are tabulated in

Table. Figure shows the plot for Bézier curve segment.

Table Calculation of x(t) and y(t) coordinates for step size t =0.1

BEZIER CURVES...

f X0 M) f X0 Y

0.0 1000 2.000 0.6 5.464 0.200
1 1.629 2275 0.7 6.321 0.565
0.2 2312 2.040 0.8 7.208 1.680
03 3.043 1505 0.9 8.101 3.755
0.4 3.816 0.880 L0 9.000 7.000
0.5 4,625 0.375 :
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BEZIER CURVES...
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DRAWBACKS OF COMPOSITE
BEZIER CURVES...

A designer faces the following problems while using the composite Bézier curve segments:

» With Bézier curves, only control (data) points are specified. The curve segments have
no local control (local change affects the entire shape of the curve) due to the properties
of Bernstein (blending) functions. Therefore, the designer cannot selectively change

parts of the curve.

» The Bézier curve does not interpolate the control points (except the endpoints), which
may be inconvenient to the designer. Interpolation is useful in design or engineering
results such as displaying the stress distribution in a component obtained from finite

element analysis.

» Composite Bézier curves impose constraints on the location of control points. For
example, slope continuity (C') at the common point requires that the common point and

its two adjacent control points on either side of the curve segment must be collinear.
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DRAWBACKS OF COMPOSITE
BEZIER CURVES...

> C?continuity (slope derivative) at the common point of composite Bézier curves

further extends the constraint on the location of control points.

= [t requires four control points, in addition to the common point, to lie on a plane;
therefore, restrict the freedom of choosing the data points for the composite Bézier

curves.

» Thus, it is difficult to achieve C* continuity for the composite Bézier curves, with lower

degree polynomials.

= Keeping this in view, the designer prefers Bézier curve segments with an order 6 or 8

(hence, degree 5 or 7, respectively) for most of the CAD applications.
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DRAWBACKS OF COMPOSITE
BEZIER CURVES...

» The number of specified polygon vertices fixes the order (hence, degree) of the resulting

polynomial defining the Bézier curve.
= For example, a cubic curve by the four vertices and three spans.
= A fifth degree Beézier curve requires six vertices in the characteristic polygon.
" Thus, degrees of polynomial have been liked with the number of vertices.

= Therefore, to reduce degrees of the curve (also reduces the computation time) is to

reduce the number of vertices in the polygon.

= Alternatively, the degree of curve can only be increased, by increasing the number of

control points.
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ESSENTIAL REQUIREMENTS FOR
SYNTHETIC CURVES

In computer graphics, the designer can use a curve in a more comfortable way if the

following facilities are available:

1. Local modification over any segment of the curve
The designer should be able to change the positions of the control points in an intuitive

way without changing the overall shape (global change) of the entire curve segment.

2. Delink the number of control points and the degree of polynomial
The designer should be able to use lower degree polynomial segments still maintaining

the shape of curve using large number of control points.
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ESSENTIAL REQUIREMENTS FOR
SYNTHETIC CURVES

3. Parametric piecewise curve fitting with C* continuity

This is desirable for a curve to be inherently C % continuous throughout the length.

4. Finer shape control of curve by the knots insertions

Knots provide additional tool for designing and local editing of the curve shape.
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COMPUTER AIDED DESIGN Lecture 24
(BME-42)

Unit-III: Space Curves Topics Covered
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B-SPLINE CURVES

» Piecewise joining of polynomials gives splines.

» The letter ‘B’ stands for the basis, since the splines are represented as
weighted sums of the polynomial basis (blending) functions, in contrast to the

natural splines.

Those polynomials (or spline blending functions) that gives minimum span

or maximum possible control over the curve are termed B-Splines

Characteristics

» B-spline curves are characterized by approximating the endpoints, allowing first and

second order derivatives to be continuous at the endpoints of the curve.
» Under certain conditions, the curve may interpolate the endpoints.
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B-SPLINE CURVES

Consider blending functions [R;(¢f) designated by blending function like Bernstein

polynomial in a Bézier curve. It is some hypothetical blending function having the

variation within the range 0 <7 <1

A point defined by the hypothetical blending functions may be expressed as
P(t) =Y Py Ry (1) 0<r<1
k=0
For n + 1 = 6 vertices or n = 5 degrees of polynomial of blending functions, the points on
the hypothetical curve is given as

5
P(t) = Z PR (1) =P, R, + BR (1) + PRy (1) + P3R5 (1) + PyR4(¢) + PsRs5 (1)
k=0
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Figure show the variations of hypothetical blending functions R.(r) and the corresponding

curve. It can be observed that

atr=0 P(t):PoRo(Z)

att=1 P(t) = PsRs(1)

