
Chapter 5

SQL: Data Manipulation

Transparencies

© Pearson Education Limited 1995, 2005

2

Chapter 5 - Objectives

Purpose and importance of SQL.

How to retrieve data from database using

SELECT and:

– Use compound WHERE conditions.

– Sort query results using ORDER BY.

– Use aggregate functions.

– Group data using GROUP BY and HAVING.

– Use subqueries.

© Pearson Education Limited 1995, 2005

3

Chapter 5 - Objectives

– Join tables together.

– Perform set operations (UNION, INTERSECT,

EXCEPT).

How to update database using INSERT,

UPDATE, and DELETE.

© Pearson Education Limited 1995, 2005

4

Objectives of SQL

Ideally, database language should allow user to:

– create the database and relation structures;

– perform insertion, modification, deletion of
data from relations;

– perform simple and complex queries.

Must perform these tasks with minimal user
effort and command structure/syntax must be
easy to learn.

It must be portable.

© Pearson Education Limited 1995, 2005

5

Objectives of SQL

SQL is a transform-oriented language with 2

major components:

– A DDL for defining database structure.

– A DML for retrieving and updating data.

Until SQL:1999, SQL did not contain flow of

control commands. These had to be implemented

using a programming or job-control language, or

interactively by the decisions of user.

© Pearson Education Limited 1995, 2005

6

Objectives of SQL

SQL is relatively easy to learn:

– it is non-procedural - you specify what

information you require, rather than how to get

it;

– it is essentially free-format.

© Pearson Education Limited 1995, 2005

7

Objectives of SQL

Consists of standard English words:

1) CREATE TABLE Staff(staffNo VARCHAR(5),

lName VARCHAR(15),

salary DECIMAL(7,2));

2) INSERT INTO Staff VALUES (‘SG16’, ‘Brown’,
8300);

3) SELECT staffNo, lName, salary

FROM Staff

WHERE salary > 10000;

© Pearson Education Limited 1995, 2005

8

Objectives of SQL

Can be used by range of users including DBAs,

management, application developers, and other

types of end users.

An ISO standard now exists for SQL, making it

both the formal and de facto standard language

for relational databases.

© Pearson Education Limited 1995, 2005

9

History of SQL

In 1974, D. Chamberlin (IBM San Jose

Laboratory) defined language called ‘Structured

English Query Language’ (SEQUEL).

A revised version, SEQUEL/2, was defined in

1976 but name was subsequently changed to SQL

for legal reasons.

© Pearson Education Limited 1995, 2005

10

History of SQL

Still pronounced ‘see-quel’, though official

pronunciation is ‘S-Q-L’.

IBM subsequently produced a prototype DBMS

called System R, based on SEQUEL/2.

Roots of SQL, however, are in SQUARE

(Specifying Queries as Relational Expressions),

which predates System R project.

© Pearson Education Limited 1995, 2005

11

History of SQL

In late 70s, ORACLE appeared and was probably first
commercial RDBMS based on SQL.

In 1987, ANSI and ISO published an initial standard for
SQL.

In 1989, ISO published an addendum that defined an
‘Integrity Enhancement Feature’.

In 1992, first major revision to ISO standard occurred,
referred to as SQL2 or SQL/92.

In 1999, SQL:1999 was released with support for object-
oriented data management.

In late 2003, SQL:2003 was released.

© Pearson Education Limited 1995, 2005

12

Importance of SQL

SQL has become part of application architectures

such as IBM’s Systems Application Architecture.

It is strategic choice of many large and influential

organizations (e.g. X/OPEN).

SQL is Federal Information Processing Standard

(FIPS) to which conformance is required for all

sales of databases to American Government.

© Pearson Education Limited 1995, 2005

13

Importance of SQL

SQL is used in other standards and even

influences development of other standards as a

definitional tool. Examples include:

– ISO’s Information Resource Directory System

(IRDS) Standard

– Remote Data Access (RDA) Standard.

© Pearson Education Limited 1995, 2005

14

Writing SQL Commands

SQL statement consists of reserved words and user-

defined words.

– Reserved words are a fixed part of SQL and must

be spelt exactly as required and cannot be split

across lines.

– User-defined words are made up by user and

represent names of various database objects such

as relations, columns, views.

© Pearson Education Limited 1995, 2005

15

Writing SQL Commands

Most components of an SQL statement are case
insensitive, except for literal character data.

More readable with indentation and lineation:

– Each clause should begin on a new line.

