

Control Systems

Subject Code: BEC-26

Unit-I

Shadab A. Siddique Assistant Professor

Third Year ECE

Maj. G. S. Tripathi Associate Professor

Department of Electronics & Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur

UNIT- I

- Introduction to Control system
 - Control System Definition and Practical Examples
 - Basic Components of a Control System
- Feedback Control Systems:
 - Feedback and its Effect
 - Types of Feedback Control Systems
- Block Diagrams:
 - Representation and reduction
 - ✤ Signal Flow Graphs
- Modeling of Physical Systems:
 - Electrical Networks and Mechanical Systems
 - Force-Voltage Analogy
 - Force-Current Analogy

Signal Flow Graph (SFG) Representation:

- 1. SFG is a graphical representation of variables of a set of linear algebraic equations representing the system.
- 2. Variables are represented by small circles called nodes.
- 3. The line joining the nodes are called branches which is associated with a T.F and an arrow.
- 4. Eg: V = IR
- 5. Let V & I are the variables in which I is the input & V is the output

$$I \stackrel{R}{\longleftarrow} V = IR$$

Properties of SFG:

- 1. SFG is only applicable to LTI system.
- 2. The signal gets multiplied by branch gain when it travels along it.
- 3. The value of variable is represented by any node is the algebraic sum of the signals entering at the node.

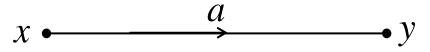
4. The no. of branches leaving a node doesn't affect the value of variable represented by that node. Shadab. A. Siddique Maj. G. S. Tripathi

Introduction

- ✓ SFG is a graphical representation of variables of a set of linear algebraic equations representing the system.
- \checkmark Variables are represented by small circles called nodes.
- ✓ The directed lines joining the nodes are called branches which is associated with a T.F and an arrow.
- ✓ Alternative method to block diagram representation, developed by Samuel Jefferson Mason.
- ✓ Advantage: the availability of a flow graph gain formula, also called Mason's gain formula.
- \checkmark It depicts the flow of signals from one point of a system to another and gives the relationships among the signals.

Fundamentals of Signal Flow Graphs

- Consider a simple equation below and draw its signal flow graph: y = ax
- The signal flow graph of the equation is shown below;

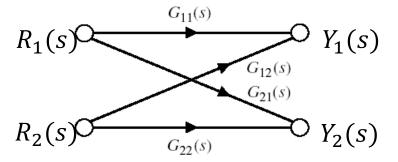


- Every variable in a signal flow graph is represented by a **Node**.
- Every transmission function in a signal flow graph is represented by a **Branch**.
- Branches are always **unidirectional**.
- The arrow in the branch denotes the **direction** of the signal flow.

Signal-Flow Graph Model 1:

 $Y_1(s) = G_{11}(s) \cdot R_1(s) + G_{12}(s) \cdot R_2(s)$

$$Y_2(s) = G_{21}(s) \cdot R_1(s) + G_{22}(s) \cdot R_2(s)$$

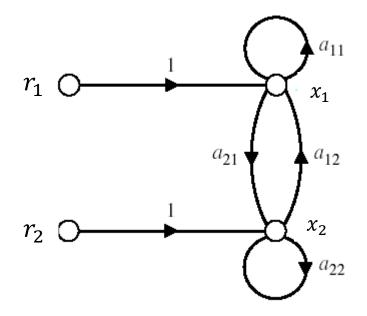


Signal-Flow Graph Model 2:

 r_1 and r_2 are inputs and x_1 and x_2 are outputs

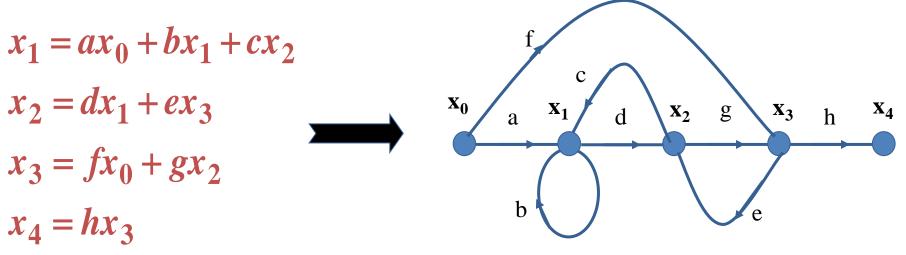
$$a_{11} \cdot x_1 + a_{12} \cdot x_2 + r_1 = x_1$$

 $a_{21} \cdot x_1 + a_{22} \cdot x_2 + r_2 = x_2$



Signal-Flow Graph Model 3:

 x_o is input and x_4 is output



Terminologies of SFG:

