A beam is a structural member whose longitudinal dimension is large compared to the transverse dimension. The beam is supported along its length and is acted upon by a system of loads at right angles to its axis. Due to external loads and couples, shear force and bending moment develop at any section of the beams. For the design of beams, information about the shear force and bending moment is desired. Accordingly, it is appropriate to learn about the variation of shear force and bending moment along the length of the beam.

11.1. SHEAR FORCE AND BENDING MOMENT

Consider a simply supported beam acted upon by different point loads as shown in Fig. 11.1.

Fig. 11.1
The loads are transferred to supports and for equilibrium conditions

$$
R_{a}+R_{b}=W_{1}+W_{2}+W_{3}=30+20+20=60 \mathrm{kN}
$$

Also ΣM_{a} (moments about support A) $=0$. That gives

$$
R_{b} \times 7=10 \times 5+20 \times 3+30 \times 1=140
$$

$\therefore \quad R_{b}=\frac{140}{7}=20 \mathrm{kN}$ and $R_{a}=60-20=40 \mathrm{kN}$

Imagine the beam to be cut at an arbitrary section $x x$ at distance $x=4 \mathrm{~m}$ from the end A, and draw separately the free body diagrams of the two portions (Fig. 11.2).

- Considering equilibrium of forces on each portion of the beam, the net resultant vertical forces are:

$$
\begin{aligned}
F_{\text {left }} & =30+20-40=10 \mathrm{kN} \\
F_{\text {right }} & =10-20=-10 \mathrm{kN}
\end{aligned}
$$

It is to be noted that forces on the left and right sides of the section $x x$ are equal in magnitude but opposite in direction.

Obviously, section $x x$ is subjected to a force of 10 kN which is trying to shear the beam. The force of 10 kN is called as shear force at section $x \boldsymbol{x}$.
"Shear force at a section in a beam is the force that is trying to shear off the section. It is obtained as algebraic sum of all the forces acting normal to the axis of beam; either to the left or to the right of the section."

- Considering equilibrium of moments on each portion of the beam,

$$
\begin{aligned}
& M_{\text {left }}=40 \times 4-30 \times 3-20 \times 1=50 \mathrm{kNm} \\
& M_{\text {right }}=20 \times 3-10 \times 1=50 \mathrm{kNm}
\end{aligned}
$$

(clockwise)
It is to be noted that moments on the left (anti-clockwise) but opposite in direction. Obviously section $x x$ are equal in magnitude moment is
"Bending
lgebraic sum of momt at a section in a beam is the moment that tends to bend the beam and is obtained as section."

Sign Conversion: The following sign conventions are normally adopted for the shear force and bending moment.
(i) Shear force is taken positive if it tends to move the left portion upward with respect to the right portion.
(ii) Bending moment is taken positive if it tends to sag (concave upward) the beam, and it is taken negative if it tends to hog (concave down) the beam.
The shear force and bending moment vary along the length of the beam and this variation is represented graphically. The plots are known as shear force and bending moment diagrams. In these diagrams, the abscissa indicates the position of section along the beam, and the ordinate represents the value of SF and BM respectively. These plots help to determine the maximum value of each of these quantities.

112. TYPES OF BEAMS AND LOADS
the shear force and the bending moment that develop at any cross-section of the beam depend pon the types onerally classified as:

Ceam are gever beam (Fig. 11 a)

- Cantilever beam (Fig. 11.5a): A beam having its one end fixed or built-in and the other end free to deflect. There is no deflection or rotation at the fixed end.
- Fixed beam (Fig. 11.5b): A beam having both of its ends fixed or built-in.
- knife edges or rollers. The term 'freely supporte to freely rest on supports which may be forces but no moments on the beam. The horizod' implies that these supports exert only span.
- Overhanging beam (Fig. 11.5d): A beam having one or both ends extended over the supports. The end portion or portions extend in the form of both ends extended over the
supports.
- Continuous beam (Fig. 11.5e): A beam provided with more than two supports. Further such a beam may or may not have overhang.

(a)

(b)

(c)

(d)

(c)

Fig. 11.5

The different types of loads acting on a beam are:

- Concentrated load:The load acts at a point on the beam. This point load is applied through a knife edge.
- Uniformly distributed load: The load is evenly distributed over a part or the entire length of the beam. The total udl is assumed to act at the centre of gravity of the load. The udl is expressed as N / m length of beam.
- Uniformly varying load: The load whose intensity varies linearly along the length of beam over which it is applied.
- A beam may be loaded by a couple whose magnitude is expressed as Nm .

A beam may carry any one of the above load systems or combination of two or more loads at

Fig. 11.6

11.3. RELATION BETWEEN LOAD INTENSITY, SF AND BM

Consider a beam subjected to any type of transverse load of the general form shown in Fig. 117 Isolate from the beam an element of length $d x$ at a distance x from left end and draw its free body diagram as shown in Fig. 11.7. Since the element is of extremely small length, the loading over thy beam can be considered to be uniform and equal to $w \mathrm{kN} / \mathrm{m}$. The element is subject to shear torce F on its left hand side and shear force ($F+d F$) on its right hand side. Further, the bending momer M acts on the left side of the element and it changes to ($M+d M$) on the right side.

Fig. 11.7
Taking moments about point C on the right side,
$\boldsymbol{\Sigma} M_{c}=0$:

$$
M-(M+d M)+F \times d x-(w \times d x) \times \frac{d x}{2}=0
$$

The udl is considered to be acting at its CG

$$
d M=F d x-\frac{w(d x)^{2}}{2}=0
$$

The last term consists of the product of two differentials and can be neglected.

$$
\therefore \quad d M=F d x \text { or } F=\frac{d M}{d x}
$$

Thus the shear force is equal to the rate of change of bending moment with respect to x.
Applying the condition $\Sigma F_{y}=0$ for equilibrium, we obtain

$$
\begin{aligned}
& F-w d x-(F+d F)=0 \\
& w=\frac{d F}{d x}
\end{aligned}
$$

or
That is the intensity of loading is equal to rate of change of shear force with respect to x.

