

C# Inheritance

C# Inheritance

• In C#, inheritance is a process in which one object

acquires all the properties and behaviors of its parent

object automatically. In such way, you can reuse,

extend or modify the attributes and behaviors which is

defined in other class.

• In C#, the class which inherits the members of another

class is called derived class and the class whose

members are inherited is called base class. The derived

class is the specialized class for the base class.

Advantage of C# Inheritance

• Code reusability:

Now you can reuse the members of your parent class.

So, there is no need to define the member again. So

less code is required in the class.

C# Single Level Inheritance

Example: Inheriting Fields
• When one class inherits another class, it is known as

single level inheritance.
using System;

public class Employee {

public float salary = 40000;

}

public class Programmer: Employee {

public float bonus = 10000;

}

class TestInheritance{

public static void Main(string[] args) {

Programmer p1 = new Programmer();

Console.WriteLine("Salary: " + p1.salary);

Console.WriteLine("Bonus: " + p1.bonus);

}

}

Output:

Salary: 40000

Bonus: 10000

C# Single Level Inheritance

Example: Inheriting Methods
using System;

public class Animal

{

public void eat() { Console.WriteLine("Eating..."); }

}

public class Dog: Animal

{

public void bark() { Console.WriteLine("Barking..."); }

}

class TestInheritance2{

public static void Main(string[] args)

{

Dog d1 = new Dog();

d1.eat();

d1.bark();

}

}

Output:

Eating...

Barking...

C# Multi Level Inheritance

• When one class inherits another class which is further

inherited by another class, it is known as multi level

inheritance in C#.

• Inheritance is transitive so the last derived class

acquires all the members of all its base classes.

C# Multi Level Inheritance

Example
using System;

public class Animal {

public void eat() { Console.WriteLine("Eating..."); }

}

public class Dog: Animal {

public void bark() { Console.WriteLine("Barking..."); }

}

public class BabyDog : Dog {

public void weep() { Console.WriteLine("Weeping..."); }

}

class TestInheritance2{

public static void Main(string[] args) {

BabyDog d1 = new BabyDog();

d1.eat();

d1.bark();

d1.weep();

}

}

Output:

Eating...

Barking...

Weeping...

C# Multiple Inheritance

• C# does not support multiple inheritance.

• However, you can use interfaces to implement

multiple inheritance.

C# Multiple Inheritance
using System;

namespace InheritanceApplication {

class Shape {

public void setWidth(int w) {

width = w; }

public void setHeight(int h) {

height = h; }

protected int width;

protected int height; }

// Base class PaintCost

public interface PaintCost {

int getCost(int area); }

// Derived class

class Rectangle : Shape, PaintCost {

public int getArea() {

return (width * height); }

public int getCost(int area) {

return area * 70; } }

class RectangleTester {

static void Main(string[] args) {

Rectangle Rect = new Rectangle();

int area;

Rect.setWidth(5);

Rect.setHeight(7);

area = Rect.getArea();

// Print the area of the object.

Console.WriteLine("Total area: {0}",

Rect.getArea());

Console.WriteLine("Total paint cost:

${0}" , Rect.getCost(area));

Console.ReadKey();

} } }

Output:

Total area: 35

Total paint cost: $2450

C# Polymorphism

C# Polymorphism

• The term "Polymorphism" is the combination of

"poly" + "morphs" which means many forms. It is a

greek word.

• There are two types of polymorphism in C#: compile

time polymorphism and runtime polymorphism.

Compile time polymorphism is achieved by method

overloading and operator overloading in C#. It is also

known as static binding or early binding. Runtime

polymorphism in achieved by method overriding

which is also known as dynamic binding or late

binding.

C# Runtime Polymorphism

Example
using System;

public class Animal{

public virtual void eat(){

Console.WriteLine("eating...");

}

}

public class Dog: Animal {

public override void eat() {

Console.WriteLine("eating bread...");

}

}

public class TestPolymorphism {

public static void Main() {

Animal a= new Dog();

a.eat();

}

}

Output:

eating bread...

C# Runtime Polymorphism

Example 2
using System;

public class Shape{

public virtual void draw(){

Console.WriteLine("drawing...");

} }

public class Rectangle: Shape {

public override void draw() {

Console.WriteLine("drawing rectangle...");

} }

public class Circle : Shape {

public override void draw(){

Console.WriteLine("drawing circle...");

} }

public class TestPolymorphism {

public static void Main() {

Shape s;

s = new Shape();

s.draw();

s = new Rectangle();

s.draw();

s = new Circle();

s.draw();

}

}

Output:

drawing...

drawing

rectangle...

drawing circle...

Runtime Polymorphism with Data

Members
• Runtime Polymorphism can't be achieved by data

members in C#.
using System;

public class Animal{

public string color = "white";

}

public class Dog: Animal {

public string color = "black";

}

public class TestSealed {

public static void Main()

{

Animal d = new Dog();

Console.WriteLine(d.color);

}

}

Output:

white

C# Member Overloading

• If we create two or more members having same name

but different in number or type of parameter, it is

known as member overloading. In C#, we can

overload:

• methods,

• constructors, and

• indexed properties

• It is because these members have parameters only.

C# Member Overloading

Example: By changing data type

of arguments
using System;

public class Cal{

public static int add(int a, int b){

return a + b;

}

public static float add(float a, float b)

{

return a + b;

}

}

Output:

35

33.7

public class TestMemberOverloading

{

public static void Main()

{

Console.WriteLine(Cal.add(12, 23));

Console.WriteLine(Cal.add(12.4f,21.

3f));

}

}

C# Method Overloading

• Having two or more methods with same name but

different in parameters, is known as method

overloading in C#.

• The advantage of method overloading is that it

increases the readability of the program because you

don't need to use different names for same action.

• You can perform method overloading in C# by two

ways:

• By changing number of arguments

• By changing data type of the arguments

C# Method Overloading

Example: By changing no. of

arguments
using System;

public class Cal{

public static int add(int a,int b){

return a + b;

}

public static int add(int a, int b, int c) {

return a + b + c;

}

}

public class TestMemberOverloading {

public static void Main() {

Console.WriteLine(Cal.add(12, 23));

Console.WriteLine(Cal.add(12, 23, 25));

}

}

Output:

35

60

C# Method Overloading

• Having two or more methods with same name but

different in parameters, is known as method

overloading in C#.

• The advantage of method overloading is that it

increases the readability of the program because you

don't need to use different names for same action.

• You can perform method overloading in C# by two

ways:

• By changing number of arguments

• By changing data type of the arguments

C# Method Overriding

• If derived class defines same method as defined in its

base class, it is known as method overriding in C#. It

is used to achieve runtime polymorphism. It enables

you to provide specific implementation of the method

which is already provided by its base class.

• To perform method overriding in C#, you need to use

virtual keyword with base class method and override

keyword with derived class method.