- An input node or source contain only the outgoing branches. i.e., X_1
- An **output node** or sink contain only the incoming branches. i.e., X_4
- A **path** is a continuous, unidirectional succession of branches along which no node is passed more than ones. i.e.,

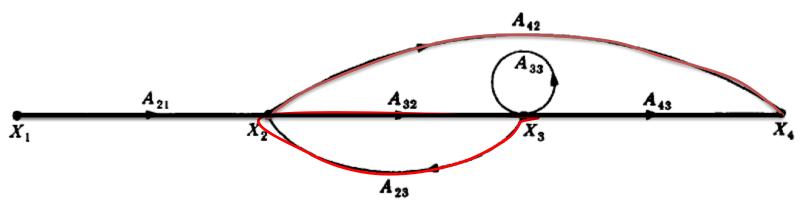
X1 to X2 to X3 to X4 X1 to X2 to X4 X2 to X3 to X4

• A forward path is a path from the input node to the output node. i.e.,

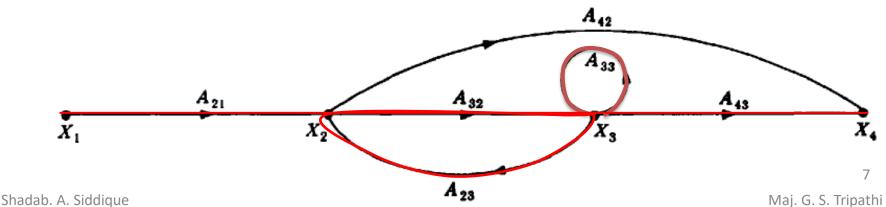
 X_1 to X_2 to X_3 to X_4 , and X_1 to X_2 to X_4 , are forward paths.

Cntd...

A feedback path or feedback loop is a path which originates and terminates on the same node. i.e.; X₂ to X₃ and back to X₂ is a feedback path.



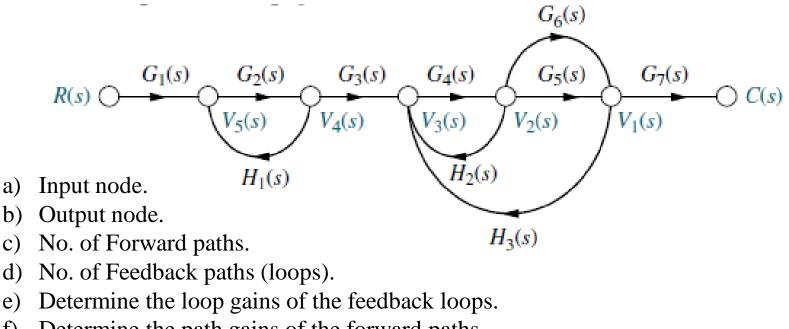
- A self-loop is a feedback loop consisting of a single branch. i.e.; A_{33} is a self loop.
- The gain of a branch is the transmission function of that branch.
- The path gain is the product of branch gains encountered in traversing a path. i.e. the gain of forwards path X₁ to X₂ to X₃ to X₄ is A₂₁A₃₂A₄₃



Cntd...

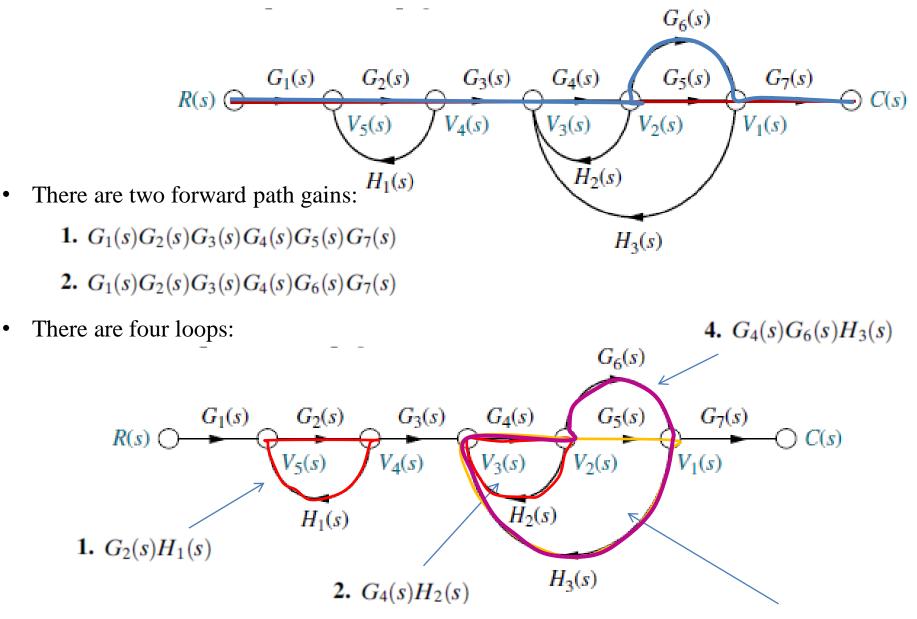
- The loop gain is the product of the branch gains of the loop. i.e., the loop gain of the feedback loop from X₂ to X₃ and back to X₂ is A₃₂A₂₃.
- Two loops, paths, or loop and a path are said to be **non-touching** if they have no nodes in common.