– Start of a clause should line up with start of
other clauses.

– If clause has several parts, should each appear
on a separate line and be indented under start
of clause.

© Pearson Education Limited 1995, 2005

16

Writing SQL Commands

Use extended form of BNF notation:

- Upper-case letters represent reserved words.

- Lower-case letters represent user-defined words.

- | indicates a choice among alternatives.

- Curly braces indicate a required element.

- Square brackets indicate an optional element.

- … indicates optional repetition (0 or more).

© Pearson Education Limited 1995, 2005

17

Literals

Literals are constants used in SQL statements.

All non-numeric literals must be enclosed in

single quotes (e.g. ‘London’).

All numeric literals must not be enclosed in

quotes (e.g. 650.00).

© Pearson Education Limited 1995, 2005

18

SELECT Statement

SELECT [DISTINCT | ALL]

{* | [columnExpression [AS newName]] [,...] }

FROM TableName [alias] [, ...]

[WHERE condition]

[GROUP BY columnList] [HAVING condition]

[ORDER BY columnList]

© Pearson Education Limited 1995, 2005

19

SELECT Statement

FROM Specifies table(s) to be used.

WHERE Filters rows.

GROUP BY Forms groups of rows with same

column value.

HAVING Filters groups subject to some

condition.

SELECT Specifies which columns are to

appear in output.

ORDER BY Specifies the order of the output.

© Pearson Education Limited 1995, 2005

20

SELECT Statement

Order of the clauses cannot be changed.

Only SELECT and FROM are mandatory.

© Pearson Education Limited 1995, 2005

21

Example 5.1 All Columns, All Rows

List full details of all staff.

SELECT staffNo, fName, lName, address,

position, sex, DOB, salary, branchNo

FROM Staff;

Can use * as an abbreviation for ‘all columns’:

SELECT *

FROM Staff;

© Pearson Education Limited 1995, 2005

22

Example 5.1 All Columns, All Rows

© Pearson Education Limited 1995, 2005

23

Example 5.2 Specific Columns, All Rows

Produce a list of salaries for all staff, showing only

staff number, first and last names, and salary.

SELECT staffNo, fName, lName, salary

FROM Staff;

© Pearson Education Limited 1995, 2005

24

Example 5.2 Specific Columns, All Rows

© Pearson Education Limited 1995, 2005

25

Example 5.3 Use of DISTINCT

List the property numbers of all properties that

have been viewed.

SELECT propertyNo

FROM Viewing;

© Pearson Education Limited 1995, 2005

26

Example 5.3 Use of DISTINCT

Use DISTINCT to eliminate duplicates:

SELECT DISTINCT propertyNo

FROM Viewing;

© Pearson Education Limited 1995, 2005

27

Example 5.4 Calculated Fields

Produce list of monthly salaries for all staff,

showing staff number, first/last name, and salary.

SELECT staffNo, fName, lName, salary/12

FROM Staff;

© Pearson Education Limited 1995, 2005

28

Example 5.4 Calculated Fields

To name column, use AS clause:

SELECT staffNo, fName, lName, salary/12

AS monthlySalary

FROM Staff;

© Pearson Education Limited 1995, 2005

29

Example 5.5 Comparison Search Condition

List all staff with a salary greater than 10,000.

SELECT staffNo, fName, lName, position, salary

FROM Staff

WHERE salary > 10000;

© Pearson Education Limited 1995, 2005

30

Example 5.6 Compound Comparison Search

Condition

List addresses of all branch offices in London or

Glasgow.

SELECT *

FROM Branch

WHERE city = ‘London’OR city = ‘Glasgow’;

© Pearson Education Limited 1995, 2005

31

Example 5.7 Range Search Condition

List all staff with a salary between 20,000 and

30,000.

SELECT staffNo, fName, lName, position, salary

FROM Staff

WHERE salary BETWEEN 20000 AND 30000;

BETWEEN test includes the endpoints of range.

© Pearson Education Limited 1995, 2005

32

Example 5.7 Range Search Condition

© Pearson Education Limited 1995, 2005

33

Example 5.7 Range Search Condition

Also a negated version NOT BETWEEN.

BETWEEN does not add much to SQL’s
expressive power. Could also write:

SELECT staffNo, fName, lName, position, salary

FROM Staff

WHERE salary>=20000 AND salary <= 30000;

Useful, though, for a range of values.

© Pearson Education Limited 1995, 2005

34

Example 5.8 Set Membership

List all managers and supervisors.