C# Method Overriding Example

• Let's see a simple example of method overriding in

C#. In this example, we are overriding the eat()

method by the help of override keyword.
using System;

public class Animal{

public virtual void eat(){

Console.WriteLine("Eating...");

}

}

public class Dog: Animal

{

public override void eat()

{

Console.WriteLine("Eating bread...");

}

}

public class TestOverriding

{

public static void Main()

{

Dog d = new Dog();

d.eat();

}

}

Output:

Eating bread...

C# Operator

Overloading

Operator Overloading

• The concept of overloading a function can also be

applied to operators.

• Operator overloading gives the ability to use the same

operator to do various operations.

• It provides additional capabilities to C# operators

when they are applied to user-defined data types.

• It enables to make user-defined implementations of

various operations where one or both of the operands

are of a user-defined class.

Operator Overloading

• Only the predefined set of C# operators can be

overloaded.

• To make operations on a user-defined data type is not

as simple as the operations on a built-in data type.

• To use operators with user-defined data types, they

need to be overloaded according to a programmer’s

requirement.

• An operator can be overloaded by defining a function

to it. The function of the operator is declared by using

the operator keyword.

Operator Overloading

• Syntax :

access specifier className operator Operator_symbol (parameters)

{

// Code

}

Note : Operator overloading is basically the mechanism of

providing a special meaning to an ideal C# operator w.r.t. a user-

defined data type such as structures or classes

Operator Overloading

• OPERATORS DESCRIPTION

• +, -, !, ~, ++, – –unary operators take one operand and

can be overloaded.

• +, -, *, /, % Binary operators take two operands and

can be overloaded.

• ==, !=, = Comparison operators can be overloaded.

• &&, || Conditional logical operators cannot be

overloaded directly

• +=, -+, *=, /=, %=, = Assignment operators cannot

be overloaded.

Overloading Unary Operators

• The return type can be of any type except void for

unary operators like !, ~, + and dot (.) but the return

type must be the type of ‘Type’ for – and ++ operators

and must be a bool type for true as well as false

operators.

• But do remember that the true and false operators can

be overloaded as pairs only. The compilation error

arises if a class declares one of these operators without

declaring the other.

Overloading Unary Operators

• The return type can be of any type except void for

unary operators like !, ~, + and dot (.) but the return

type must be the type of ‘Type’ for – and ++ operators

and must be a bool type for true as well as false

operators.

• But do remember that the true and false operators can

be overloaded as pairs only. The compilation error

arises if a class declares one of these operators without

declaring the other.

Overloading Unary Operators

• The return type can be of any type except void for

unary operators like !, ~, + and dot (.) but the return

type must be the type of ‘Type’ for – and ++ operators

and must be a bool type for true as well as false

operators.

• But do remember that the true and false operators can

be overloaded as pairs only. The compilation error

arises if a class declares one of these operators without

declaring the other.

Overloading Unary Operators

using System;
namespace Calculator {

class Calculator {

public int number1 , number2;
public Calculator(int num1 , int num2)
{

number1 = num1;
number2 = num2;

}

// Function to perform operation
// By changing sign of integers
public static Calculator operator -(Calculator c1)
{

c1.number1 = -c1.number1;
c1.number2 = -c1.number2;
return c1;

}

// Function to print the numbers
public void Print()
{

Console.WriteLine ("Number1 = " + number1);
Console.WriteLine ("Number2 = " + number2);

}
}

class EntryPoint
{

// Driver Code
static void Main(String []args)
{

// using overloaded - operator
// with the class object
Calculator calc = new Calculator(15, -25);

calc = -calc;

// To display the result
calc.Print();

}
}
}

Output :

Number1 = -15
Number2 = 25

Overloading Unary Operators

Example
using System;
namespace Calculator {

class Calculator {

public int number1 , number2;
public Calculator(int num1 , int num2)
{

number1 = num1;
number2 = num2;

}

// Function to perform operation
// By changing sign of integers
public static Calculator operator -(Calculator c1)
{

c1.number1 = -c1.number1;
c1.number2 = -c1.number2;
return c1;

}

// Function to print the numbers
public void Print()
{

Console.WriteLine ("Number1 = " + number1);
Console.WriteLine ("Number2 = " + number2);

}
}

class EntryPoint
{

// Driver Code
static void Main(String []args)
{

// using overloaded - operator
// with the class object
Calculator calc = new Calculator(15, -25);

calc = -calc;

// To display the result
calc.Print();

}
}
}

Output :

Number1 = -15
Number2 = 25

Overloading Binary Operators

• Binary Operators will work with two Operands.

• Examples of binary operators include the Arithmetic

Operators (+, -, *, /, %), Arithmetic Assignment

operators (+=, -+, *=, /+, %=) and Relational

Operators etc. Overloading a binary operator is similar

to overloading a unary operator, except that a binary

operator requires an additional parameter.

Overloading Binary Operators
// C# program to illustrate the
// Binary Operator Overloading
using System;
namespace BinaryOverload {

class Calculator {

public int number = 0;

// no-argument constructor
public Calculator() {}

// parameterized constructor
public Calculator(int n)
{

number = n;
}

// Overloading of Binary "+" operator
public static Calculator operator + (Calculator Calc1,

Calculator Calc2)
{

Calculator Calc3 = new Calculator(0);
Calc3.number = Calc2.number + Calc1.number;
return Calc3;

}

// function to display result
public void display()
{

Console.WriteLine("{0}", number);
}

}

class CalNum {

// Driver Code
static void Main(string[] args)
{

Calculator num1 = new Calculator(200);
Calculator num2 = new Calculator(40);
Calculator num3 = new Calculator();

num3 = num1 + num2;

num1.display(); // Displays 200

num2.display(); // Displays 40

num3.display(); // Displays 240

}
}
}

C# Delegates

C# Delegates

• In C#, delegate is a reference to the method. It works

like function pointer in C and C++. But it is objected-

oriented, secured and type-safe than function pointer.

• For static method, delegate encapsulates method only.

But for instance method, it encapsulates method and

instance both.

• The best use of delegate is to use as event.

• Internally a delegate declaration defines a class which

is the derived class of System.Delegate.

C# Delegate Example
//example of delegate in C# which calls add() and mul() methods.

using System;

delegate int Calculator(int n);//declaring delegate

public class DelegateExample {

static int number = 100;

public static int add(int n){

number = number + n;

return number;

}

public static int mul(int n){

number = number * n;

return number;

}

public static int getNumber() {

return number;

}

public static void Main(string[] args) {

Calculator c1 = new Calculator(add);
//instantiating delegate

Calculator c2 = new Calculator(mul);
c1(20);//calling method using delegat

e

Console.WriteLine("After c1 delegate,

Number is: " + getNumber());

c2(3);

Console.WriteLine("After c2 delegate,

Number is: " + getNumber());

}

}
Output:

After c1 delegate, Number is: 120

After c2 delegate, Number is: 360

C# Events

Events in C#

• The Event is something special that is going to

happen. Here we will take an example of an event,

where Microsoft launches the events for the developer.