RO
H R .
12 + 5 (1) L2
i /]
1o M R (?) i Ry (1) Ry(1) R, () /-L 1.0
I R !
\ i o4 - ..’o‘ /,’_~\\ /
0.8 [ & ;08
=~ i \ : /;“\ \\ / i
= 0.6 — K ! /I "" \\ —10.6
S+ ! 7 %, N .
VAN ; I\ T
0.4 \ | / " / —H0.4
L ‘\ : // ", A ./ _
N\ AN N
0.2 ";\.' : L ~/\\ 0.2
N A7 VAN
0.0 et L > rZ L h | f L L .f"-. |_.A4 L RS 0.0
0.00 0.25 o35 0.50 0.75 1.00

Hypothetical blending functions Spline depicting local control
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B-SPLINE CURVES...

In contrast to Bernstein blending functions (nonzero for 0 <z <1), the hypothetical blending functions,

R:(?), are non-zero only for small intervals. we observed that

R, (¢) 1s non-zero only for the span from ¢ =0-0.25,

R, (?) 1s non-zero only for the span from # =0-0.50,

R, (¢) is non-zero only for the span from #=0-0.75,
R;(?) 1s non-zero only for the span from #=0.25-1.0,

R, (¢) is non-zero only for the span from #=0.50-1.0, and

R4 (?) 1s non-zero only for the span from #=0.75-1.0.

» Hence, if range of the blending functions is less than t = 0 — 1, we have better control
over the shape of the curve.
» Alternatively, the curve behave like non-global, i.e., portion of the curve can be

modified without changing the overall shape of the entire curve.
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B-SPLINE CURVES..

Polynomials are preferred as a blending function due to following reasons:

>

Easier to control

Easier to check for the continuity
(easy differentiation compared to other types of functions)

B-spline curves have ability to interpolate or approximate the given set of control
points.

In many engineering applications, interpolation is useful, e.g., displacements or

stress distribution in a component under the load.

Interpolation is also useful if designer has measured the data points, and a curve
passing through these data points is generated.

Similarly, approximation is used for drawing the free-form curves.

MED, M. M. M. University of Technology, Gorakhpur (UP)
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B-SPLINE CURVES...

Advantages over the Bézier curves

» The degree of B-spline polynomial can be set independently of number of control
points.

= The B-spline curves delink the degrees of resulting curves from the number of

control points.

» For example, four control points always result into a cubic Bézier curve; but four

control points in B-spline curve can generate a linear, quadratic or cubic curves.

= This flexibility in B-spline curves is obtained by cl/oosing the blending functions
with additional degree of freedom, which is not available with Bernstein blending

functions
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B-SPLINE CURVES...

Advantages over the Bézier curves...

»B-spline functions allow local control over the shape of the curve.

= The polynomial coefficient depends on just a few control points, leading to /ocal

control over the shape of the curve.
= Bernstein blending functions is a special case of B-spline blending functions.

= B-spline curves have C* continuity, like natural splines, but do not interpolate their

control points.
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TYPES OF B-SPLINE CURVES...

1.  Non- Rational B-Splines
a) Periodic Uniform Knot Vector
b)  Open Uniform Knot Vector

c) Non -Uniform Knot Vector

2. Rational B-Splines

Projection of non-rational defined in 4D homogeneous coordinate space (often called
weights on blending functions) into 3D physical space

a) Periodic Uniform Knot Vector

b)  Open Uniform Knot Vector

c) Non-Uniform Knot Vector
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NON-RATIONAL B-SPLINE CURVES...

B-Spline Blending Functions
Splines are used as blending functions.

Let, the guadratic (m = 2') spline function is defined as

ra(t):%tz 0<t<1
g)=1b()=2-(~3? 15152
c(t)=13-1)’ 2<¢<3
) 1.00?
Knots are provided at t=0,1,2,3 V
0.75 -
a(l)=b(1) a'()=>'(1) and a"(1)#0"(1) _
%O 0.50 -

b(2)=c(2) B(Q2)=c'(2) and Bb'Q)=c'(Q2)

025

« m”degree spline is a piecewise polynomial of 0.00 5

m' degree, ¢

* which has its first (m-7) derivatives continuous.
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NON-RATIONAL B-SPLINE CURVES...

» The spline functions are used as blending functions in B-splines.