Problem 1:Consider the signal flow graph below and identify the following:



- f) Determine the path gains of the forward paths.
- g) Non-touching loops

Problem 1: Contd..

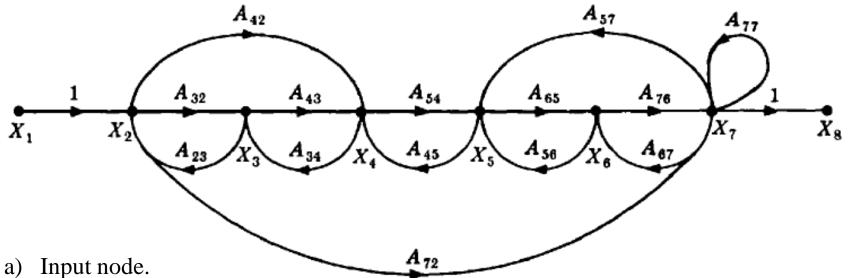


3. $G_4(s)G_5(s)H_3(s)$ Maj. G. S. Tripathi

Problem 1: Contd..

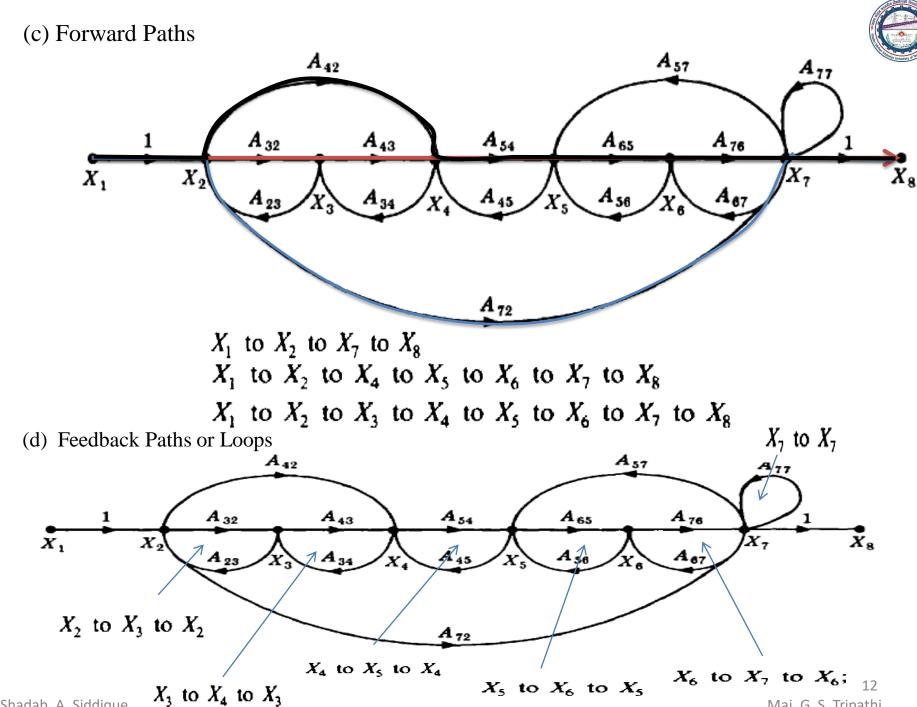
- Nontouching loop gains:
 - **1.** $[G_2(s)H_1(s)][G_4(s)H_2(s)]$
 - **2.** $[G_2(s)H_1(s)][G_4(s)G_5(s)H_3(s)]$
 - **3.** $[G_2(s)H_1(s)][G_4(s)G_6(s)H_3(s)]$
- a) Input node: R(s)
- b) Output node: C(s)
- c) No of Forward paths: two
- d) No. of Feedback paths (loops): four
- e) Determine the loop gains of the feedback loops:
 - 1. G2(s)H1(s)
 - 2. G4(s)H2(s)
 - 3. G4(s)G5(s)H3(s)
 - 4. G4(s)G6(s)H3(s)
- f) Determine the path gains of the forward paths:
 - 1. G1(s) G2(s) G3(s) G4(s) G5(s) G7(s)
 - 2. G1(s) G2(s) G3(s) G4(s) G6(s) G7(s)
- g) Non-touching loops:
 - 1. [G2(s)H1(s)][G4(s)H2(s)]
 - 2. [G2(s)H1(s)][G4(s)G5(s)H3(s)]
 - 3. [G2(s)H1(s)][G4(s)G6(s)H3(s)]