SELECT staffNo, fName, lName, position

FROM Staff

WHERE position IN (‘Manager’, ‘Supervisor’);

© Pearson Education Limited 1995, 2005

35

Example 5.8 Set Membership

There is a negated version (NOT IN).

IN does not add much to SQL’s expressive power.
Could have expressed this as:

SELECT staffNo, fName, lName, position

FROM Staff

WHERE position=‘Manager’OR

position=‘Supervisor’;

IN is more efficient when set contains many values.

© Pearson Education Limited 1995, 2005

36

Example 5.9 Pattern Matching

Find all owners with the string ‘Glasgow’ in their

address.

SELECT ownerNo, fName, lName, address, telNo

FROM PrivateOwner

WHERE address LIKE ‘%Glasgow%’;

© Pearson Education Limited 1995, 2005

37

Example 5.9 Pattern Matching

SQL has two special pattern matching symbols:

– %: sequence of zero or more characters;

– _ (underscore): any single character.

LIKE ‘%Glasgow%’ means a sequence of

characters of any length containing ‘Glasgow’.

© Pearson Education Limited 1995, 2005

38

Example 5.10 NULL Search Condition

List details of all viewings on property PG4
where a comment has not been supplied.

There are 2 viewings for property PG4, one with
and one without a comment.

Have to test for null explicitly using special
keyword IS NULL:

SELECT clientNo, viewDate

FROM Viewing

WHERE propertyNo = ‘PG4’AND

comment IS NULL;

© Pearson Education Limited 1995, 2005

39

Example 5.10 NULL Search Condition

Negated version (IS NOT NULL) can test for

non-null values.

© Pearson Education Limited 1995, 2005

40

Example 5.11 Single Column Ordering

List salaries for all staff, arranged in descending

order of salary.

SELECT staffNo, fName, lName, salary

FROM Staff

ORDER BY salary DESC;

© Pearson Education Limited 1995, 2005

41

Example 5.11 Single Column Ordering

© Pearson Education Limited 1995, 2005

42

Example 5.12 Multiple Column Ordering

Produce abbreviated list of properties in order of

property type.

SELECT propertyNo, type, rooms, rent

FROM PropertyForRent

ORDER BY type;

© Pearson Education Limited 1995, 2005

43

Example 5.12 Multiple Column Ordering

© Pearson Education Limited 1995, 2005

44

Example 5.12 Multiple Column Ordering

Four flats in this list - as no minor sort key

specified, system arranges these rows in any order

it chooses.

To arrange in order of rent, specify minor order:

SELECT propertyNo, type, rooms, rent

FROM PropertyForRent

ORDER BY type, rent DESC;

© Pearson Education Limited 1995, 2005

45

Example 5.12 Multiple Column Ordering

© Pearson Education Limited 1995, 2005

46

SELECT Statement - Aggregates

ISO standard defines five aggregate functions:

COUNT returns number of values in specified
column.

SUM returns sum of values in specified column.

AVG returns average of values in specified column.

MIN returns smallest value in specified column.

MAX returns largest value in specified column.

© Pearson Education Limited 1995, 2005

47

SELECT Statement - Aggregates

Each operates on a single column of a table and

returns a single value.

COUNT, MIN, and MAX apply to numeric and

non-numeric fields, but SUM and AVG may be

used on numeric fields only.

Apart from COUNT(*), each function eliminates

nulls first and operates only on remaining non-

null values.

© Pearson Education Limited 1995, 2005

48

SELECT Statement - Aggregates

COUNT(*) counts all rows of a table, regardless

of whether nulls or duplicate values occur.

Can use DISTINCT before column name to

eliminate duplicates.

DISTINCT has no effect with MIN/MAX, but

may have with SUM/AVG.

© Pearson Education Limited 1995, 2005

49

SELECT Statement - Aggregates

Aggregate functions can be used only in
SELECT list and in HAVING clause.

If SELECT list includes an aggregate function
and there is no GROUP BY clause, SELECT list
cannot reference a column out with an aggregate
function. For example, the following is illegal:

SELECT staffNo, COUNT(salary)

FROM Staff;

© Pearson Education Limited 1995, 2005

50

Example 5.13 Use of COUNT(*)

How many properties cost more than £350 per

month to rent?

SELECT COUNT(*) AS myCount

FROM PropertyForRent

WHERE rent > 350;

© Pearson Education Limited 1995, 2005

51

Example 5.14 Use of COUNT(DISTINCT)

How many different properties viewed in May ‘04?