Draw the shear force and bending moment diagrams for the beam loaded and supported as shown in Fig. 11.12.
Solution: The line of action of the reaction will be at right angles to the roller base at end A. The reaction at a hinge can have two components acting in the horizontal and the vertical directions. Since there is no horizontal external force acting on the beam, the reaction at the hinged end B will be only in the vertical direction.

$$
\begin{array}{lll}
R_{a} & \text { Fig. } 11.12
\end{array}
$$

Due to symmetry of loading,

$$
R_{a}=R_{b}=\frac{10+10}{2}=10 \mathrm{kN}
$$

Shear force

$$
S F \text { at } A=10 \mathrm{kN}
$$

$$
S F \text { just on left of } C=10 \mathrm{kN}
$$

$$
\text { SF just on right of } C=10-10=0
$$

$$
S F \text { just on left of } D=0
$$

$$
\text { SF just on right of } D=0-10=-10 \mathrm{kN}
$$

$$
\text { SF just on left of } B=-10 \mathrm{kN}
$$

$$
S F \text { just on right of } B=-10+10=0
$$

Bending moment. Taking a section at distance x from end A and considering forces on left side. Portion AC:

\[

\]

Portion CD;

$$
\begin{aligned}
M & =R_{a} \times x-10(x-1.5) \\
& =10 x-10 x+15=15 \mathrm{kNm}
\end{aligned}
$$

The bending moment remains constant at 15 kNm within the portion CD.

Portion DB:

$$
\begin{aligned}
M & =R_{a} \times x-10(x-1.5)-10(x-3.5) \\
& =10 x-10 x+15-10 x+35 \\
& =-10 x+50 \quad \text { (linear variation) }
\end{aligned}
$$

At $x=3.5 \mathrm{~m}$:
$M_{a}=-10 \times 3.5+50=15 \mathrm{kNm}$
At $x=5 \mathrm{~m}$:

$$
M_{b}=-10 \times 5+50=0
$$

The variation of shear force and bending moment for the entire length of the beam has been depicted in Fig. 11.13.

Gsiruct the shear force and bending moment diagram for the cantilever beam loaded as shown in

solution: For shear force calculations, consider any section at distance x from the free end A
At $x=0$
$S F=-5 \mathrm{kN}$
The shear force is being taken - ve because it tends to move the left portion downward with respect to the right portion.

At $x=1 \mathrm{~m}$
just left of $B: S F=-5 \mathrm{kN}$
At $x=3 \mathrm{~m}$
just left of $C: S F=-9 \mathrm{kN}$
just right of $B ; S F=-5-4=-9 \mathrm{kN}$

$$
\text { just right of } C: S F=-9-3=-12 \mathrm{kN}
$$

Bending moment
Portion AB: Imagine a section between A and B, and at distance x from end A. Then
$M_{x}=-5 x$
(linear variation)
At $x=0 \quad: \quad M_{a}=0$
At $x=1 \mathrm{~m}: \quad M_{b}=-5 \times 1=-5 \mathrm{kNm}$
Portion BC: Consider the section to be between B and C, and at distance x from end A. Then

$$
M_{x}=-5 x-4(x-1) \quad \text { (linear variation) }
$$

At $x=1 \mathrm{~m}: \quad M_{b}=-5 \times 1-(1-1)=-5 \mathrm{kNm}$ as calculated above
At $x=3 \mathrm{~m}: \quad M_{c}=-5 \times 3-4(3-1)=-23 \mathrm{kNm}$

$M_{x}=-5 x-4(x-1)-3(x-3) \quad$ (linear variation)
At $x=3 \mathrm{~m}: M_{c}=-5 \times 3-4(3-1)-3(3-3)=-23 \mathrm{kNm}$
At $x=4 \mathrm{~m}: M_{d}=-5 \times 4-4(4-1)-3(4-3)=-35 \mathrm{kNm}$
The shear force and the bending moment for the entire beam are shown in Fig. 11.15

EXAMPLE 11.3

Construct the shear force and bending moment diagrams for the cantilever beam loaded as shotom in Fig. 11.16.
Solution: For shear force calculations for portion AB, take 10 kN section at distance x from end A.

$$
S F=-10-10 x \text { (linear variation) }
$$

$$
\text { At } x=0 ; \quad S F=-10 \mathrm{kN}
$$

$$
\text { At } x=1 \mathrm{~m} \text { (just to left of point } B) \text {; }
$$

$$
S F=-10-10=-20 \mathrm{kN}
$$

For portion BC, again we consider a section at distance x from the end A,

$$
S F=-10-20-10 x \quad \text { (linear variation) }
$$

At $x=1 \mathrm{~m}$ (just to left of point B);

$$
S F=-10-20-10=-40 \mathrm{kN}
$$

At $x=3 \mathrm{~m}$ (fixed end) ;

$$
S F=-10-20-10 \times 3=-60 \mathrm{kN}
$$

The shear force diagram indicating the values of shear force at salient points is as shown in Fig. 11.17
(b) For bending moment for portion AB, take section at

Fig. 11.17 distance x from the free end A

$$
B M=-10 x-10 x \times \frac{x}{2} \quad \text { (parabolic variation) }
$$

The u dl Is taken to be acting at its CC

$$
\begin{aligned}
& \text { At } x=0 ; \quad B M=0 \\
& \text { At } x=1 \mathrm{~m} ; B M=-10 \times 1-10 \times 1 \times \frac{1}{2}=-15 \mathrm{kNm}
\end{aligned}
$$

For portion $B C$, again we consider a section at distance x from the end A

$$
B M=-10 x-20(x-1)-10 x \times \frac{x}{2}
$$

$$
\begin{aligned}
& \text { At } x=1 \mathrm{~m} ; B M=-10-20(1-1)-10 \times 1 \times \frac{1}{2}=-15 \mathrm{kNm} \\
& \text { At } x=3 \mathrm{~m} \text { (fixed end) : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { At } x=3 \mathrm{~m}(\text { fixed end }): \\
& \qquad \begin{aligned}
B M & =-10 \times 3-20(3-1)-10 \times 3 \times \frac{3}{2} \\
& =-30-40-45=-115 \mathrm{kNm}
\end{aligned}
\end{aligned}
$$

The bending moment diagram indicating the value of bending moment at salient points is as shown in Fig. 11.18.