» The shifted splines can be used as blending functions, i.e., other spline blending

functions can be written as
g:(t)=g(-1)

Each blending functions are simply translate of the others. The number of spline
blending functions depends upon the number of control points. For example, the
quadratic blending functions corresponding to the four control points are expressed as

1.00

g, (1) g,(1) g,(t) g,4(1)

0.75

050 Shifted quadratic (m=2) spline

g()

blending functions
0.25

0.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I

o
—
)
w
~
)
=)
N
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NON-RATIONAL B-SPLINE CURVES...

for i=1 g(t) or g,(¢) are same

for i =2 g,()=gt-1), g,(t) issame as g(¢) or g,(¢) but shifted at 7 =1
for i=3 g;(t)=g(t-2), gs(¢) 1ssame as g(¢) or g,(¢) but shifted at =2
for i=4 g,t)=g(t-3), g,(t) 1ssame as g(¢) or g,(¢) but shifted at

» Quadratic splines can be used as blending functions for the generation of 2D B-splines.

» To generate the curve, at least four control points are required, and each blending

function will weight one control point.

» The B-spline curve can be expressed as

where i represents a knot or control point.

MED, M. M. M. University of Technology, Gorakhpur (UP)
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NON-RATIONAL B-SPLINE CURVES...

For quadratic spline blending functions (m = 2) with four control points (knots), i.e.,

n+ 1=4 or n =3, the B-spline function is expressed as
P(t) = Z Pigz(t) Pg (t)+ Pyg,(t)+ Pg,(t)+ P,g, (1) 0<t<n+3,ieb

From Figure, the different points P(¢) on B-spline curve may be calculated as
att=0, g())=g,)=g,@)=g,()=0; P(¢) =0 1s the first point (origin itself)
at t=1, g(N=7andg,(N=g:;N=g,n=0; P@t)=7

at 1=2, gi(t)=g,() =75 and g, () =g, (N=0;  P(t)=-"32

at =3, gr()=g:(N=7 andg,(N=g,()=0;  P()="5"

at 1=4, g3()=gu() =75 and g, (1) = g,(1) =0;  P(t) =5~

at1=>5, g4(l‘)=% and g,(t) = g,(1) = g;(1)=0; P(t):%
att=6, g(t)=g,t)=g;(t)=g,()=0; P(¢t) =0 1is the last point (origin itself)
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NON-RATIONAL B-SPLINE CURVES...

Figure shows B-spline curve generated by joining the above points. In general, parameter ¢
ranges from¢t=0to¢r=n+3,1.e.,6

A

P3
(Py+Py) e
2 g ‘ i
Py oo =4
=3¢ (B+P)
. 2
p First control point E
4 . for Bézier curve ‘
2 Pt=5 5
P, / =2
t=1.~ (A+P) P,
’ 2
t=6 b P g
origin | 2 -

t=0 _ :
First control point

for B-spline curve

B-spline curve with quadratic shifted splines as blending functions
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NON-RATIONAL B-SPLINE CURVES...

The drawback of B-spline curve is that it is not passing through the endpoints, 1.e.,

endpoints P, and P, , as obtained in Bézier curve.

In Bézier curve, the designer can fix the two extreme values of parameter ¢ for the
endpoints, and curve passes through the endpoints; therefore, easy to control the curve

shape.

However, in B-spline curves, the first endpoint occurs at the middle point of line

joining the first endpoint with the origin.

Similarly, the last endpoint occurs at the middle point of line joining the last endpoint

with the origin.

To make the curve to pass through the endpoints (say, first endpoint P;), the designer

can select the first endpoint £, so that Pl;P 2 falls at the endpoint £, . This is obtained

by using the multiplicity of control points.
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NON-RATIONAL B-SPLINE CURVES...

» Moreover, the origin can be avoided if parameter ¢ ranges from 2 <¢<n +1 , instead of
0<t<n+l

» For example, for quadratic spline blending functions (m = 2) with four control points, i.e.,

n+ 1=4 orn=3. (order of B-spline function), parameter range 2 <¢ < 4 1s considered.

B-spline Blending Function Formulation

The general expression for the calculation of coordinate positions P(f) on a B-spline

curve may be expressed as

n+l

P(t):ZPI.,Ni’m(t) t . <t<t 2<m<n+l
i=l1

P, = Position vectors (coordinates) of (n + 1) vertices defining the polygon control
points

N; »(#)= Normalized B-spline blending (basis) functions
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B-SPLINE BLENDING FUNCTION FORMULATION

m = Order of B-spline blending functions

m —1= Degree of polynomials of B-spline blending functions

B-spline curve is defined as a polynomial spline function of order m (hence, degree m — 1)

because it satisfies the following two conditions:

* B-spline function P(¢) is a polynomial of degree (m—1) on each interval x;, <t < x;,,
* B-spline function P (¢)and its derivatives of order 1, 2, 3 ...(m—2) are all continuous

over the entire curve
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B-SPLINE BLENDING FUNCTION FORMULATION

Thus,
L. Fourth order (m=4) B-spline curve is a piecewise cubic (m—1) spline blending function (e.g.,
at’ +bt’ +ct+d ) and curve possesses second order (m—2),i.e. C* continuity.
II.  Third order (m=3) B-spline curve is a piecewise quadratic (m—1) spline blending function (e.g.,
at® +bt+c) and curve possesses first order (m—2), i.e. C! continuity.