• In this Event, Microsoft wants to aware the developer

about the feature of the existing or new products.

• For this, Microsoft will use Email or other

advertisement options to aware the developer about

the Event. So, in this case, Microsoft will work as a

publisher who raises the Event and notifies the

developers about it.

• Developers will work as the subscriber of the Event

who handles the Event.

Events in C#

• Similarly, in C#, Events follow the same concept. In

C#, Event can be subscriber, publisher, notification,

and a handler. Generally, the User Interface uses the

events. Here we will take an example of Button

control in Windows.

• Button performs multiple events such as click,

mouseover, etc. The custom class contains the Event

through which we will notify the other subscriber class

about the other things which is going to happen. So, in

this case, we will define the Event and inform the

other classes about the Event, which contains the event

handler.

Events in C#

• The event is an encapsulated delegate. C# and .NET

both support the events with the delegates. When the

state of the application changes, events and delegates

give the notification to the client application.

• Delegates and Events both are tightly coupled for

dispatching the events, and event handling require the

implementation of the delegates.

• The sending event class is known as the publisher, and

the receiver class or handling the Event is known as a

subscriber.

Key Points about the Events
• In C#, event handler will take the two parameters as input

and return the void.

• The first parameter of the Event is also known as the

source, which will publish the object.

• The publisher will decide when we have to raise the Event,

and the subscriber will determine what response we have

to give.

• Event can contain many subscribers.

• Generally, we used the Event for the single user action like

clicking on the button.

• If the Event includes the multiple subscribers, then

synchronously event handler invoked.

Events in C# (Contd.)

• Declaration of the Event

• Syntax

• public event EventHandler CellEvent;

• Steps for implementing the Event

• For the declaration of the Event in the class, firstly, the

event type of the delegate must be declared.

• public delegate void CellEventHandler(object sender,

EventArgs e);

Events in C# (Contd.)

• Declaration of the Event

• public event CellEventHandler CellEvent;

• Invokation of the Event

• if (CellEvent != null) CellEvent(this, e);

• We can invoke the Event only from within the class

where we declared the Event.

• Hooking up the Event

• OurEventClass.OurEvent += new

ChangedEventHandler(OurEventChanged);

Events in C# (Contd.)

• Detach the Event

• OurEventClass.OurEvent -= new

ChangedEventHandler(OurEventChanged);

• Delegates work as pointer to a function. It is a

reference data type and it holds the reference of the

method. System.Delegate class implicitly derived all

the delegates.

• Delegate can be declared using the delegate keyword

which is followed by the signature

• Syntax of Delegates

• <access modifier> delegate <return type>

<delegate_name>(<parameters>)

Example of Delegates

• public delegate void PrintWord(int value);

• The above PrintWord delegate can be used to point any

method which has the same return type and declared

parameters with PrintWord.

• Here we will take an example that declares and uses the

PrintWord delegates.

Example of Delegates(Contd.)
class Program1 {

// declare delegate

public delegate void PrintWord(int value);

static void Main(string[] args) {

// Print delegate points to PrintNum

PrintWord printDel = PrintNum;

// or

// Print printDel = new Print(PrintNumber);

printDel(100000);

printDel(200);

// Print delegate points to PrintMoney

printDel = PrintMoney;

printDel(10000);

printDel(200); }

public static void PrintNum(int num) {

Console.WriteLine("Number: {0,-12:N0}",num); }

public static void PrintMoney(int money) {

Console.WriteLine("Money: {0:C}", money); } }

Output:

Number: 100,000

Number: 200

Money: $10,000.00

Money: $200.00

Example of Delegates (Contd.)

• Also, we can create the delegate object by using the new

operator and specify the name of the method, as shown

below:

• PrintWord printDel = new PrintWord(PrintNum);

• Delegates can be declared, as shown below:

• public delegate void someEvent();

• public organize event

Add/Remove Operation in Events
public class MyTest {

public event EventHandler MyEvent {

add {

Console.WriteLine("add operation");

}

remove {

Console.WriteLine("remove operation");

}

}

}

public class Test {

public void TestEvent() {

MyTest myTest = new MyTest();

myTest.MyEvent += myTest_MyEvent;

myTest.MyEvent -= myTest_MyEvent;

}

public void myTest_MyEvent(object sender, EventArgs e)

{ }

}

static void Main(string[] args)

{

Test test = new Test();

test.TestEvent();

Console.ReadKey();

}

Output

add operation

remove operation

Event - Basic Conceptual Implementation

public delegate void EventHandler(object sender, EventArgs e);

public class Publisher: ArrayList {

public event EventHandler ProdcutAddedInfo;

protected virtual void OnChanged(EventArgs e) {

if (ProdcutAddedInfo != null) ProdcutAddedInfo(this, e); }

public override int Add(Object product) {

int added = base.Add(product);

OnChanged(EventArgs.Empty);

return added; }

public override void Clear() {

base.Clear();

OnChanged(EventArgs.Empty); }

public override object this[int index] {

set {

base[index] = value;

OnChanged(EventArgs.Empty);

} } }

Event - Basic Conceptual Implementation

public class Subscriber {

private Publisher publishers;

public Subscriber(Publisher publisher) {

this.publishers = publisher;

publishers.ProdcutAddedInfo += publishers_ProdcutAddedInfo;

}

void publishers_ProdcutAddedInfo(object sender, EventArgs e) {

if (sender == null) {

Console.WriteLine("No New Product Added.");

return;

}

Console.WriteLine("A New Prodct Added.");

}

public void UnSubscribeEvent() {

publishers.ProdcutAddedInfo -= publishers_ProdcutAddedInfo;

}

}

Event - Basic Conceptual Implementation

class Program {

static void Main(string[] args) {

Publisher publisher = new Publisher();

Subscriber subscriber = new Subscriber(publisher);

publisher.Add(new Product

{

ProductName = "Complan", Price = 20

});

publisher.Add(new Product

{

ProductName = "Horlics", Price = 120

});

publisher.Add(new Product

{

ProductName = "Boost", Price = 200

});

subscriber.UnSubscribeEvent();

Console.ReadKey();

}

}

Output

A New Product Added.

A New Product Added.

A New Product Added.

C# File IO

Outline

• C# FileStream

• C# StreamWriter

• C# StreamReader

• C# TextWriter

• C# TextReader

• C# BinaryWriter

• C# BinaryReader

• C# StringWriter

• C# StringReader

• C# FileInfo

• C# DirectoryInfo

• C# Serialization

• C# Deserialization

• C# System.IO

C# FileStream

• C# FileStream class provides a stream for file

operation. It can be used to perform synchronous and

asynchronous read and write operations. By the help

of FileStream class, we can easily read and write data

into file.