ExAernine the reactions and construct the shear force and bending mornent diagrams for the beam loaded as podernine Fig. 11.19. Also find the point of contraflexture, if any.

Solution: A point of contraflexture is a point where bending moment is zero. From conditions of static equilibrium ($\Sigma V=0$ and $\Sigma M=0$), we have

$$
\begin{equation*}
R_{a}+R_{b}=2 \times 2+10+2=16 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
-2 \times 2 \times 10+R_{a} \times 9-10 \times 5+R_{b} \times 1=0 ; 9 R_{a}+R_{b}=90 \tag{ii}
\end{equation*}
$$

The udl is considered to be concentrated at its CG.
From expression (i) and (ii) : $R_{a}=9.25 \mathrm{kN}$ and $R_{b}=6.75 \mathrm{kN}$
Shear Force:
At $D=0$
Just left of $A=-2 \times 2=-4 \mathrm{kN}$; Just right of $A=-4+9.25=5.25 \mathrm{kN}$
Just left of $C=5.25 \mathrm{kN} \quad$; Just right of $C=5.25-10=-4.75 \mathrm{kN}$
Just left of $B=-4.75 \mathrm{kN} \quad$; Just right of $B=-4.75+6.75=2 \mathrm{kN}$
Just left of $E=2 \mathrm{kN} \quad$; Just right of $E=2-2=0 \mathrm{kN}$
Bending moment

$$
M_{D}=0
$$

At distance x from D (within portion $D A$)

$$
M_{x}=-2 x \times \frac{x}{2}=-x^{2}
$$

$\therefore M($ at $x=1 \mathrm{~m})=1$ and $M($ at $x=2 \mathrm{~m})=-4$
$M_{A}=-4 \mathrm{kNm}$
$M_{C}=-2 \times 2 \times 5+9.25 \times 4=-20+37=17 \mathrm{kNm}$
Apparently there is a point of contraflexture between A and C as bending moment changes sign between A and C.

Bending moment at x between A and C with x measured from D
$\therefore \quad M_{x}=-4(x-1)+9.25(x-2)=5.25 x-14.5$

hat gives $x=\frac{14.5}{5.25}=2.76 \mathrm{~m}$

$M_{B}=-2 \times 1=-2 \mathrm{kNm} \quad$ (considering the segment $E B$ from right hand side)
Since bending and at B is - ve, there is also a point of contraflexture
between C and B.
Bending moment at distance x measured from e

$$
\begin{aligned}
& \therefore \quad M_{x}=-2 x+6.75(x-1)=4.75 x-6.75 \\
& 4.75 x-6.75=0 \text { for point of contraflexture. } \\
& \text { That gives } x=6.75=1.42 \mathrm{~m}
\end{aligned}
$$

The shear force and bending moment diagrams for the entire beam are shown in Fig. 11% along with position of points of contraflexture.

Fig. 11.20

A simply supported beam with 8 m span is loaded as shown in the figure given below:

Fig. 11.30
Draw the shear force and bending moment diagrams. Also determine the magnitude and position of maximum bending moment on the beam.
Solution : Considering equilibrium of beam
$\Sigma F_{y}=0: \quad R_{a}+R_{e}=(9 \times 3)+12+(6 \times 3)=57 \mathrm{kN}$
$\Sigma M=0$: Taking moments about end point A (clockwise moments + ve)

$$
27 \times 1.5+12 \times 4+18 \times 6.5-R_{e} \times 8=0
$$

The udl is considered to be concentrated at $C G$.

$$
\begin{aligned}
R_{e} & =\frac{27 \times 1.5+12 \times 4+18 \times 6.5}{8} \\
& =\frac{40.5+48+117}{8}=25.69 \mathrm{kN} \\
\text { and } \quad R_{e} & =57-25.69=31.31 \mathrm{kN}
\end{aligned}
$$

Shear Force:
Portion AB : Consider any section at distance x from end support A

$$
S F=31.31-9 x \quad \text { (linear variation) }
$$

At point A,
$x=0$ and $S F=31.31 \mathrm{kN}$ At point B,

$$
x=3 \mathrm{~m} \text { and } S F=31.31-9 \times 3=4.31 \mathrm{kN}
$$

$B C D$: The shear force remains constant at 4.32 kN between B and just left of C $S F=4.31-12=7.69 \mathrm{kN}$
the shar force remains constant at 7.69 kN between and fust left of D.
Fion $D E$: Consider any section between $D E$ and at distance x from end support A.

$$
S F=31.31-9 \times 3-12-(x-5) \times 6
$$

$$
=22.31-6 x
$$

$$
x=5 \mathrm{~m}
$$

$$
\begin{aligned}
\text { At point } D, & x & =5 \mathrm{~m} \\
\text { and } & S F & =22.31-6 \times 5=-7.69 \mathrm{kN}
\end{aligned}
$$

A) iust left of point $E, x=8 \mathrm{~m}$
and $\quad S F=22.31-6 \times 8=-25.69 \mathrm{kN}$
At point $E, \quad S F=25.69-25.69=0$
laling Moment :
Artios $A B$: Consider any section between $A B$ at distance x from the end support A