SELECT COUNT(DISTINCT propertyNo) AS myCount

FROM Viewing

WHERE viewDate BETWEEN ‘1-May-04’

AND ‘31-May-04’;

© Pearson Education Limited 1995, 2005

52

Example 5.15 Use of COUNT and SUM

Find number of Managers and sum of their

salaries.

SELECT COUNT(staffNo) AS myCount,

SUM(salary) AS mySum

FROM Staff

WHERE position = ‘Manager’;

© Pearson Education Limited 1995, 2005

53

Example 5.16 Use of MIN, MAX, AVG

Find minimum, maximum, and average staff

salary.

SELECT MIN(salary) AS myMin,

MAX(salary) AS myMax,

AVG(salary) AS myAvg

FROM Staff;

© Pearson Education Limited 1995, 2005

54

SELECT Statement - Grouping

Use GROUP BY clause to get sub-totals.

SELECT and GROUP BY closely integrated:

each item in SELECT list must be single-valued

per group, and SELECT clause may only contain:

– column names

– aggregate functions

– constants

– expression involving combinations of the above.

© Pearson Education Limited 1995, 2005

55

SELECT Statement - Grouping

All column names in SELECT list must appear in

GROUP BY clause unless name is used only in an

aggregate function.

If WHERE is used with GROUP BY, WHERE is

applied first, then groups are formed from

remaining rows satisfying predicate.

ISO considers two nulls to be equal for purposes

of GROUP BY.

© Pearson Education Limited 1995, 2005

56

Example 5.17 Use of GROUP BY

Find number of staff in each branch and their
total salaries.

SELECT branchNo,

COUNT(staffNo) AS myCount,

SUM(salary) AS mySum

FROM Staff

GROUP BY branchNo

ORDER BY branchNo;

© Pearson Education Limited 1995, 2005

57

Example 5.17 Use of GROUP BY

© Pearson Education Limited 1995, 2005

58

Restricted Groupings – HAVING clause

HAVING clause is designed for use with GROUP

BY to restrict groups that appear in final result

table.

Similar to WHERE, but WHERE filters

individual rows whereas HAVING filters groups.

Column names in HAVING clause must also

appear in the GROUP BY list or be contained

within an aggregate function.

© Pearson Education Limited 1995, 2005

59

Example 5.18 Use of HAVING

For each branch with more than 1 member of
staff, find number of staff in each branch and
sum of their salaries.

SELECT branchNo,

COUNT(staffNo) AS myCount,

SUM(salary) AS mySum

FROM Staff

GROUP BY branchNo

HAVING COUNT(staffNo) > 1

ORDER BY branchNo;

© Pearson Education Limited 1995, 2005

60

Example 5.18 Use of HAVING

© Pearson Education Limited 1995, 2005

61

Subqueries

Some SQL statements can have a SELECT

embedded within them.

A subselect can be used in WHERE and

HAVING clauses of an outer SELECT, where it

is called a subquery or nested query.

Subselects may also appear in INSERT,

UPDATE, and DELETE statements.

© Pearson Education Limited 1995, 2005

62

Example 5.19 Subquery with Equality

List staff who work in branch at ‘163 Main St’.

SELECT staffNo, fName, lName, position

FROM Staff

WHERE branchNo =

(SELECT branchNo

FROM Branch

WHERE street = ‘163 Main St’);

© Pearson Education Limited 1995, 2005

63

Example 5.19 Subquery with Equality

Inner SELECT finds branch number for branch

at ‘163 Main St’ (‘B003’).

Outer SELECT then retrieves details of all staff

who work at this branch.

Outer SELECT then becomes:

SELECT staffNo, fName, lName, position

FROM Staff

WHERE branchNo = ‘B003’;

© Pearson Education Limited 1995, 2005

64

Example 5.19 Subquery with Equality

© Pearson Education Limited 1995, 2005

65

Example 5.20 Subquery with Aggregate

List all staff whose salary is greater than the average

salary, and show by how much.

SELECT staffNo, fName, lName, position,

salary – (SELECT AVG(salary) FROM Staff) As SalDiff

FROM Staff

WHERE salary >

(SELECT AVG(salary)

FROM Staff);

© Pearson Education Limited 1995, 2005

66

Example 5.20 Subquery with Aggregate

Cannot write ‘WHERE salary >AVG(salary)’

Instead, use subquery to find average salary

(17000), and then use outer SELECT to find those

staff with salary greater than this:

SELECT staffNo, fName, lName, position,

salary – 17000 As salDiff

FROM Staff

WHERE salary > 17000;

© Pearson Education Limited 1995, 2005

67

Example 5.20 Subquery with Aggregate

© Pearson Education Limited 1995, 2005

68

Subquery Rules

ORDER BY clause may not be used in a

subquery (although it may be used in outermost

SELECT).