III.  Second order (m=2) B-spline curve is a piecewise linear (m—1) spline blending function (e.g.,

at+b) and curve possesses zero order (m—2),i.e. C° continuity.

IV.  First order (m=1) B-spline curve is a piecewise zero degree (m—1) spline blending function;

hence, the curve is just a point plot of the control point.
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B-SPLINE BLENDING FUNCTION FORMULATION

The blending function for B-spline curve is defined by the recursive formula

(t_xi)

irm—1 — X Xiem — Xinl

Xim — 1
Ni,m—l (t) + ( : ) Ni+1,m—1 (t)

N, @)=
X

B-spline blending function of order one (m =1) by Cox-deBoor as

1 ifx, <t<x,,

Ni,l(t):{

0 otherwise

The Cox-deBoor formula is used to calculate B-spline blending functions in a recursive
relation, a blending function of a given order m depends on the lower order blending

functions down to order 1

For given blending function py, ~, Figure shows that this dependency on lower order
blending functions forms a triangular pattern. Each higher order B-spline blending

function, finally depends on the blending functions of order one.
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B-SPLINE BLENDING FUNCTION FORMULATION

Dependency Diagram for Blending Function

th :
m  order functions Ni,m
(m—1)" order functions Nima Niama
h :
(m—2)" order functions Nimz Nima Nz

First order (m=1) functions
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NON-RATIONAL B-SPLINE CURVES...

Knot Vector

» Local control of B-spline curve is obtained by defining the spline blending functions
over the m subintervals of total range of parameter.
» The selected set of subinterval endpoints X; for the range of parameter ¢ is referred to
as knot vector.
» The knot vector is selected such that
Xi < Xin

» Knot vectors are real numbers and monotonically increases in the range of parameter ¢

The general knot vector is defined as
[X]:[xl Xy X3 o . . . X, X, - ]

Where x,;, and x.,, depends on the number of control points.
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NON-RATIONAL B-SPLINE CURVES...

Knot Vector...

» The choice of knot vector has a significant influence on the spline blending
functions N, (?)

The general knot vector is defined as
[(X]=[x, x, x5 x, xx . . . . . .J=[0123 4 . . . .. ]
In the following, spline blending functions of various orders have been determined:

Spline blending functions of order 1

m = 1 means one subinterval for each blending function.

Degree of spline blending function, m — 1 =0

Hence, from blending function eqn., we have N, ,(¢) = 1 for x; <7 =X,
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NON-RATIONAL B-SPLINE CURVES...

Knot Vector...
Therefore, successive blending functions of order 1 are given by
N, (@)= N,,(¢)=N;,()=....=1 (constant) for x, <¢t<x,_,

Figure shows three constant blending functions.
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Spline blending functions form=1and [X]=[0 1 2 3 . . |]
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NON-RATIONAL B-SPLINE CURVES...

Knot Vector...
Spline blending functions of order 2

m =2 means two subintervals for each blending function.
Degree of spline blending function, m —1=1 (linear)
Hence, from eqn. we have

(t B xi) (xi+m - t)

Ni,m (t) = Ni,m—l (t) + Ni+1,m—1 (t)
KXivm1 — % KXivm — Xin
For i=1, m=2, we have
l'_
N =N 0+ 5,
X =X X3 —X
t—0 —1
-2, 0+ 22,0
or N ,(@)=t.N, () +(2—1).N,, (@) (triangular shape)

Similarly, N,,(#)=(¢t—1).N,,(®)+(3—1).N;,(¢) (triangular shape shifted at 1 =1)
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NON-RATIONAL B-SPLINE CURVES...

Knot Vector...

Figure shows the shape of two friangular shape blending functions.

e
.
0 1 2 3
-
m=2 t
(b)
Spline blending functions form=2and [X]=[0 1 2 3 . . |]
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NON-RATIONAL B-SPLINE CURVES...

Knot Vector...

Spline blending functions of order 3

m =3 means three subintervals for each blending function.