71, Yariation in shear force and bending moment for the entire beam are as shown in

$$
\begin{aligned}
& B M=31.31 x-9 \frac{x^{2}}{2} \quad \text { (parabolic variation) } \\
& \text { At point } A, \quad x=0 \text { and } B M=0 \\
& \text { At point } B, \quad x=3 \mathrm{~m} \\
& \text { and } \\
& B M=31.31 \times 3-\frac{9 \times 3^{2}}{2}=53.43 \mathrm{kNm} \\
& \text { At point C, } \quad B M=R_{3} \times 4-(9 \times 2) \times(1.5+1) \\
& =31.31 \times 4-67.5 \\
& =57.74 \mathrm{kN} \mathrm{~m} \\
& \text { At point } D, \quad B M=R_{d} \times 5-(9 \times 3) \times(1.5+2) \\
& =31.31 \times 5-94.5-12 \\
& =50.05 \mathrm{kN} \mathrm{~m} \\
& \text { ortion DE: Consider any section within } D E \text { at distance } x \text { from the end support } A \\
& B M=31.31 x-(9 \times 3) \times(x-1.5)-12 \times(x-4)-6 x(x-5) \times \frac{x-5}{2} \\
& =31.31 x-27 \times(x-1.5)-12(x-4)-3(x-5)^{2} \\
& \text { BMat } D(\text { at } x=5) \\
& =31.31 \times 5-27(5-1.5)-12(5-4)-3(5-5)^{2} \\
& =50.05 \mathrm{kN} \mathrm{~m} \\
& B M \text { at } E(a t x=8) \\
& =31.31 \times 8-27(8-1.5)-12(8-4)-3(8-5)^{2}=0 \\
& =31.31 \times 8-27 \text {, variation in bending moment is parabolic. }
\end{aligned}
$$

Fig. 11.31

A horizontal beam 10 m long carries a uniformly distributed load of $8 \mathrm{kN} / \mathrm{m}$ together with concentruted loads of 40 kN at the left end and 60 kN at the right end. The beam is supported at two points 6 m , so chosen that reaction is the same at the each support. Determine the position of props and show the variation of sheer force and bending moment over the entire length of the beam.
Solution:Refer Fig. 11.34 for the beam loaded and supported as per the statement. Let the prop C be at distance a from end A.

Fig. 11.34
Then the prop D is at distance $(4-a)$ from end B.
Total load on the beam $=40+60+(10 \times 8)=180 \mathrm{kN}$. Since reaction is the same at each supprt

$$
R_{c}=R_{d}=\frac{180}{2}=90 \mathrm{kN}
$$

Taking moments about end A,

$$
\begin{array}{ll}
& 60 \times 10+(8 \times 10) \times{ }_{2}^{10}=90 \times a+90(6+a) \\
\text { or } & 600+400=90 a+540+90 a \\
\therefore & a=\frac{(600+400)-540}{180}=2.55 \mathrm{~m}
\end{array}
$$

whel support is 2.55 min trom A and the right support is $(4-2.55)=1.45 \mathrm{~m}$ from B.

soly for $A=-40 \mathrm{kN}$
SF just on left side of $C=-40-8 \times 2.55=-60.40 \mathrm{kN}$
4F just on right side of $C=-60.40+90=29.60 \mathrm{kN}$
55 just on left side of $D=29.60-8 \times 6=-18.40 \mathrm{kN}$
5F just on right side of $D=-18.40+90=71.60 \mathrm{kN}$
5F just on left side of $B=71.60-8 \times 1.45=60 \mathrm{kN}$
5F just on right side of $B=60-60=0$
Inepoint of zero shear stress as measured from end A and lying between $C D$ can be worked thon the equation.

$$
-40+90-8 x=0 ; \quad x=\frac{50}{8}=6.25 m
$$

bealing monvent :
$B M$ at $A=0$
$B M$ at $C=-40 \times 2.55-(8 \times 2.55) \times{ }_{2}^{2.55}=-128 \mathrm{kNm}$
$B M$ at $D=-40 \times 8.55-(8 \times 8.55) \times{ }_{2}^{8.55}+90 \times 6$
$=-342-292.4+540=-94.4 \mathrm{kNm}$

$$
\begin{aligned}
& 6.25 \mathrm{~m} \text { from } A \\
& =-40 \times 6.25-(8 \times 6.25) \times \frac{6.25}{2}+90 \times(6.25-2.55) \\
& =-250-156.25+333=-73.25 \mathrm{kNm}
\end{aligned}
$$

The variation of shear force and bending moment length of the beam has been depocen, Fig 11.35

EXAMPLE 11.12
A horizontal beam $A B$ of span 10 m carries a uniformly distributed load of intersity $160 \mathrm{~N} / \mathrm{ta}_{3}$ an in load of 400 N at the left end A . The brem is supported af a point C which is 1 m from A and at $D_{\text {storon }}$. the right half of the beam. If the point of contraflexture is at the mid point of the beam, determane the sise of support at D from the end B of the beam. Proceed to draw the shatr force and hending momet is for the arrangement.
Solution:

The bending moment is zero at the point of contraflexture. Therefore

$$
M_{c}=0=-400 \times 5-160 \times 5 \times \frac{5}{2}+R_{c} \times 4 \quad \text { (left half of beam) }
$$

The udl is taken to be acting at its CG.

$$
\text { or } \quad 4 R_{c}=2000+2000 ; R_{c}=1000 \mathrm{~N}
$$

Applying the condition $\Sigma F_{y}=0$ for equilibrium of beam, we have

$$
\begin{aligned}
R_{c}+R_{d} & =400+160 \times 10=2000 \\
R_{d} & =2000-R_{c}=2000-1000=1000 \mathrm{~N}
\end{aligned}
$$

Again taking moments about the point of contraflexture E,

$$
M_{c}=0=-R_{d} \times(5-z)+160 \times 5 \times \frac{5}{2} \quad \text {, (right half of beamt) }
$$