C# FileStream example: writing

single byte into file
using System;

using System.IO;

public class FileStreamExample

{

public static void Main(string[] args)

{

FileStream f = new FileStream("e:\\b.txt", FileMode.OpenOrCreate);

//creating file stream

f.WriteByte(65);//writing byte into stream

f.Close();//closing stream

}

}

Output:

A

C# FileStream example: writing

multiple bytes into file
using System;

using System.IO;

public class FileStreamExample

{

public static void Main(string[] args)

{

FileStream f = new FileStream("e:\\b.txt", FileMode.OpenOrCreate);

for (int i = 65; i <= 90; i++)

{

f.WriteByte((byte)i);

}

f.Close();

}

}

Output:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

C# FileStream example: reading

all bytes from file
using System;

using System.IO;

public class FileStreamExample

{

public static void Main(string[] args)

{

FileStream f = new FileStream("e:\\b.txt", FileMode.OpenOrCreate);

int i = 0;

while ((i = f.ReadByte()) != -1)

{

Console.Write((char)i);

}

f.Close();

}

}

Output:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

C# StreamWriter

• C# StreamWriter class is used to write characters to a

stream in specific encoding. It inherits TextWriter

class. It provides overloaded write() and writeln()

methods to write data into file.

C# StreamWriter example

using System;

using System.IO;

public class StreamWriterExample

{

public static void Main(string[] args)

{

FileStream f = new FileStream("e:\\output.txt", FileMode.Create);

StreamWriter s = new StreamWriter(f);

s.WriteLine("hello c#");

s.Close();

f.Close();

Console.WriteLine("File created successfully...");

}

}

Output:

File created successfully...

C# StreamReader

• C# StreamReader class is used to read string from the

stream. It inherits TextReader class. It provides Read()

and ReadLine() methods to read data from the stream.

C# StreamReader example to

read one line
using System;

using System.IO;

public class StreamReaderExample

{

public static void Main(string[] args)

{

FileStream f = new FileStream("e:\\output.txt", FileMode.OpenOrCrea

te);

StreamReader s = new StreamReader(f);

string line=s.ReadLine();

Console.WriteLine(line);

s.Close();

f.Close();

}

}

Output:

Hello C#

C# TextWriter

• C# TextWriter class is an abstract class. It is used to

write text or sequential series of characters into file. It

is found in System.IO namespace.

C# TextWriter Example

using System;

using System.IO;

namespace TextWriterExample

{

class Program

{

static void Main(string[] args)

{

using (TextWriter writer = File.CreateText("e:\\f.txt"))

{

writer.WriteLine("Hello C#");

writer.WriteLine("C# File Handling by Programmer");

}

Console.WriteLine("Data written successfully...");

}

}

}

Output:

Data written successfully...

f.txt:

Hello C# C# File Handling by

Programmer

C# TextReader

• C# TextReader class is found in System.IO

namespace. It represents a reader that can be used to

read text or sequential series of characters.

C# TextReader Example: Read All

Data
using System;

using System.IO;

namespace TextReaderExample

{

class Program

{

static void Main(string[] args)

{

using (TextReader tr = File.OpenText("e:\\f.txt"))

{

Console.WriteLine(tr.ReadToEnd());

}

}

}

}

Output:

Hello C#

C# File Handling by Programmer

C# TextReader Example: Read

One Line
using System;

using System.IO;

namespace TextReaderExample

{

class Program

{

static void Main(string[] args)

{

using (TextReader tr = File.OpenText("e:\\f.txt"))

{

Console.WriteLine(tr.ReadLine());

}

}

}

}

Output:

Hello C#

C# BinaryWriter

• C# BinaryWriter class is used to write binary

information into stream. It is found in System.IO

namespace. It also supports writing string in specific

encoding.

C# BinaryWriter Example

using System;

using System.IO;

namespace BinaryWriterExample{

class Program {

static void Main(string[] args) {

string fileName = "e:\\binaryfile.dat";

using (BinaryWriter writer = new BinaryWriter(File.Open(fileName,

FileMode.Create)))

{

writer.Write(12.5);

writer.Write("this is string data");

writer.Write(true);

}

Console.WriteLine("Data written successfully...");

}

}

}

Output:

Data written successfully...

C# BinaryReader

• C# BinaryReader class is used to read binary

information from stream. It is found in System.IO

namespace. It also supports reading string in specific

encoding.

C# BinaryReader Example
using System;

using System.IO;

namespace BinaryWriterExample{

class Program{

static void Main(string[] args){

WriteBinaryFile();

ReadBinaryFile();

Console.ReadKey(); }

static void WriteBinaryFile(){

using (BinaryWriter writer = new BinaryWriter(File.Open("e:\\binaryfile.

dat", FileMode.Create))){

writer.Write(12.5);

writer.Write("this is string data");

writer.Write(true); }}

static void ReadBinaryFile(){

using (BinaryReader reader = new BinaryReader(File.Open("e:\\bina

ryfile.dat", FileMode.Open))) {

Console.WriteLine("Double Value : " + reader.ReadDouble());

Console.WriteLine("String Value : " + reader.ReadString());

Console.WriteLine("Boolean Value : " + reader.ReadBoolean());

} } } }

Output:

Double Value : 12.5

String Value : this is string

data

Boolean Value : true

C# StringWriter Class

• This class is used to write and deal with string data

rather than files. It is derived class of TextWriter class.

The string data written by StringWriter class is stored

into StringBuilder.

• The purpose of this class is to manipulate string and

save result into the StringBuilder.

StringWriter Class Signature

[SerializableAttribute]

[ComVisibleAttribute(true)]

public class StringWriter : TextWriter

C# StringWriter Constructors

Constructors Description

StringWriter() It is used to initialize a new instance
of the StringWriter class.

StringWriter(IFormatProvid
er)

It is used to initialize a new instance
of the StringWriter class with the
specified format control.

StringWriter(StringBuilder) It is used to initialize a new instance
of the StringWriter class that writes to
the specified StringBuilder.

StringWriter(StringBuilder,
?IFormatProvider)

It is used to initialize a new instance
of the StringWriter class that writes to
the specified StringBuilder and has the
specified format provider.

C# StringWriter Properties

Property Description

Encoding It is used to get the
Encoding in which the
output is written.

FormatProvider It is used to get an
object that controls
formatting.

NewLine It is used to get or set
the line terminator string
used by the
current TextWriter.

C# StringWriter Methods
Methods Description

Close() It is used to close the current StringWriter and the underlying
stream.

Dispose() It is used to release all resources used by the TextWriter
object.

Equals(Object) It is used to determine whether the specified object is equal to
the current object or not.

Finalize() It allows an object to try to free resources and perform other
cleanup operations.

GetHashCode() It is used to serve as the default hash function.

GetStringBuilder() It returns the underlying StringBuilder.

ToString() It returns a string containing the characters written to the
current StringWriter.

WriteAsync(String) It is used to write a string to the current string
asynchronously.

Write(Boolean) It is used to write the text representation of a Boolean value to
the string.

Write(String) It is used to write a string to the current string.