Subquery SELECT list must consist of a single

column name or expression, except for

subqueries that use EXISTS.

By default, column names refer to table name in

FROM clause of subquery. Can refer to a table

in FROM using an alias.

© Pearson Education Limited 1995, 2005

69

Subquery Rules

When subquery is an operand in a comparison,

subquery must appear on right-hand side.

A subquery may not be used as an operand in an

expression.

© Pearson Education Limited 1995, 2005

70

Example 5.21 Nested subquery: use of IN

List properties handled by staff at ‘163 Main St’.

SELECT propertyNo, street, city, postcode, type, rooms, rent

FROM PropertyForRent

WHERE staffNo IN

(SELECT staffNo

FROM Staff

WHERE branchNo =

(SELECT branchNo

FROM Branch

WHERE street = ‘163 Main St’));

© Pearson Education Limited 1995, 2005

71

Example 5.21 Nested subquery: use of IN

© Pearson Education Limited 1995, 2005

72

ANY and ALL

ANY and ALL may be used with subqueries that
produce a single column of numbers.

With ALL, condition will only be true if it is
satisfied by all values produced by subquery.

With ANY, condition will be true if it is satisfied
by any values produced by subquery.

If subquery is empty, ALL returns true, ANY
returns false.

SOME may be used in place of ANY.

© Pearson Education Limited 1995, 2005

73

Example 5.22 Use of ANY/SOME

Find staff whose salary is larger than salary of at

least one member of staff at branch B003.

SELECT staffNo, fName, lName, position, salary

FROM Staff

WHERE salary > SOME

(SELECT salary

FROM Staff

WHERE branchNo = ‘B003’);

© Pearson Education Limited 1995, 2005

74

Example 5.22 Use of ANY/SOME

Inner query produces set {12000, 18000, 24000}

and outer query selects those staff whose salaries

are greater than any of the values in this set.

© Pearson Education Limited 1995, 2005

75

Example 5.23 Use of ALL

Find staff whose salary is larger than salary of

every member of staff at branch B003.

SELECT staffNo, fName, lName, position, salary

FROM Staff

WHERE salary > ALL

(SELECT salary

FROM Staff

WHERE branchNo = ‘B003’);

© Pearson Education Limited 1995, 2005

76

Example 5.23 Use of ALL

© Pearson Education Limited 1995, 2005

77

Multi-Table Queries

Can use subqueries provided result columns come

from same table.

If result columns come from more than one table

must use a join.

To perform join, include more than one table in

FROM clause.

Use comma as separator and typically include

WHERE clause to specify join column(s).

© Pearson Education Limited 1995, 2005

78

Multi-Table Queries

Also possible to use an alias for a table named in

FROM clause.

Alias is separated from table name with a space.

Alias can be used to qualify column names when

there is ambiguity.

© Pearson Education Limited 1995, 2005

79

Example 5.24 Simple Join

List names of all clients who have viewed a

property along with any comment supplied.

SELECT c.clientNo, fName, lName,

propertyNo, comment

FROM Client c, Viewing v

WHERE c.clientNo = v.clientNo;

© Pearson Education Limited 1995, 2005

80

Example 5.24 Simple Join

Only those rows from both tables that have

identical values in the clientNo columns

(c.clientNo = v.clientNo) are included in result.

Equivalent to equi-join in relational algebra.

© Pearson Education Limited 1995, 2005

81

Alternative JOIN Constructs

SQL provides alternative ways to specify joins:

FROM Client c JOIN Viewing v ON c.clientNo = v.clientNo

FROM Client JOIN Viewing USING clientNo

FROM Client NATURAL JOIN Viewing

In each case, FROM replaces original FROM and

WHERE. However, first produces table with two

identical clientNo columns.

© Pearson Education Limited 1995, 2005

82

Example 5.25 Sorting a join

For each branch, list numbers and names of
staff who manage properties, and properties
they manage.

SELECT s.branchNo, s.staffNo, fName, lName,

propertyNo

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

ORDER BY s.branchNo, s.staffNo, propertyNo;

© Pearson Education Limited 1995, 2005

83

Example 5.25 Sorting a join

© Pearson Education Limited 1995, 2005

84

Example 5.26 Three Table Join

For each branch, list staff who manage
properties, including city in which branch is
located and properties they manage.