$1000 \times(5-2)=2000 ; 2 ; 3 \mathrm{~m}$

Thus the support D is at a distance of 3 m from end B.
Shear Force
Portion AC:
At A: $\quad S F=-400 \mathrm{~N}$
Just left of C: SF $=-400-160 \times 1=-560 \mathrm{~N}$
Just right of $C: S F=-560+1000=+440 \mathrm{~N}$
Just left of $D: \quad S F=440-160 \times 6=-520 \mathrm{~N}$
Just right of $D: \quad S F=-520+1000=480 \mathrm{~N}$
At point B $S F=480-160 \times 3=0$.
The shear force changes sign between the section CD. The location of the point of stress can be obtained from the relations:
$-400-160 x+1000=0 ; x=3.75 \mathrm{~m}$
40 ${ }^{2}$. Considering any section at distance x from end A,
prong $A C$

$$
M_{3}=-400 x-160 x \times \frac{x}{2}=-400 \times-80 x^{2}
$$

when $=0: M_{a}=0$
$x=1 \mathrm{~m}: M_{c}=-400-80=-480 \mathrm{Nm}$
and D
$M_{z}=-400 x-160 x \times \frac{x}{2}+R_{b}(x-1)$
$=-400 x-80 x^{2}+1000(x-1)$.
when $x=1 \mathrm{~m}: M_{b}=-400 \times 1-80 \times 1^{2}+1000(1-1)=-480 \mathrm{Nm}$
$x=3.75 \mathrm{~m}: M=-400 \times 3.75-80 \times 3.752+1000(3.75-1)=125 \mathrm{Nm}$ $x=5 \mathrm{~m}: \mathrm{M}_{\mathrm{c}}=-400 \times 5-80 \times 52+1000(5-1)=0$ $x=7 \mathrm{~m}: M_{d}=-400 \times 7-80 \times 7^{2}+1000(7-1)=-720 \mathrm{Nm}$
struen D and B:
$M_{x}=-400 x-80 x^{2}+1000 \times(x-1)+1000(x-7)$
At $x=7 \mathrm{~m}: M_{d}=-400 \times 7-80 \times 7^{2}+1000 \times(7-1)+1000(7-7)=-720 \mathrm{Nm}$ $x=10 \mathrm{~m}: M_{p}=-400 \times 10-80 \times 10^{2}+1000(10-1)+1000(10-7)$
$=-4000-8000+9000+3000=0$.
The elvear force and bending moment for the entire beam are shown in Fig. 11.37.

A girder 10 m long rests on two supports with equal overhangs on either side and
distributed load of $20 \mathrm{kN} / \mathrm{m}$ over the entire leng th. Calculate the overhangs if the maximurries positive or negative, is to be as small as possible. Proceed to drate the shear force and bonding Solution: Refer to Fig. 11 has been indicated as a.

Fig. 11.38
Due to symmetrical arrangement, the total load on the beam will be shared equally bermen the two supports.

$$
\therefore \quad R_{z}=R_{d}=\frac{20 \times 10}{2}=100 \mathrm{kN}
$$

The maximum positive moment would occur at the mid span (point E) and the maximum regates would occur at the supports. Since these moments are stated to be equal in magnitude, we hum

$$
(20 \times a) \times \frac{a}{2}=100(5-a)-(20 \times 5) \times \frac{5}{2}
$$

Simplification gives : $a^{2}+10 a-25=0$

$$
\therefore \quad a=\frac{-10+\sqrt{10^{2}-4 \times 1 \times(-25)}}{2}=2.07 \mathrm{~m}
$$

Shear force:
$S F$ at $A=0$
SF just on left of $\mathrm{C}=-2.07 \times 20=-41.40 \mathrm{kN}$
$S F$ just on right of $C=-41.40+100=+58.60 \mathrm{kN}$
$S F$ at mid span (point $E)=58.60-20(5-2.07)=0$
Bending moment Taking a section at distance x from end A and considering foros on itt and side.
Portion AC:

$$
\begin{aligned}
M & =-(20 \times x) \times \frac{x}{2}=-10 x^{2} \\
\text { At } x & =0 \quad ; \quad M_{a}=0 \\
\text { At } x & =2.07 \mathrm{~m}: \quad M_{c}=-10 \times(2.07)^{2}=-42.84 \mathrm{kNm}
\end{aligned}
$$

Portion CD:

$$
M=-(20 \times x) \times \frac{x}{2}+R_{c}(x-a)
$$

$$
=-10 x^{2}+100(x-2.07) \quad \text { (parabolic variation) }
$$

$$
\begin{array}{ll}
\text { At } x=2.07 \mathrm{~m}: & M_{c}=-10 \times(2.07)^{2}+100(2.07-2.07)=-42.84 \mathrm{kNm} \\
\text { At } x=5 \mathrm{~m}: & M_{e}=-10 \times 5^{2}+100(5-2.07)=43 \mathrm{kNm}
\end{array}
$$

The light variation in the magnitude of bending moment at the support (point B) and at the s.e(point \bar{Z}) is due to rounding off.
fre lecating the position of the point of contraflexture, we have

$$
-10 x^{2}+100(x-207)=0
$$

or $\quad x^{2}-10 x+20.7=0$
$\therefore \quad x=\frac{10 \pm \sqrt{10^{2}-4 \times 20.7}}{2}=297 \mathrm{~m}$ and 7.07 m
Herthar force and the bending moment diagrams for the entire span of the girder are shown *Fy. 1139 .
Nater: The SF and BM for the right half has been drawn making use of symmetry

OUMPLE 11.14

Delle, forme fond bending moment diagrams for the overhunging beant laded as shoun in the figure货

Frumes att solient points of the heam. Locate the position of the point of contraflexure if any.
onem conditions of static equilbrium ($\Sigma F y=0$ and $\Sigma M=0$), we have

$$
R_{d}+R_{e}=\left(\frac{1}{2} \times 2 \times 60\right)+20=80
$$

Taling moment about A,
or $R \times 4-20 \times 5-\frac{1}{2} \times 2 \times 60 \times\left(1+\frac{2}{3} \times 2\right)=0$
or $\quad 4 R_{d}=100+140=240$

$$
R_{d}=\frac{240}{4}=60 \mathrm{kN}
$$

and

$$
R_{e}=80-60=20 \mathrm{kN}
$$

Shear Force:
SF at $A=R_{d}=20 \mathrm{kN}$
Since there is no load in the segment $A B$, shear force remains constant at 20 kN vittia es
portion of the beam.
Portion BC: Consider any section within portion $B C$ and at distance x from end A,
Load intensity at this section $=\frac{x-1}{2} \times 60$

$$
\begin{aligned}
5 F & =20-\frac{1}{2}(x-1) \times\left\{\frac{x-1}{2} \times 60\right\} \\
& =20-15(x-1)^{2} \quad \text { (parabolic variation) }
\end{aligned}
$$