WriteLine(String) It is used to write a string followed by a line terminator to the
string or stream.

WriteLineAsync(String) Writes a string followed by a line terminator asynchronously to
the current string.(Overrides
TextWriter.WriteLineAsync(String).)

C# StringWriter Example
using System;

using System.IO;

using System.Text;

namespace CSharpProgram{

class Program{

static void Main(string[] args){

string text = "Hello, Welcome

to the Programmer \n" +

"It is nice platform. \n" +

"It provides technical Stuff";

// Creating StringBuilder instance

StringBuilder sb = new StringBuilder();

/ Passing StringBuilder instance into StringWriter

StringWriter writer = new StringWriter(sb);

// Writing data using StringWriter

writer.WriteLine(text);

writer.Flush();

// Closing writer connection

writer.Close();

// Creating StringReader instanc

e and passing StringBuilder

StringReader reader = new String

Reader(sb.ToString());

// Reading data

while (reader.Peek() > -1)

{

Console.WriteLine(reader.

ReadLine()); } } } }

Output:

Hello, Welcome to the Programmer

It is nice platform.

It provides technical Stuff

C# StringReader Class

StringReader class is used to read data written by the

StringWriter class. It is subclass of TextReader class. It

enables us to read a string synchronously or

asynchronously. It provides constructors and methods to

perform read operations.

C# StringReader Signature

[SerializableAttribute]

[ComVisibleAttribute(true)]

public class StringReader : TextReader

C# StringReader Constructors

StringReader has the following constructors.

Constructors Description

StringReader(String) Initializes a new instance
of the StringReader class
that reads from the
specified string.

C# StringReader Methods

Method Description

Close() It is used to close the StringReader.

Dispose() It is used to release all resources used by the TextReader
object.

Equals(Object) It determines whether the specified object is equal to the
current object or not.

Finalize() It allows an object to try to free resources and perform other
cleanup operations.

GetHashCode() It serves as the default hash function.

GetType() It is used to get the type of the current instance.

Peek() It is used to return the next available character but does not
consume it.

Read() It is used to read the next character from the input string.

ReadLine() It is used to read a line of characters from the current string.

ReadLineAsync() It is used to read a line of characters asynchronously from the
current string.

ReadToEnd() It is used to read all the characters from the current position to
the end of the string.

ReadToEndAsync() It is used to read all the characters from the current position to
the end of the string asynchronously.

ToString() It is used to return a string that represents the current object.

C# StringReader Example

using System;

using System.IO;

namespace CSharpProgram {

class Program {

static void Main(string[] args) {

StringWriter str = new StringWriter();

str.WriteLine("Hello, this message is read by StringReader class");

str.Close();

// Creating StringReader instance and passing StringWriter

StringReader reader = new StringReader(str.ToString());

// Reading data

while (reader.Peek() > -1)

{

Console.WriteLine(reader.ReadLine());

}

}

}

}

Output:

Hello, this message is read by

StringReader class

C# FileInfo Class

• The FileInfo class is used to deal with file and its

operations in C#. It provides properties and methods

that are used to create, delete and read file. It uses

StreamWriter class to write data to the file. It is a part

of System.IO namespace.

C# FileInfo Class Signature

• [SerializableAttribute]

• [ComVisibleAttribute(true)]

• public sealed class FileInfo : FileSystemInfo

C# FileInfo Constructors

Constructor Description

FileInfo(String) It is used to initialize a
new instance of the
FileInfo class which acts
as a wrapper for a file
path

C# FileInfo Properties

Properties Description

Attributes It is used to get or set the attributes for the current file
or directory.

CreationTime It is used to get or set the creation time of the current file
or directory.

Directory It is used to get an instance of the parent directory.

DirectoryName It is used to get a string representing the directory's full
path.

Exists It is used to get a value indicating whether a file exists.

FullName It is used to get the full path of the directory or file.

IsReadOnly It is used to get or set a value that determines if the
current file is read only.

LastAccessTime It is used to get or set the time from current file or
directory was last accessed.

Length It is used to get the size in bytes of the current file.

Name It is used to get the name of the file.

C# FileInfo Methods

Method Description

AppendText() It is used to create a StreamWriter that appends text to the file
represented by this instance of the FileInfo.

CopyTo(String) It is used to copy an existing file to a new file.

Create() It is used to create a file.

CreateText() It is used to create a StreamWriter that writes a new text file.

Decrypt() It is used to decrypt a file that was encrypted by the current
account using the Encrypt method.

Delete() It is used to permanently delete a file.

Encrypt() It is used to encrypt a file so that only the account used to
encrypt the file can decrypt it.

GetAccessContro
l()

It is used to get a FileSecurity object that encapsulates the
access control list (ACL) entries.

C# FileInfo Methods

Method Description

MoveTo(String
)

It is used to move a specified file to a new specified
location.

Open(FileMode
)

It is used to open a file in the specified mode.

OpenRead() It is used to create a read-only FileStream.

OpenText() It is used to create a StreamReader with UTF8 encoding
that reads from an existing text file.

OpenWrite() It is used to create a write-only FileStream.

Refresh() It is used to refresh the state of the object.

Replace(String
,String)

It is used to replace the contents of a specified file with
the file described by the current FileInfo object.

ToString() It is used to return the path as a string.

C# FileInfo Example: Creating a

File
using System;

using System.IO;

namespace CSharpProgram {

class Program {

static void Main(string[] args) {

try {

// Specifying file location

string loc = "F:\\abc.txt";

// Creating FileInfo instance

FileInfo file = new FileInfo(loc);

// Creating an empty file

file.Create();

Console.WriteLine("File is created Successfuly");

}catch(IOException e)

{

Console.WriteLine("Something went wrong: "+e);

} } } }

Output:

File is created Successfully

C# FileInfo Example: writing to

the file
using System;

using System.IO;

namespace CSharpProgram{

class Program {

static void Main(string[] args) {

try {

// Specifying file location

string loc = "F:\\abc.txt";

// Creating FileInfo instance

FileInfo file = new FileInfo(loc);

// Creating an file instance to write

StreamWriter sw = file.CreateText();

// Writing to the file

sw.WriteLine("This text is written to the file by using StreamWriter cl

ass.");

sw.Close();

}

catch(IOException e)

{

Console.WriteLine("Something

went wrong: "+e);

} } } }

C# FileInfo Example: Reading text

from the file
using System;

using System.IO;

namespace CSharpProgram {

class Program {

static void Main(string[] args) {

try {

// Specifying file to read

string loc = "F:\\abc.txt";

// Creating FileInfo instance

FileInfo file = new FileInfo(loc);

// Opening file to read

StreamReader sr = file.OpenText();

string data = "";

while ((data = sr.ReadLine()) != null){

Console.WriteLine(data); } }

catch (IOException e) {

Console.WriteLine("Something went wrong: " + e);

} } } }

Output:

This text is written to the file by using Str

eamWriter class

C# DirectoryInfo Class

• DirectoryInfo class is a part of System.IO namespace.