Degree of spline blending function, m —1=2 (quadratic)

For i=1, m =3, eqn. gives

(t—x,) (x, —1) _
N;(@) = : Ny, (1) + * N, , (1) :ile(t)+uN22(t)

Figure shows the shape of quadratic blending function

100

Spline blending functions for

Nl, 3 (f)

m=3and [X]=[0 1 2 3 ]
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TYPES OF KNOT VECTOR

1. Periodic Uniform Knot Vector

[X]=[0 1 2 3 4 5 6 . . . ]

=[-03 -02 01 0 01 02 03 . . . ]

In general, uniform knot vector starts at 0 to some maximum value with an equal

increment of 1, e.g.

[X]=[0 1 2 3 4]
In normalized form, we have

[(X1=0% & % § 4]

1 4 1 1

=[0 025 05 075 1]

For given order of spline blending function (m) , uniform knot vector results into periodic uniform
blending functions, 1.e., each blending function is a translate of the other.
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1. Periodic Uniform Knot Vector...

Mathematically, it is expressed as

TYPES OF KNOT VECTOR...

Ni,m (t) = Ni—l,m (t o ]') = Ni+l,m (t + 1)

For example, for m =3 (number of subintervals) and four control points (n+1=4or n=3), the number

of knot values are n+m+1=3+3+1=7; hence, seven knot vectors are expressed as

[XT=1[x x, x3 x;, x5

1.00

x, x,]=[0 1 2 3 4 5 6]

N N1, \ Nag | N \
0.75 |
= o050 |
-
0.25 |
0.00 i l — | | P l R PR
| 2 3 4 5 6
m=1 t
(@)

Periodic uniform spline blending functions form=1,n+1=4, [X]=[0 1 2 3 4 5 6],
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TYPES OF KNOT VECTOR...

1.00 ~
073 V12 N2 V32 Va2 Ns.2
T T {1 TESSSURNY USSR | SO, 'S, ‘AN, ' AU, WO
=
0.25 |-
0.00 . .
0 1 2 3 2 5 6
¢
- >
m=2

Periodic uniform spline blending functions form=2,n+1 =4,

[X]=[0 1 2 3 4 5 6],
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TYPES OF KNOT VECTOR...

1. Periodic Uniform Knot Vector...

1.00 ~
0.75
= 0.50 |
= i
0.25
0.00 L=
0‘

m =3 I

(©

Periodic uniform spline blending functions form=3,n+1 =4,

[X]=[0 1 2 3 4 5 6]

MED, M. M. M. University of Technology, Gorakhpur (UP) 133



TYPES OF KNOT VECTOR..

2. Open Uniform Knot Vector

» An open uniform knot vector has multiplicity of knots.

» The ends knot values in open uniform knot vector is equal to the order m of the spline
blending (basis) function and internal knot values are equidistant for the entire range of
parameter .

» In general, open uniform knot vector is defined as

x; =0 for 1<i<m
X, =i—m for m+1<i<n+l
x;=n—-m+2 for n+2<i<n+m+l

Table shows the calculations of general open uniform knot vector corresponding to the

different order of spline blending functions.
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2. Open Uniform Knot Vector...

TYPES OF KNOT VECTOR...

Table Determination of open uniform knot vector for different order of spline blending functions

Number of Order of spline x; =0 X, =i—m X, =n—m+2
vertices functions 1<i< m+1<i<n+l n+2<i<n+m+l
(n+1) (m)

5 2 x =0 X;=i—-m=3-2=1 Xe=n—m+2=4-2+2=4
X, = X,=i—-m=4-2=2 | x;=n-m+2=4-2+2=4
Xs=i—-m=5-2=3
5 3 X = x,=i—-m=4-3=1 Xg=n—-m+2=4-3+2=3
X, = Xs=i—m=5-3=2 X;=n-m+2=4-3+2=3
Xy = Xg=n—-m+2=4-3+2=3
5 4 X = Xs=i—m=5-4=1 Xg=n—-m+2=4-4+2=2
X, = X;=n-m+2=4-4+2=2
Xy = Xg=n—-m+2=4-4+2=2
X, = Xog=h—-m+2=4-4+2=2
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TYPES OF KNOT VECTOR...

2. Open Uniform Knot Vector...
For integer increments, the open uniform knot vectors are calculated as

m =2 (multiplicity of two-knot values), [X]=[0 0 1 2 3 4 4]
[X]=[0 O 0 1 2 3 3 3]

[X]=[0 0 0 0 1 2 2 2 2]

m =3 (multiplicity of three-knot values),

m =4 (multiplicity of four-knot values),

In normalized form, we have

1 1]
11 1]
111 1]

m=2, [X]=[0 0 1

D= W K

1
2
m=3, [X]=[0 0 0 1
m=4, [X]=[0 0 0 0
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TYPES OF KNOT VECTOR...