At point $B: x=1 \mathrm{~m}$ and $S F=20-15(1-1)^{2}=20 \mathrm{kN}$
At point $C: x=3 \mathrm{~m}$ and $S F=20-15(3-1)^{2}=-40 \mathrm{kN}$
The location of zero shear force can be worked out from the relation.

$$
20-15(x-1)^{2}=0
$$

$$
\text { or } \quad x-1=\sqrt{\frac{20}{15}}=1.54 \quad \therefore x=2.154 \mathrm{~m}
$$

Since there is no load in portion CD of the beam, the shear force from point C to just lefl d point D will remain constant at -40 kN (the shear force at point C).
$S F$ just an right side of $D=-40+60=20 \mathrm{kN}$
This value of shear force remains constant within portion DE (because of no loading) and al point E, it takes the values

$$
20-20=0 \mathrm{kN}
$$

Bending Moment

Portion $A B$

$B M$ at point $A=0$
$B M$ at point $B=R, \times 1=20 \times 1=20 \mathrm{kNm}$
Portion BC: Consider any section within portion $B C$ and at distance x from end A.
Load intensity at this section $=\frac{x-1}{2} \times 60=30(x-1)$

$$
B M=20 x-\left[\frac{1}{2}(x-1) \times 30(x-1)\right] \times \frac{x-1}{3}
$$

Here $\frac{x-1}{3}$ is the distance of CC of triangular load from the section.

Ap point C ing moment will be maximum at the point where shear force is zero, f.e., at 151m
P 21 axim bending moment

$$
=20 \times 2.154-5(2.154-1)^{3}=35.40 \mathrm{kNm}
$$

CD:

BM at point $\mathrm{C}=20 \mathrm{kNm}$ (calculated above)
 $B M$ at point $D=20 \times 4-\left(\frac{1}{2} \times 2 \times 60\right) \times\left(1+\frac{1}{3} \times 2\right)$

$=80-100=-20 \mathrm{kNm}$
Ince shear forces remains constant due to no load in this section, the bending moment will Sne linear variation from 20 kNm (at point C) to -20 kNm (at point D).
Since the bending moment changes sign in the portion $C D$, there is a point of contraflexure in timportion and its location with respect to point A can be worked out from the relation

$$
\begin{aligned}
& \begin{aligned}
20 \times x-\left(\frac{1}{2} \times 2 \times 60\right)\left(x-3+\frac{2}{3}\right) & =0 \\
\text { ar } \quad 20 x-60 x+180-40 & =0 \\
\text { That gives } \quad x=\frac{-180+40}{-40} & =3.5 \mathrm{~m}
\end{aligned} \\
& \text { (} \quad x=0
\end{aligned}
$$

Thus the point of contraflexure is located at 3.5 m from the end A. Antion DE

BM at point $\mathrm{D}=-20 \mathrm{kNm}$ (calculated above)

4. Determine the resctions and construct the shear force and bending moment die

Deien supported beam loaded as shown in Fig. 11.51. Alwo determine the gras magnitude of maximum bending moment.

Fig. 11.51
($\mathrm{A} \mathrm{t}_{\text {tuan }}=120.25 \mathrm{kNm} \rightarrow 44 . \mathrm{m}_{\mathrm{mm}}$
10. For a symmetrically loaded overhang beam shown in Fig. 11.52, make calculationg of For a symmetricaluy of load W such that the bending moment becomes zero at the mid spand of the by

IW = 5 m / M
11. Draw the shear force and bending moment diagrams for the beam loaded and supporet a shown in Fig. 11.53.

12. Draw the shear force and bending moment diagram for the beam loaded as shown in Fig 11.8.

Fig. 11.54
13. Draw the shear force and bending moment diagrams for a cantilever beam loaded as shounit Fig. 11.55 given below

Fig. 11.55
Locate the position for maximum bending moment and determine its value.

The Centroid

- The centroid is a point that locates the geometric center of an object.
- The position of the centroid depends only on the object's geometry (or its physical shape) and is independent of density, mass, weight, and other such properties.
- The average position along different coordinate axes locates the centroid of an arbitrary object.

The Centroid

- We can divide the object into a number of very small finite elements $A_{1}, A_{2}, \ldots A_{n}$.
- In this particular case, each small square grid represents one finite area.
- Let the coordinates of these areas be $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots$, $\left(x_{n}, y_{n}\right)$.
- The coordinates x_{1} and y_{1} extend to the center of the finite area.

- Now, the centroid is given by

$$
\bar{x}=\frac{\sum_{i} x_{i} A_{i}}{\sum_{i} \mathrm{~A}_{\mathrm{i}}} \quad \overline{\mathrm{y}}=\frac{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}}}
$$

The Centroid

- The calculations will result in the location of centroid C .
- Because point C is at the center of the rectangle, the results intuitively make sense.
- Consider the moment due to the finite areas (instead of the forces) about two lines (AA and $B B$) parallel to the x-and y-axes passing through the centroid.
- Because the rectangle is symmetric about these two lines, the net moment will be zero.

The Centroid

- Centroid always lies on the line of symmetry.
- For a doubly symmetric section (where there are two lines of symmetry), the centroid lies at the intersection of the lines of symmetry.

Functional Symmetry

- The area is symmetric about line BB, its centroid must lie on this line.
- The area is not symmetric about line AA.

Functional Symmetry

- The four holes are equidistant from line $A A$, and the moments from the two holes on the top of line AA counteract that of the two bottom holes.
- Even though the area is not physically symmetric about line AA, functionally line $A A$ can be viewed as the line of symmetry.
- Therefore, the centroid lies on the intersection of the two lines.