It is used to create, delete and move directory. It

provides methods to perform operations related to

directory and subdirectory. It is a sealed class so, we

cannot inherit it.

C# DirectoryInfo Syntax

• [SerializableAttribute]

• [ComVisibleAttribute(true)]

• public sealed class DirectoryInfo : FileSystemInfo

C# DirectoryInfo Constructors

Constructor Description

DirectoryInfo(String) It is used to initialize a
new instance of the
DirectoryInfo class on
the specified path.

C# DirectoryInfo Properties
Property Description

Attributes It is used to get or set the attributes for
the current file or directory.

CreationTime It is used to get or set the creation time
of the current file or directory.

CreationTimeUtc It is used to get or set creation time, in
coordinated universal time (UTC).

Exists It is used to get a value indicating
whether the directory exists.

Extension It is used to get the string representing
the extension part of the file.

FullName It is used to get the full path of the
directory.

LastAccessTime It is used to get or set the time the
current file or directory was last accessed.

LastAccessTimeUtc It is used to get or set the time, in
coordinated universal time (UTC) that the
current file or directory was last accessed.

LastWriteTime It is used to get or set the time when the
current file or directory was last written.

C# DirectoryInfo Properties
Property Description

LastWriteTimeUtc It is used to get or set the time,
in coordinated universal time
(UTC), when the current file or
directory was last written.

Name It is used to get the name of this
DirectoryInfo instance.

Parent It is used to get the parent
directory of a specified
subdirectory.

Root It is used to get the root portion
of the directory.

C# DirectoryInfo Methods

Method Description

Create() It is used to create a directory.

Create(DirectorySecurity) It is used to create a directory using a
DirectorySecurity object.

CreateObjRef(Type) It is used to create an object that contains all
the relevant information required to generate a
proxy used to communicate with a remote
object.

CreateSubdirectory(String) It is used to create a subdirectory or
subdirectories on the specified path.

CreateSubdirectory(String,Direc
torySecurity)

It is used to create a subdirectory or
subdirectories on the specified path with the
specified security.

Delete() It is used to delete this DirectoryInfo if it is
empty.

Delete(Boolean) It is used to delete this instance of a
DirectoryInfo, specifying whether to delete
subdirectories and files.

C# DirectoryInfo Methods

Method Description

EnumerateDirectories() It returns an enumerable collection of directory
information in the current directory.

EnumerateFiles() It returns an enumerable collection of file
information in the current directory.

GetAccessControl() It is used to get a DirectorySecurity object that
encapsulates the access control list (ACL) entries
for the directory.

GetDirectories() It returns the subdirectories of the current
directory.

GetFiles() It returns a file list from the current directory.

GetType() It is used to get the Type of the current
instance.

MoveTo(String) It is used to move a DirectoryInfo instance and
its contents to a new path.

Refresh() It is used to refresh the state of the object.

SetAccessControl(DirectorySecu
rity)

It is used to set access control list (ACL) entries
described by a DirectorySecurity object.

ToString() It returns the original path that was passed by
the user.

C# DirectoryInfo Example

using System;

using System.IO;

namespace CSharpProgram{

class Program {

static void Main(string[] args) {

// Provide directory name with complete location.

DirectoryInfo directory = new DirectoryInfo(@"F:\MCA");

try {

// Check, directory exist or not.

if (directory.Exists) {

Console.WriteLine("Directory already exist.");

return; }

// Creating a new directory.

directory.Create();

Console.WriteLine("The directory is created successfully."); }

catch (Exception e) {

Console.WriteLine("Directory not created: {0}", e.ToString());

} } } }

C# DirectoryInfo Example:

Deleting Directory
using System;

using System.IO;

namespace CSharpProgram {

class Program {

static void Main(string[] args) {

// Providing directory name with complete location.

DirectoryInfo directory = new DirectoryInfo(@"F:\MCA");

try {

// Deleting directory

directory.Delete();

Console.WriteLine("The directory is deleted successfully.");

} catch (Exception e)

{

Console.WriteLine("Something went wrong: {0}", e.ToString());

}

}

}

}

Output:

The directory is deleted successfully.

C# Serialization

In C#, serialization is the process of converting object into byte

stream so that it can be saved to memory, file or database. The

reverse process of serialization is called deserialization.

Serialization is internally used in remote applications.

C# SerializableAttribute

To serialize the object, you need to apply SerializableAttribute

attribute to the type. If you don't apply SerializableAttribute

attribute to the type, SerializationException exception is thrown at

runtime.

C# Serialization example
using System;

using System.IO;

using System.Runtime.Serialization.Formatters.Binary;

[Serializable]

class Student {

int rollno;

string name;

public Student(int rollno, string name) {

this.rollno = rollno;

this.name = name; } }

public class SerializeExample {

public static void Main(string[] args) {

FileStream stream = new FileStream("e:\\sss.txt", FileMode.OpenOrCr

eate);

BinaryFormatter formatter=new BinaryFormatter();

Student s = new Student(101, "sonoo");

formatter.Serialize(stream, s);

stream.Close();

} }

sss.txt:

JConsoleApplication1,

Version=1.0.0.0, Culture=neutral,

PublicKeyToken=null Student

rollnoname e sonoo

C# Deserialization

In C# programming, deserialization is the reverse process of

serialization. It means you can read the object from byte stream.

Here, we are going to use BinaryFormatter.Deserialize(stream)

method to deserialize the stream.

C# Deserialization Example
using System;

using System.IO;

using System.Runtime.Serialization.Formatters.Binary;

[Serializable]

class Student {

public int rollno;

public string name;

public Student(int rollno, string name) {

this.rollno = rollno;

this.name = name; } }

public class DeserializeExample {

public static void Main(string[] args) {

FileStream stream = new FileStream("e:\\sss.txt", FileMode.OpenOrCr

eate);

BinaryFormatter formatter=new BinaryFormatter();

Student s=(Student)formatter.Deserialize(stream);

Console.WriteLine("Rollno: " + s.rollno);

Console.WriteLine("Name: " + s.name);

stream.Close();

} }

Output:

Rollno: 101

Name: sonoo

C# System.IO Namespace

The System.IO namespace consists of IO related classes,

structures, delegates and enumerations. These classes can be used

to reads and write data to files or data streams. It also contains

classes for file and directory support.

C# System.IO Namespace

Classes
Class Description

BinaryReader It is used to read primitive data types as binary values
in a specific encoding.

BinaryWriter It is used to write primitive types in binary to a stream.

BufferedStream It is used to add a buffering layer to read and write
operations on another stream. It is a sealed class.

Directory It is used to expose static methods for creating,
moving and enumerating through directories and
subdirectories. It is a sealed class.

DirectoryInfo It is used to expose instance methods for creating,
moving and enumerating through directories and
subdirectories. It is a sealed class.