2. Open Uniform Knot Vector...

When number of defining polygon vertices is equal to the order of spline blending
functions, and an open uniform knot vector is used, the spline blending functions

are reduced to Bernstein polynomials. Alternatively, B-spline curve converts into a

Bezier curve.

Mathematically, when n+1=m, the open uniform knot vector results a Bézier curve. For example, for

n+1=m=4, the knot vector values are calculated as

x, =0 for I<i<m,1e., x,=x, =x;=x, =0 for I<i<4

x,=n—m+2 for n+2<i<n+m+l1,1e., x;=x,=x, =x;=n—-m+2=3-4+2=1

Therefore, knot vector is just m zeros followed by m ones, thus

[X]=[x, x, x3 x, x5 x4, X, x|=[0 0 0 0 1 1 1 1]
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TYPES OF KNOT VECTOR...

2. Open Uniform Knot Vector...

This results into a cubic Bézier/B-spline curve. Fig. shows the corresponding Bézier/B-

spline blending functions for four control points, n + 1 = m = 4.

B, (1)

X4:0 x8:1
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TYPES OF KNOT VECTOR...

2. Open Uniform Knot Vector...

B-Spline curve of third order

» Let, the order of spline blending function is 3 ( m = 3); therefore, degree of blending

function 1s quadratic.

» For m = 3 (three subintervals for each blending function), if multiplicity of three at

origin occurs the knot vector for five control points may be obtained as given below:

Five control points P, P,, P,, P,, P;
Multiplicity at endpoints : m=3 Control points: n+1=5 o n=4

Parameterrange : 0<t<n-m+2 ,ie. 0<¢r<3
Number of knot values = n+m+1 ,i.e. 4+3+1=8

Knotvector: [X]=[x, x, x x, x x x, x]=[0 0 01 2 3 3 3]

n+l 5

The B-spline curve P(t) = ZB'Ni,m(t): ZB‘Ni,S(t) = PlNl,3 +P2Nz,3 "’P3N3,3 +P4N4,3 "'P5N5,3

MED, M. M. M. University of Technology, Gorakhpur (UP) 139



2. Open Uniform Knot Vector...

TYPES OF KNOT VECTOR...

®p, P, P,

r - —— — - —
ll| JE—IT—RS—E

B-Spline curve of third order N
1.00 1.00
Nys - Ns3
o ¥ 3 5 7 =
0.75 | N 5 ., Ho7
== 0.50 - — 0.50
0.25 | { 025
{’] G{} 1 1 1 1 1 1 1 1 G ‘:]{:' I."'" i
1] 1 2 3 origin

Fig. shows the B-spline curve for five control points. The curve interpolates the end control

points P and P, because it has multiplicity of 3 (equal to the order of spline blending

function) at the end points.
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TYPES OF KNOT VECTOR...

3. Non-uniform Knot Vector
» For this class of splines, any value and spacing between the knots can be specified.

» When internal knots are unequally spaced or have multiple values, it results into

nonuniform blending functions.

» The unequally spaced knot values results into different shapes of B-spline blending

functions for different intervals.

» The increase in multiplicity of knot values introduces substantial modifications in the

shape of curve and even introduces discontinuities.

Some examples of nonuniform knot vectors are

[X]=[0 0.27 0.5 0.74 1]
[X]=[0 0 0 1.7 23 3 3 3]

[X]1=[0 0 o0 1 1 3 3 3]

[X]=[0 0 0 1.7 23 3 3 3]
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TYPES OF KNOT VECTOR...

3. Non-uniform Knot Vector...

1.00

a0

[X]=[0 0 O I 2 3 3 3]

The nonuniform knot vectors have multiplicity of three at the ends
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TYPES OF KNOT VECTOR...

1.00

1 0.75

0.50

N(n

Nonuniform blending functions with unequally spaced internal knots for n+1=5,m=3.
[X]=[0 O O 0.5 2.5 3 3 3]
Any value and spacing between the knots.

The nonuniform knot vectors have multiplicity of three at the ends
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TYPES OF KNOT VECTOR...

1.00

(n

A

Nonuniform blending functions with unequally spaced internal knots for n+1=5,m=3.

[X]=[0 O O 1.7 23 3 3 3]
Any value and spacing between the knots.

The nonuniform knot vectors have multiplicity of three at the ends

MED, M. M. M. University of Technology, Gorakhpur (UP) 144



TYPES OF KNOT VECTOR...