The Centroid

-The calculation of the centroid for a composite section requires the following three steps:

- Divide the composite geometry into simple geometries for which the positions of the centroid are known or can be determined easily.
- Determine the centroid and area of individual components.
- Apply the equation to determine the centroid location.

Example 8.1

Derive an expression for the centroid of a thin semicircular arc of mean radius, r.

Solution

Figure 8.1 Centroid calculation of a semicircular arc

From Fig. 8.1,

$$
\begin{aligned}
d L & =r d \theta \text { and } L=\pi r \\
x & =r \cos \theta \text { and } y=r \sin \theta
\end{aligned}
$$

From Eq. 8.2,

$$
\begin{aligned}
\bar{y} & =\frac{\int y d L}{L} \\
& =\frac{\int_{0}^{\pi} r \sin \theta \cdot r d \theta}{\pi r}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{r}{\pi} \int_{0}^{\pi} \sin \theta d \theta \\
& =\frac{r}{\pi}[-\cos \theta]_{0}^{\pi}=\frac{r}{\pi}(l+1)=\frac{2 r}{\pi} \\
\therefore \bar{y} & =\frac{2 r}{\pi} \\
& \bar{x}=0 \text { (By symmetry) }
\end{aligned}
$$

Figure 8.2 Centroid of semicircular and quarter ares

Disisa very important result which one must remember as a formula. Note that y-coordinate of the arvoid of a quarter circle would also lie at the same level $\left(\bar{y}=\frac{2 r}{\pi}\right)$ due to symmetry in left and nghalves (Fig, 8.2). One can verify this result by substituting $\frac{\pi r}{2}$ for L and integrating between 0 mi $\frac{\pi}{2}$. In fact, both \bar{x} and \bar{y} would come oat to be the same due to symmetry.

trample 8.2

Desive an expression for the centroid of a thin arc of mean radius r and included angle 2α, selecting tentumetrical radial line as x-ixis.

Solvtion

Figure 8.3 Centroid calculation of an orc of radius r and induded angle $2 a$

From Fig. 8.3,

$$
\begin{aligned}
d L & =r d \theta \\
L & =2 r \alpha \\
x & =r \cos \theta \\
y & =r \sin \theta
\end{aligned}
$$

From Eq. 8.2,

$$
\begin{aligned}
\bar{x} & =\frac{\int x d L}{L} \\
& =\frac{\int_{-\alpha}^{\alpha} r^{2} \cos \theta d \theta}{2 r \alpha} \\
& =\frac{r}{2 \alpha}[\sin \theta]_{-\alpha}^{\alpha} \\
& =\frac{r \sin \alpha}{\alpha} \\
\bar{y} & =0(\text { By symmetry })
\end{aligned}
$$

One can verify that \bar{x} reduces to $\frac{2 r}{\pi}$ for $\alpha=\frac{\pi}{2}$, as expected for a semicircular arc.

Figure 8.6 Centroid calculation of a triangle
By similar triangles,

$$
\begin{gathered}
\frac{l}{b}=\frac{h-y}{h} \\
\therefore l=\frac{b(h-y)}{h}
\end{gathered}
$$

Figure 8.7 Controid of triangles with the same altitude
From Eq. 8.3,

$$
\begin{aligned}
\bar{y} A & =\int_{\bar{y}} y d A \\
\bar{y}\left(\frac{b \bar{h}}{2}\right) & =\int_{0}^{h} y l d y \\
& -\int_{0}^{h} \frac{b}{h}\left(h y-y^{2}\right) d y=\frac{b}{h}\left[h \frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{0}^{k}=\frac{b h^{2}}{6} \\
\therefore \bar{y} & =\frac{h}{3}
\end{aligned}
$$

This is a very important result. One must remeember this as a formula (Fig 8.7). Calculation of \bar{x} by direct integration in this example is possible but not convenient. A munt the approach would be to use the concept of centroid of composite areas in conjunction with the
10) the centroid of a semicircular disk of radius r.

yoluion 1 (asing horizontal strip)

40000ntal strip is more convenient than a vertical strip (Fig. 8.8).

$$
\begin{aligned}
& A=\frac{\pi r^{2}}{2} \\
& y=r \sin \theta \quad \therefore d y=r \cos \theta d \theta \\
& d A=l d y=2 r \cos \theta d y=2 r^{2} \cos ^{2} \theta d \theta
\end{aligned}
$$

Figure 8.8 Centroid calculation of a semicircular disk using a horizontal strip

Firoe centroid formula.

$$
\begin{aligned}
\bar{y} A & =\int_{0} y d A=\int_{0}^{r} y l d y \\
& =\int_{0}^{\frac{\pi}{2}}(r \sin \theta)\left(2 r^{2} \cos ^{2} \theta d \theta\right)=2 r^{3} \int_{0}^{\frac{\pi}{3}} \sin \theta \cos ^{2} \theta d \theta
\end{aligned}
$$

Noeftat the lower and the upper limits of θ correspond to $y=0$ and $y=r$, respectively.

$$
\begin{aligned}
& \quad \text { Let } \cos \theta=u \quad \therefore-\sin \theta d \theta=d u \\
& \therefore \bar{y} A=-2 r^{3} \int u^{2} \quad d u=-2 r^{3} \frac{u^{3}}{3}=-\left.\frac{2 r^{3}}{3} \cos ^{3} \theta\right|_{0} ^{\frac{\pi}{2}}=\frac{2 r^{3}}{3} \\
& \bar{y} \frac{\pi r^{2}}{2}= \frac{2 r^{3}}{3} \\
& \bar{y}= \frac{4 r}{3 r} \text { and } \bar{x}=0 \text { (By symmetry) }
\end{aligned}
$$

Example 8.5

Locate the centroid of a circular sector of radius r and included angle 2α, selecting the symmetrici radial line as the x-axis.