DirectoryNotFou
ndException

It is used to handle exception related to the file or
directory cannot be found.

DriveInfo It is used to access the information on a drive.

DriveNotFoundEx
ception

It is used to handle drive not found exception.

C# System.IO Namespace

Classes
Class Description

EndOfStreamException It is used to handle end of stream exception.

ErrorEventArgs It provides data for the FileSystemWatcher.Error event.

File This class provides static methods for the creation, copying, deletion,
moving and opening of a single file.

FileFormatException It is used to handle file format exception.

FileInfo It is used to provide properties and instance methods for the creation,
copying, deletion, moving and opening of files.

FileLoadException It is used to handle file load exception.

FileNotFoundException It is used to handle file load exception.

FileNotFoundException It is used to handle file not found exception.

FileStream It provides a Stream for a file, supporting both synchronous and
asynchronous read and write operations.

FileSystemEventArgs It provides data for the directory events.

FileSystemInfo It provides the base class for both FileInfo and DirectoryInfo objects.

FileSystemWatcher It listens to the file system change notifications and raises events when a
directory or file in a directory, changes.

InternalBufferOverflow
Exception

This class is used to handle internal buffer overflow exception.

InvalidDataException It is used to handle invalid data exception.

IODescriptionAttribute It sets the description visual designers can display when referencing an
event, extender or property.

C# System.IO Namespace

Classes
Class Description

IOException It is an exception class that handles I/O errors.

MemoryStream It is used to create a stream whose backing store is memory.

Path It performs operations on String instances that contain file or
directory path information.

PathTooLongExcept
ion

It is an exception class and used to handle path too long
exception.

PipeException This exception class is used to handle pipe related exception.

RenamedEventArgs It is used to provide data for the Renamed event.

Stream It is used to provide a generic view of a sequence of bytes. It is
an abstract class.

StreamReader It is used to implement a TextReader that reads characters
from a byte stream.

StringReader It is used to implement a TextReader that reads from a string.

StringWriter It is used to implement a TextWriter for writing information to
a string. The information is stored in an underlying
StringBuilder.

C# System.IO Namespace

Classes
Class Description

TextReader This class is used to represent a reader that can read a
sequential series of characters.

TextWriter This class is used to represent a writer that can write a
sequential series of characters.

UnmanagedMem
oryAccessor

It is used to provide random access to unmanaged
blocks of memory from managed code.

UnmanagedMem
oryStream

It is used to get access to unmanaged blocks of
memory from managed code.

System.IO Namespace Structures

Structure Description

WaitForChangedResult It contains information
on the change that
occurred.

System.IO Namespace Delegates

Delegates Description

ErrorEventHandler It represents the method that will handle the Error
event of a FileSystemWatcher object.

FileSystemEventHandle
r

It represents the method that will handle the
Changed, Created or Deleted event of a
FileSystemWatcher class.

RenamedEventHandler It represents the method that will handle the
renamed event of a FileSystemWatcher class.

System.IO Namespace

Enumerations

Enumeration Description

DriveType It is used to define constants for drive types
including CDRom, Fixed, Network etc.

FileAccess It is used to define constants for read, write or
read/write access to a file.

FileAttributes It is used to provide attributes for files and
directories.

FileMode It is used to specify how the operating system should
open a file.

FileOptions It is used to represents advanced options for creating
a FileStream object.

FileShare It is used to contain constants for controlling the kind
of access other FileStream objects can have to the
same file.

System.IO Namespace

Enumerations

Enumeration Description

HandleInheritab
ility

It specifies whether the underlying handle is
inheritable by child processes.

NotifyFilters It is used to specify changes to watch for in a file or
folder.

SearchOption It is used to specify whether to search the current
directory or the current directory and all
subdirectories.

SeekOrigin It is used to specify the position in a stream to use for
seeking.

WatcherChange
Types

It changes that might occur to a file or directory.

C# Multithreading

C# Multithreading

• Multithreading in C# is a process in which multiple

threads work simultaneously.

• It is a process to achieve multitasking. It saves time

because multiple tasks are being executed at a time.

• To create multithreaded application in C#, we need to

use System.Threading namespace.

System.Threading Namespace

• The System.Threading namespace contains classes and

interfaces to provide the facility of multithreaded programming.

It also provides classes to synchronize the thread resource. A

list of commonly used classes are given below:

• Thread

• Mutex

• Timer

• Monitor

• Semaphore

• ThreadLocal

• ThreadPool

• Volatile etc.

Process and Thread

• A process represents an application whereas a thread represents

a module of the application.

• Process is heavyweight component whereas thread is

lightweight.

• A thread can be termed as lightweight subprocess because it is

executed inside a process.

• Whenever you create a process, a separate memory area is

occupied. But threads share a common memory area.

C# Thread Life Cycle

• In C#, each thread has a life cycle. The life cycle of a thread is

started when instance of System.Threading.Thread class is

created. When the task execution of the thread is completed, its

life cycle is ended.

• There are following states in the life cycle of a Thread in C#.

• Unstarted

• Runnable (Ready to run)

• Running

• Not Runnable

• Dead (Terminated)

C# Thread Life Cycle (Contd.)

• Unstarted State

• When the instance of Thread class is created, it is in unstarted state by

default. Runnable State

• When start() method on the thread is called, it is in runnable or ready to

run state.

• Running State

• Only one thread within a process can be executed at a time. At the time

of execution, thread is in running state.

• Not Runnable State

• The thread is in not runnable state, if sleep() or wait() method is called

on the thread, or input/output operation is blocked.

• Dead State

• After completing the task, thread enters into dead or terminated state.

C# Thread class

• C# Thread class provides properties and methods to

create and control threads.

• It is found in System.Threading namespace.

C# Thread Properties
Property Description

CurrentThread returns the instance of currently
running thread.

IsAlive checks whether the current thread
is alive or not. It is used to find the
execution status of the thread.

IsBackground is used to get or set value whether
current thread is in background or
not.

ManagedThreadId is used to get unique id for the
current managed thread.

Name is used to get or set the name of
the current thread.

Priority is used to get or set the priority of
the current thread.

ThreadState is used to return a value
representing the thread state.

C# Thread Methods

Method Description

Abort() is used to terminate the thread. It raises
ThreadAbortException.

Interrupt() is used to interrupt a thread which is
in WaitSleepJoin state.

Join() is used to block all the calling threads until this
thread terminates.

ResetAbort() is used to cancel the Abort request for the current
thread.

Resume() is used to resume the suspended thread. It is
obselete.

Sleep(Int32) is used to suspend the current thread for the
specified milliseconds.

Start() changes the current state of the thread to
Runnable.

Suspend() suspends the current thread if it is not suspended.
It is obselete.

Yield() is used to yield the execution of current thread to
another thread.