SELECT b.branchNo, b.city, s.staffNo, fName, lName,

propertyNo

FROM Branch b, Staff s, PropertyForRent p

WHERE b.branchNo = s.branchNo AND

s.staffNo = p.staffNo

ORDER BY b.branchNo, s.staffNo, propertyNo;

© Pearson Education Limited 1995, 2005

85

Example 5.26 Three Table Join

Alternative formulation for FROM and WHERE:

FROM (Branch b JOIN Staff s USING branchNo) AS

bs JOIN PropertyForRent p USING staffNo

© Pearson Education Limited 1995, 2005

86

Example 5.27 Multiple Grouping Columns

Find number of properties handled by each staff

member.

SELECT s.branchNo, s.staffNo, COUNT(*) AS myCount

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

GROUP BY s.branchNo, s.staffNo

ORDER BY s.branchNo, s.staffNo;

© Pearson Education Limited 1995, 2005

87

Example 5.27 Multiple Grouping Columns

© Pearson Education Limited 1995, 2005

88

Computing a Join

Procedure for generating results of a join are:

1. Form Cartesian product of the tables named in
FROM clause.

2. If there is a WHERE clause, apply the search
condition to each row of the product table,
retaining those rows that satisfy the condition.

3. For each remaining row, determine value of each
item in SELECT list to produce a single row in
result table.

© Pearson Education Limited 1995, 2005

89

Computing a Join

4. If DISTINCT has been specified, eliminate any
duplicate rows from the result table.

5. If there is an ORDER BY clause, sort result table
as required.

SQL provides special format of SELECT for
Cartesian product:

SELECT [DISTINCT | ALL] {* | columnList}

FROM Table1 CROSS JOIN Table2

© Pearson Education Limited 1995, 2005

90

Outer Joins

If one row of a joined table is unmatched,

row is omitted from result table.

Outer join operations retain rows that do

not satisfy the join condition.

Consider following tables:

© Pearson Education Limited 1995, 2005

91

Outer Joins

The (inner) join of these two tables:

SELECT b.*, p.*

FROM Branch1 b, PropertyForRent1 p

WHERE b.bCity = p.pCity;

© Pearson Education Limited 1995, 2005

92

Outer Joins

Result table has two rows where cities are same.

There are no rows corresponding to branches in

Bristol and Aberdeen.

To include unmatched rows in result table, use

an Outer join.

© Pearson Education Limited 1995, 2005

93

Example 5.28 Left Outer Join

List branches and properties that are in same

city along with any unmatched branches.

SELECT b.*, p.*

FROM Branch1 b LEFT JOIN

PropertyForRent1 p ON b.bCity = p.pCity;

© Pearson Education Limited 1995, 2005

94

Example 5.28 Left Outer Join

Includes those rows of first (left) table unmatched

with rows from second (right) table.

Columns from second table are filled with

NULLs.

© Pearson Education Limited 1995, 2005

95

Example 5.29 Right Outer Join

List branches and properties in same city and any

unmatched properties.

SELECT b.*, p.*

FROM Branch1 b RIGHT JOIN

PropertyForRent1 p ON b.bCity = p.pCity;

© Pearson Education Limited 1995, 2005

96

Example 5.29 Right Outer Join

Right Outer join includes those rows of second

(right) table that are unmatched with rows from

first (left) table.

Columns from first table are filled with NULLs.

© Pearson Education Limited 1995, 2005

97

Example 5.30 Full Outer Join

List branches and properties in same city and

any unmatched branches or properties.

SELECT b.*, p.*

FROM Branch1 b FULL JOIN

PropertyForRent1 p ON b.bCity = p.pCity;

© Pearson Education Limited 1995, 2005

98

Example 5.30 Full Outer Join

Includes rows that are unmatched in both tables.

Unmatched columns are filled with NULLs.

© Pearson Education Limited 1995, 2005

99

EXISTS and NOT EXISTS

EXISTS and NOT EXISTS are for use only with
subqueries.

Produce a simple true/false result.

True if and only if there exists at least one row in
result table returned by subquery.

False if subquery returns an empty result table.

NOT EXISTS is the opposite of EXISTS.

© Pearson Education Limited 1995, 2005

100

EXISTS and NOT EXISTS

As (NOT) EXISTS check only for existence or non-

existence of rows in subquery result table,

subquery can contain any number of columns.