Problem 2: Consider the signal flow graph below and identify the following:



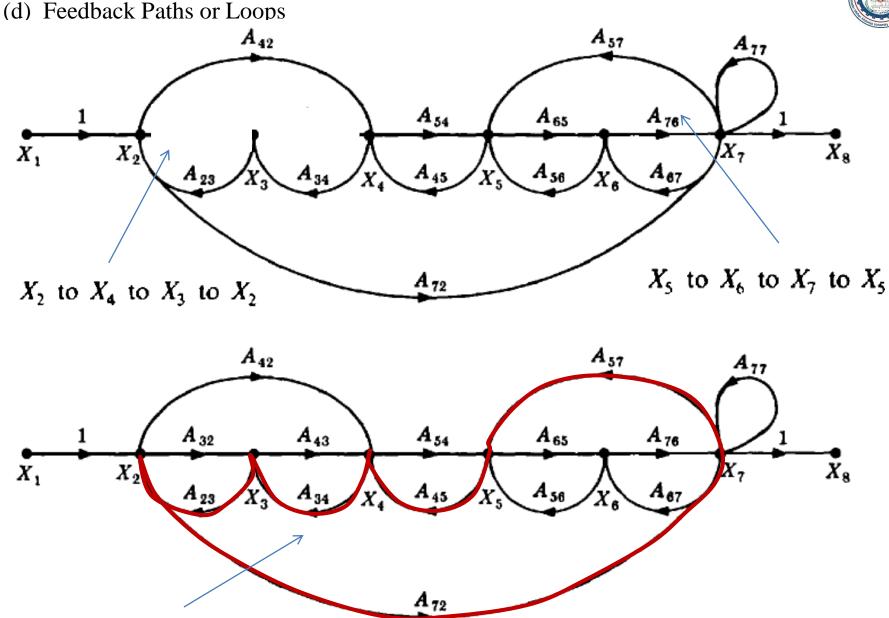
- b) Output node.
- c) Forward paths.
- d) Feedback paths.
- e) Self loop.
- f) Determine the loop gains of the feedback loops.
- g) Determine the path gains of the forward paths.
- Input and output Nodes
- a) Input node X_{l}

a) Output node X_8



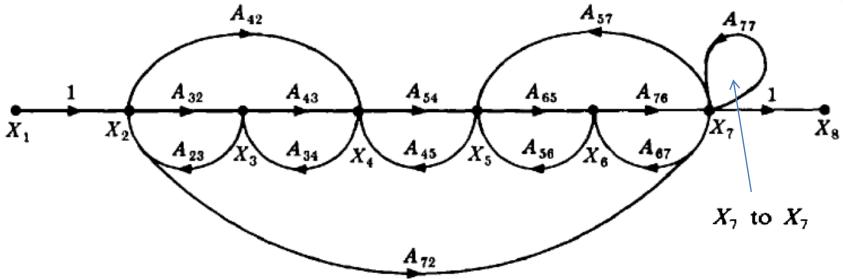
Shadab. A. Siddique

Maj. G. S. Tripathi



 X_2 to X_7 to X_5 to X_4 to X_3 to X_2

(e) Self Loop(s)



- (f) Loop Gains of the Feedback Loops
 - $A_{32}A_{23}$ $A_{76}A_{67}$;
 $A_{42}A_{34}A_{23}$ $A_{72}A_{57}A_{45}A_{34}A_{23}$;

 $A_{43}A_{34}$ A_{77} $A_{65}A_{76}A_{57}$ $A_{72}A_{67}A_{56}A_{45}A_{34}A_{23}$;

 $A_{54}A_{45}$ $A_{65}A_{56}$ $A_{72}A_{67}A_{56}A_{45}A_{34}A_{23}$;
- (g) Path Gains of the Forward Paths

$$A_{72}$$
 $A_{32}A_{43}A_{54}A_{65}A_{76}$ $A_{42}A_{54}A_{65}A_{76}$