C# Main Thread Example

• The first thread which is created inside a process is called Main

thread. It starts first and ends at last.

using System;

using System.Threading;

public class ThreadExample

{

public static void Main(string[] args)

{

Thread t = Thread.CurrentThread;

t.Name = "MainThread";

Console.WriteLine(t.Name);

}

}

C# Threading Example: static

method
using System;

using System.Threading;

public class MyThread{

public static void Thread1() {

for (int i = 0; i < 10; i++) {

Console.WriteLine(i);

}

}

}

public class ThreadExample {

public static void Main()

{

Thread t1 = new Thread(new ThreadStart(MyThread.Thread1));

Thread t2 = new Thread(new ThreadStart(MyThread.Thread1));

t1.Start();

t2.Start();

}

}

Output:

The output of this program can be

anything because there is context

switching between the threads.

C# Threading Example: Sleep()

method
• The Sleep() method suspends the current thread for the

specified milliseconds. So, other threads get the chance to start

execution.

using System;

using System.Threading;

public class MyThread

{

public void Thread1()

{

for (int i = 0; i < 10; i++)

{

Console.WriteLine(i);

Thread.Sleep(200);

}

}

}

public class ThreadExample

{

public static void Main()

{

MyThread mt = new MyThread();

Thread t1 = new Thread(new Thread

Start(mt.Thread1));

Thread t2 = new Thread(new Thread

Start(mt.Thread1));

t1.Start();

t2.Start();

}

}

C# Threading Example: Sleep()

method
• The Sleep() method suspends the current thread for the

specified milliseconds. So, other threads get the chance to

start execution.

using System;

using System.Threading;

public class MyThread

{

public void Thread1()

{

for (int i = 0; i < 10; i++)

{

Console.WriteLine(i);

Thread.Sleep(200);

}

}

}

public class ThreadExample

{

public static void Main()

{

MyThread mt = new MyThread();

Thread t1 = new Thread(new Thread

Start(mt.Thread1));

Thread t2 = new Thread(new Thread

Start(mt.Thread1));

t1.Start();

t2.Start();

}

}

Output:

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

C# Threading Example: Abort()

method
using System;

using System.Threading;

public class MyThread {

public void Thread1() {

for (int i = 0; i < 10; i++) {

Console.WriteLine(i);

Thread.Sleep(200);

} } }

public class ThreadExample {

public static void Main() {

Console.WriteLine("Start of Main");

MyThread mt = new MyThread();

Thread t1 = new Thread(new ThreadStart(mt.Thread1));

Thread t2 = new Thread(new ThreadStart(mt.Thread1));

t1.Start();

t2.Start();

try {

t1.Abort();

t2.Abort();

}

catch (ThreadAbortException tae){

Console.WriteLine(tae.ToString());

}

Console.WriteLine("End of Main");

}

}

Output:

Output is unpredictable because thread

may be in running state.

C# Threading Example: Join()

method
using System;

using System.Threading;

public class MyThread {

public void Thread1() {

for (int i = 0; i < 5; i++) {

Console.WriteLine(i);

Thread.Sleep(200);

} } }

public class ThreadExample {

public static void Main() {

MyThread mt = new MyThread();

Thread t1 = new Thread(new ThreadStart(mt.Thread1));

Thread t2 = new Thread(new ThreadStart(mt.Thread1));

Thread t3 = new Thread(new ThreadStart(mt.Thread1));

t1.Start();

t1.Join();

t2.Start();

t3.Start();

} }

Output:

0

1

2

3

4

0

0

1

1

2

2

3

3

4

4

C# Threading Example: Join()

method
using System;

using System.Threading;

public class MyThread {

public void Thread1() {

for (int i = 0; i < 5; i++) {

Console.WriteLine(i);

Thread.Sleep(200);

} } }

public class ThreadExample {

public static void Main() {

MyThread mt = new MyThread();

Thread t1 = new Thread(new ThreadStart(mt.Thread1));

Thread t2 = new Thread(new ThreadStart(mt.Thread1));

Thread t3 = new Thread(new ThreadStart(mt.Thread1));

t1.Start();

t1.Join();

t2.Start();

t3.Start();

} }

Output:

0

1

2

3

4

0

0

1

1

2

2

3

3

4

4

C# Threading Example:

ThreadPriority
using System;

using System.Threading;

public class MyThread {

public void Thread1() {

Thread t = Thread.CurrentThread;

Console.WriteLine(t.Name+" is running"); } }

public class ThreadExample {

public static void Main() {

MyThread mt = new MyThread();

Thread t1 = new Thread(new ThreadStart(mt.Thread1));

Thread t2 = new Thread(new ThreadStart(mt.Thread1));

Thread t3 = new Thread(new ThreadStart(mt.Thread1));

t1.Name = "Player1";

t2.Name = "Player2";

t3.Name = "Player3";

t3.Priority = ThreadPriority.Highest;

t2.Priority = ThreadPriority.Normal;

t1.Priority = ThreadPriority.Lowest;

t1.Start();

t2.Start();

t3.Start();

}

}

Output:

The output is unpredictable because

threads are highly system dependent.

It may follow any algorithm

preemptive or non-preemptive.

Output

Player1 is running

Player3 is running

Player2 is running

C# Thread Synchronization

• The Sleep() method suspends the current thread for the

specified milliseconds. So, other threads get the chance to

start execution Synchronization is a technique that allows

only one thread to access the resource for the particular

time. No other thread can interrupt until the assigned thread

finishes its task.

• In multithreading program, threads are allowed to access

any resource for the required execution time. Threads share

resources and executes asynchronously. Accessing shared

resources (data) is critical task that sometimes may halt the

system. We deal with it by making threads synchronized.

• It is mainly used in case of transactions like deposit,

withdraw etc.

Advantage of Thread

Synchronization

• Consistency Maintain

• No Thread Interference

C# Lock

• We can use C# lock keyword to execute program

synchronously. It is used to get lock for the current

thread, execute the task and then release the lock. It

ensures that other thread does not interrupt the

execution until the execution finish.

• Here, we are creating two examples that executes

asynchronously and synchronously.

C# Example: Without

Synchronization
using System;

using System.Threading;

class Printer {

public void PrintTable() {

for (int i = 1; i <= 10; i++) {

Thread.Sleep(100);

Console.WriteLine(i);

} } }

class Program {

public static void Main(string[] args) {

Printer p = new Printer();

Thread t1 = new Thread(new ThreadStart(p.PrintTable));

Thread t2 = new Thread(new ThreadStart(p.PrintTable));

t1.Start();

t2.Start();

} }

Output:

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

C# Thread Synchronization

Example
using System;

using System.Threading;

class Printer {

public void PrintTable() {

lock (this) {

for (int i = 1; i <= 10; i++) {

Thread.Sleep(100);

Console.WriteLine(i);

} } } }

class Program {

public static void Main(string[] args) {

Printer p = new Printer();

Thread t1 = new Thread(new ThreadStart(p.PrintTable));

Thread t2 = new Thread(new ThreadStart(p.PrintTable));

t1.Start();

t2.Start();

}

}

Output:

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