Common for subqueries following (NOT) EXISTS

to be of form:

(SELECT * ...)

© Pearson Education Limited 1995, 2005

101

Example 5.31 Query using EXISTS

Find all staff who work in a London branch.

SELECT staffNo, fName, lName, position

FROM Staff s

WHERE EXISTS

(SELECT *

FROM Branch b

WHERE s.branchNo = b.branchNo AND

city = ‘London’);

© Pearson Education Limited 1995, 2005

102

Example 5.31 Query using EXISTS

© Pearson Education Limited 1995, 2005

103

Example 5.31 Query using EXISTS

Note, search condition s.branchNo = b.branchNo
is necessary to consider correct branch record for
each member of staff.

If omitted, would get all staff records listed out
because subquery:

SELECT * FROM Branch WHERE city=‘London’

would always be true and query would be:

SELECT staffNo, fName, lName, position FROM Staff

WHERE true;

© Pearson Education Limited 1995, 2005

104

Example 5.31 Query using EXISTS

Could also write this query using join construct:

SELECT staffNo, fName, lName, position

FROM Staff s, Branch b

WHERE s.branchNo = b.branchNo AND

city = ‘London’;

© Pearson Education Limited 1995, 2005

105

Union, Intersect, and Difference (Except)

Can use normal set operations of Union,
Intersection, and Difference to combine results of
two or more queries into a single result table.

Union of two tables, A and B, is table containing
all rows in either A or B or both.

Intersection is table containing all rows common
to both A and B.

Difference is table containing all rows in A but
not in B.

Two tables must be union compatible.

© Pearson Education Limited 1995, 2005

106

Union, Intersect, and Difference (Except)

Format of set operator clause in each case is:

op [ALL] [CORRESPONDING [BY {column1 [, ...]}]]

If CORRESPONDING BY specified, set operation

performed on the named column(s).

If CORRESPONDING specified but not BY

clause, operation performed on common columns.

If ALL specified, result can include duplicate rows.

© Pearson Education Limited 1995, 2005

107

Union, Intersect, and Difference (Except)

© Pearson Education Limited 1995, 2005

108

Example 5.32 Use of UNION

List all cities where there is either a branch office
or a property.

(SELECT city

FROM Branch

WHERE city IS NOT NULL) UNION

(SELECT city

FROM PropertyForRent

WHERE city IS NOT NULL);

© Pearson Education Limited 1995, 2005

109

Example 5.32 Use of UNION

Or

(SELECT *

FROM Branch

WHERE city IS NOT NULL)

UNION CORRESPONDING BY city

(SELECT *

FROM PropertyForRent

WHERE city IS NOT NULL);

© Pearson Education Limited 1995, 2005

110

Example 5.32 Use of UNION

Produces result tables from both queries and

merges both tables together.

© Pearson Education Limited 1995, 2005

111

Example 5.33 Use of INTERSECT

List all cities where there is both a branch office

and a property.

(SELECT city FROM Branch)

INTERSECT

(SELECT city FROM PropertyForRent);

© Pearson Education Limited 1995, 2005

112

Example 5.33 Use of INTERSECT

Or

(SELECT * FROM Branch)

INTERSECT CORRESPONDING BY city

(SELECT * FROM PropertyForRent);

© Pearson Education Limited 1995, 2005

113

Example 5.33 Use of INTERSECT

Could rewrite this query without INTERSECT
operator:

SELECT b.city

FROM Branch b PropertyForRent p

WHERE b.city = p.city;

Or:

SELECT DISTINCT city FROM Branch b

WHERE EXISTS

(SELECT * FROM PropertyForRent p

WHERE p.city = b.city);

© Pearson Education Limited 1995, 2005

114

Example 5.34 Use of EXCEPT

List of all cities where there is a branch office but
no properties.

(SELECT city FROM Branch)

EXCEPT

(SELECT city FROM PropertyForRent);

Or

(SELECT * FROM Branch)

EXCEPT CORRESPONDING BY city

(SELECT * FROM PropertyForRent);

© Pearson Education Limited 1995, 2005

115

Example 5.34 Use of EXCEPT

Could rewrite this query without EXCEPT:

SELECT DISTINCT city FROM Branch

WHERE city NOT IN

(SELECT city FROM PropertyForRent);

Or

SELECT DISTINCT city FROM Branch b

WHERE NOT EXISTS

(SELECT * FROM PropertyForRent p

WHERE p.city = b.city);

© Pearson Education Limited 1995, 2005

116

INSERT

INSERT INTO TableName [(columnList)]

VALUES (dataValueList)

columnList is optional; if omitted, SQL assumes a
list of all columns in their original CREATE
TABLE order.