3. Non-uniform Knot Vector...

1.00

0.75

0.50

0.00

I

Nonuniform blending functions with multiple internal knots for n+1=5,m=3.

[X]=][0 O O 1 1 3 3 3]
Any value and spacing between the knots. Internal multiplicity occurs at knot value 1.

The nonuniform knot vectors have multiplicity of three at the ends
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TYPES OF KNOT VECTOR...

Nonuniform blending functions with multiple internal knots for n+1=5,m=3.

[X]=[0 O O 2 2 3 3 3]
Any value and spacing between the knots. Internal multiplicity occurs at knot value 2.

The nonuniform knot vectors have multiplicity of three at the ends
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SHAPE CONTROL OF NON-RATIONAL
B-SPLINE CURVES

The following methods may be used for controlling the sZape of nonrational

B-spline curves.

L. Changing the type of knot vector, i.e., periodic uniform, open uniform and

nonuniform, alternatively, the shape of spline blending functions.

II. Changing the number (z + 1) and location (i.e., knot values) of the defining

polygon vertices.

III. Changing the order (m) of B-spline blending function, 1.e., quadratic (m = 2),

cubic (m = 3) and so on (Figure)

m =1 results into zero degree curves, i.e., point plot of the control points.
m =2 results into one-degree (linear) curve, i.e., polygon segments themselves.
m =3 results into two-degree (quadratic) B-spline curve.

m =4 results into three-degree (cubic) B-spline curve, 1.e., a Bézier curve.
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SHAPE CONTROL OF NON-RATIONAL
B-SPLINE CURVES

P,
/Q\
4 ve—— m = 2 (linear)
S m = 3 (quadratic)
m = 4 (cubic)

Py
(a)

P
N .

Pye AN

/ tightening of  ~ ~ — @F I’ AR
/ \_ m = 3 (quadratic)
P m = 4 (cubic)
m = 6 (quintic)

’
\
\\ ,I<— m = 2 (linear) /"Pé
‘P \ -
2

(®)

Effect of varying order (degree) of B-spline curves on its Shape
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SHAPE CONTROL OF NON-RATIONAL
B-SPLINE CURVES

IV. Using the internal multiplicity and ends multiplicity of knots

The internal multiplicity induces a cusp in one of the blending functions; moreover, the

location of cusp changes with the change in the values of multiple internal knot vectors
IV. Using multiplicity of polygon vertices

Internal multiplicity of knot values induces the regions of high curvature in B-spline curve

v

P. m=4
Muiltiplicity of 3 at 2.

Multiplicity of 2 at 2,

All the curves are of
fourth order (m = 4)

MNo multiplicity

o
(]
s
L]
=]

10
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SHAPE CONTROL OF NON-RATIONAL
B-SPLINE CURVES

Lowest curve defined by the four polygon vertices A, B, B, B, with knot vector
[X]=[0 0 0 0 1 1 1 1]

Middle curve defined by the five polygon vertices B,P,P,P,P, (two coincident/multiple

vertices at P, ) with knot vector

[X]=[0 0 0 0 1 2 2 2 2]

Highest curve (polygon itself) defined by the six polygon vertices B,P,,P,,P,, P, P, (three

coincident/multiple vertices at P, ) with knot vector

[X]=[0 O O O 1 2 3 3 3 3]
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SHAPE CONTROL OF NON-RATIONAL
B-SPLINE CURVES

* The B-spline curve pulls more towards the control point £ by increasing its multiplicity
* A sharp corner can be created by keeping the number of multiple vertices equal to m-1.
* Thus, in the present situation, a sharp corner is created at the vertex using a multiplicity

of 3 (m-1=4-1=3). Polygon itself has multiplicity of 3, i.e., , _,
b B P

It should be noted that a linear segment occurs on both sides of multiple vertex
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PROPERTIES OF NON-RATIONAL
B-SPLINE CURVES...

* The shapes of B-spline curves depend upon the shapes of spline blending functions.

¢ Alternatively, the properties of B-spline curves depend upon the properties of spline
blending functions, and the way their shapes are controlled.

% It is very difficult to control and calculate the B-spline curve accurately when higher

degree polynomials are used; therefore, cubic B-spline curves are generally preferred

for large number of CAD applications.
The properties of B-spline functions are

1. The B-spline function P(¢) 1s a polynomial of degree m—1 (where m is the order of spline

blending functions) on each interval x, <t <x,.

2. The B-spline functions P(¢) and its derivatives of order 1,2, 3, ...., m—2 are all continuous over

the entire range of parameter ¢.
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PROPERTIES OF NON-RATIONAL
B-SPLINE CURVES...