Any columns omitted must have been declared as
NULL when table was created, unless DEFAULT
was specified when creating column.

© Pearson Education Limited 1995, 2005

117

INSERT

dataValueList must match columnList as follows:

– number of items in each list must be same;

– must be direct correspondence in position of

items in two lists;

– data type of each item in dataValueList must

be compatible with data type of

corresponding column.

© Pearson Education Limited 1995, 2005

118

Example 5.35 INSERT … VALUES

Insert a new row into Staff table supplying data

for all columns.

INSERT INTO Staff

VALUES (‘SG16’, ‘Alan’, ‘Brown’, ‘Assistant’,

‘M’, Date‘1957-05-25’, 8300, ‘B003’);

© Pearson Education Limited 1995, 2005

119

Example 5.36 INSERT using Defaults

Insert a new row into Staff table supplying data
for all mandatory columns.

INSERT INTO Staff (staffNo, fName, lName,

position, salary, branchNo)

VALUES (‘SG44’, ‘Anne’, ‘Jones’,

‘Assistant’, 8100, ‘B003’);

Or

INSERT INTO Staff

VALUES (‘SG44’, ‘Anne’, ‘Jones’, ‘Assistant’, NULL,

NULL, 8100, ‘B003’);

© Pearson Education Limited 1995, 2005

120

INSERT … SELECT

Second form of INSERT allows multiple rows to

be copied from one or more tables to another:

INSERT INTO TableName [(columnList)]

SELECT ...

© Pearson Education Limited 1995, 2005

121

Example 5.37 INSERT … SELECT

Assume there is a table StaffPropCount that

contains names of staff and number of properties

they manage:

StaffPropCount(staffNo, fName, lName, propCnt)

Populate StaffPropCount using Staff and

PropertyForRent tables.

© Pearson Education Limited 1995, 2005

122

Example 5.37 INSERT … SELECT

INSERT INTO StaffPropCount

(SELECT s.staffNo, fName, lName, COUNT(*)

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

GROUP BY s.staffNo, fName, lName)

UNION

(SELECT staffNo, fName, lName, 0

FROM Staff

WHERE staffNo NOT IN

(SELECT DISTINCT staffNo

FROM PropertyForRent));

© Pearson Education Limited 1995, 2005

123

Example 5.37 INSERT … SELECT

If second part of UNION is omitted, excludes those
staff who currently do not manage any properties.

© Pearson Education Limited 1995, 2005

124

UPDATE

UPDATE TableName

SET columnName1 = dataValue1

[, columnName2 = dataValue2...]

[WHERE searchCondition]

TableName can be name of a base table or an
updatable view.

SET clause specifies names of one or more
columns that are to be updated.

© Pearson Education Limited 1995, 2005

125

UPDATE

WHERE clause is optional:

– if omitted, named columns are updated for all

rows in table;

– if specified, only those rows that satisfy

searchCondition are updated.

New dataValue(s) must be compatible with data

type for corresponding column.

© Pearson Education Limited 1995, 2005

126

Example 5.38/39 UPDATE All Rows

Give all staff a 3% pay increase.

UPDATE Staff

SET salary = salary*1.03;

Give all Managers a 5% pay increase.

UPDATE Staff

SET salary = salary*1.05

WHERE position = ‘Manager’;

© Pearson Education Limited 1995, 2005

127

Example 5.40 UPDATE Multiple Columns

Promote David Ford (staffNo=‘SG14’) to

Manager and change his salary to £18,000.

UPDATE Staff

SET position = ‘Manager’, salary = 18000

WHERE staffNo = ‘SG14’;

© Pearson Education Limited 1995, 2005

128

DELETE

DELETE FROM TableName

[WHERE searchCondition]

TableName can be name of a base table or an

updatable view.

searchCondition is optional; if omitted, all rows

are deleted from table. This does not delete table.

If search_condition is specified, only those rows

that satisfy condition are deleted.

© Pearson Education Limited 1995, 2005

129

Example 5.41/42 DELETE Specific Rows

Delete all viewings that relate to property PG4.

DELETE FROM Viewing

WHERE propertyNo = ‘PG4’;

Delete all records from the Viewing table.

DELETE FROM Viewing;

© Pearson Education Limited 1995, 2005