3. Each spline blending functions has precisely one peak value except for m =1, where the peak

value is constant, i.e., ‘1’ for the entire range of parameter ¢ .
4. The sum of spline blending functions is unity for any value of parameter ¢ (0<7<1).

Mathematically, we have

n+l

D Nin@=1
i=l

Each blending function is either positive or zero for all values of parameter ¢, i.e. N,,(1)20.

5. Each blending function N, (¢) is defined over m subintervals of the total range of parameter ¢
for x, <t<x,,.

6. If order of B-spline curve is equal to the number of defining polygon vertices (i.e.,m = n +1), the
spline blending functions are termed as Bernstein polynomials; consequently, B-spline curve

reduces to a Bézier curve.

7. The curve generally follows the shape of the defining polygon.
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10.

11.

12.

PROPERTIES OF NON-RATIONAL

B-SPLINE CURVES..

The B-spline curve exhibits the variation diminishing property. Thus, the curve does not oscillate
about any straight line more often than the sides of its characteristic polygon.

The B-spline curve is invariant under an affine transformation. An affine transformation is a
combination of linear transformations, e.g., rotation followed by the translation. For an affine

transformation, the last row in a general 4x4 transformation matrix is [0 0 0 1]. Any affine

transformation can be applied to the curve by applying it to the defining polygon vertices, i.e., the
curve is transformed by transforming the defining polygon vertices.

The B-spline curve is described with n+1 blending functions corresponding to the n+1 control
points.

The range of parameter ¢ is divided into m subintervals by the n+m+1 knot values specified
in the knot vector.

Each section of B-spline curve is influenced by the m control points. Conversely, one control
point can affect the shape of the curve at most m curve sections. For # =1.2, the curve is affected

by m =3 control points corresponding to the spline blending functions N,;, N;; and N,;.

MED, M. M. M. University of Technology, Gorakhpur (UP)

155



PROPERTIES OF NON-RATIONAL
B-SPLINE CURVES...

P 1.00

0.7 "1 0.75
gy — o.50
e ]

0. - 0.25

0. =3 0.00

Dependencies of higher order nonuniform spline blending functions on lower order blending
functions for n+1=5, m=3, [X]=[0 0 0 2 2 3 3 3]
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PROPERTIES OF NON-RATIONAL
B-SPLINE CURVES...

13.  The curve lies within the convex hull of its defining polygon.
The convex hull property of B-spline curves is stronger than that of the Bézier curves. A point on
B-spline curve must lie within the convex hull of m successive control points. Therefore, all
points on the curve must lie within the union of all convex hulls, formed by considering m

successive defining polygon vertices. Figure illustrates the convex hull of B-spline curves, shown
within the dotted area of the polygons, of different order m . For m =2, the convex hull is the

defining polygon itself; however, the convex hull for higher order B-spline curves (m =3, 4, 6)

is defined as the union of convex hulls of m successive defining polygon vertices.
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PROPERTIES OF NON-RATIONAL
B-SPLINE CURVES...

-
m=o

Convex hull properties of B-spline curves (m = 2 and 3)
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PROPERTIES OF NON-RATIONAL
B-SPLINE CURVES...

Convex hull properties of B-spline curves (m = 4 and 6)
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PROPERTIES OF NON-RATIONAL
B-SPLINE CURVES...

13.  The B-spline curve tightens with an increase in the degree of the curve. Generally, lesser the
degree, closer is the curve towards the control points. Fig. shows the effect of increase in order

(degree) of B-spline functions on its shape.

14.  Internal multiplicity of control points induces the regions of high curvature. Alternatively, the
curve pulls more towards the polygon vertices by increasing its multiplicity. This property helps

in generating the sharp corners in B-spline curves.

15. Local modifications over any B-spline curve segment are possible. In general, the curve is affected
for the curve segments corresponding to *m/2 polygon spans around the displaced polygon

vertex. Fig. 8.48 shows three B-spline curves, each of order four (m =4), obtained by moving
vertex Fs, successively to the new locations P, and P, thereby depicting the local modifications

(i.e., shape change in the limited region) in the original curve. When vertex P, shifts to P5' , only
the curve segments corresponding to polygon spans PP,, PP, P.P, and PP, are affected, i.e.,
only two curve segments corresponding to the two polygon spans (tm /2 =4/2 =2) around the

displaced vertex P; are affected.
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PROPERTIES OF NON-RATIONAL
B-SPLINE CURVES...

Modified curve 1
Modified curve 2

-
-
-

Local control (modification) of B-spline curves
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