Solution

Though all the four methods described in Ex. 8.4 can be used, the method involving a triangular stry would be the most convenient. From Fig. 8.13,

$$
A=\int d A=\int_{-\alpha}^{\alpha} \frac{1}{2} r^{2} d \theta=r^{2} \alpha
$$

Figure 8.13 Centroid calculation of a circular sector

$$
\begin{aligned}
& \bar{x} A=\int_{\bar{x}} x d A \\
& \bar{x} r^{2} \alpha=\int_{-\alpha}^{a}\left(\frac{2 r}{3} \cos \theta\right)\left(\frac{1}{2} r^{2} d \theta\right)=\frac{r^{3}}{3}[\sin \theta]_{-a}^{x}=\frac{2 r^{3} \sin \alpha}{3} \\
& \therefore \bar{x}=\frac{2 r \sin \alpha}{3 \alpha} \text { and } \bar{y}=0 \text { (By symmetry) }
\end{aligned}
$$

(astat $\overline{\bar{y}}$ reduces to $\frac{4 r}{3 \pi}$ for $\alpha=\frac{\pi}{2}$, as expected for a semicircular disk.

Example 8.6
Latr the centroid of the area bounded by lines $x=a, y=0$ and curve $x=\frac{a y^{3}}{b^{3}}$.
Solution
$t=a$ and $x=\frac{a y^{3}}{b^{3}}$, when solved together, give (a, b) as the point of intersection (Fig. 8.14).

$$
\begin{aligned}
A & =\int_{0}^{a} d A=\int_{0}^{a} y d x=\int_{0}^{a}\left(\frac{b^{3} x}{a}\right)^{\frac{1}{3}} d x \\
& =\frac{b}{a^{\frac{1}{3}}}\left[\frac{3 x^{\frac{4}{3}}}{4}\right]_{0}^{a}=\frac{3 b a^{\frac{4}{3}}}{4 a^{\frac{1}{3}}}=\frac{3 a b}{4} \\
\bar{x} A & =\int x d A=\int_{0}^{a} x y d x=\int_{0}^{a} x\left(\frac{b^{3} x}{a}\right)^{\frac{1}{3}} d x
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x} \frac{3 a b}{4}=\frac{b}{a^{3}} \int_{0}^{a} x^{3} d x=\frac{3 b a^{3}}{7}=\frac{3 a^{2} b}{7} \\
& \therefore \bar{x}=\frac{4 a}{7} \\
& \bar{y} A=\int^{\frac{y}{2}} \frac{y}{2} d A \quad\left(y \text {-coordinate of the area element is } \frac{y}{2}\right) \\
& \bar{y} \frac{3 a b}{4}=\int_{0}^{a} \frac{y^{2}}{2} d x=\int_{0}^{a} \frac{1}{2}\left(\frac{b^{3} x}{a}\right)^{\frac{2}{3}} d x=\frac{b^{2}}{2 a^{\frac{2}{3}}}\left[\frac{3 a^{\frac{5}{3}}}{5}\right]=\frac{3 a b^{2}}{10} \\
& \therefore \bar{y}=\frac{2 b}{5}
\end{aligned}
$$

Example 1

- Determine the centroid of the composite section.

Example 1

- Step 1: Divide the composite section into simple geometries
- The composite geometry can be divided into three parts:
- two positive areas
- one negative area (circular cutout).

Example 1

- Step II: Determine the centroid and the area of individual component

Part	Dimensions	Area (sq. in)	\mathbf{x}	\mathbf{y}
Area 1	$2^{\prime \prime} \times 4^{\prime \prime}$	8	3	5
Area 2	$10^{\prime \prime} \times 6^{\prime \prime}$	60	9	5
Area 3	$2^{\prime \prime}$ radius	-4π	10	5

Example 1

- Step III: Determine the centroid location

Part	Dimensio $\mathbf{n s}$	Area (sq. in)	\mathbf{x}	\mathbf{y}	$\left(\right.$ in $\left.^{3}\right)$ $\mathrm{x}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}$	$\mathbf{i n}^{3}$) $\mathrm{y}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}$
Area 1	$2^{\prime \prime} \times 4^{\prime \prime}$	8	3	5	24	40
Area 2	$10^{\prime \prime} \times 6^{\prime \prime}$	60	9	5	540	300
Area 3	$2^{\prime \prime}$ radius	-4π	10	5	-40π	-20π

Example 1

$$
\begin{array}{cc}
\overline{\mathrm{x}}=\frac{\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}}} & \overline{\mathrm{y}}=\frac{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}}} \\
\overline{\mathrm{x}}=\frac{438.34}{55.434}=7.91 \mathrm{in} & \overline{\mathrm{y}}=\frac{277.17}{55.43}=5.00 \mathrm{in}
\end{array}
$$

Determining the location of the centroid using a Differential Element

- If x and y are the coordinates of a differential element $d A$, the centroid of a two-dimensional surface is given by

$$
\begin{aligned}
\overline{\mathrm{x}} & =\frac{\int_{\mathrm{A}} \mathrm{x} d \mathrm{~A}}{\int_{\mathrm{A}} d \mathrm{~A}} \\
\overline{\mathrm{y}} & =\frac{\int_{\mathrm{A}} \mathrm{y} d \mathrm{~A}}{\int_{\mathrm{A}} d \mathrm{~A}}
\end{aligned}
$$

Determining the location of the centroid using a Differential Element

- The equation can be generalized to a three-dimensional surface as

$$
\overline{\mathrm{x}}=\frac{\int_{\mathrm{A}} \mathrm{x} d \mathrm{~A}}{\int_{\mathrm{A}} d \mathrm{~A}} \quad \overline{\mathrm{y}}=\frac{\int_{\mathrm{A}} \mathrm{y} d \mathrm{~A}}{\int_{\mathrm{A}} d \mathrm{~A}} \quad \overline{\mathrm{z}}=\frac{\int_{\mathrm{A}} \mathrm{z} d \mathrm{~A}}{\int_{\mathrm{A}} d \mathrm{~A}}
$$

- The same concepts can be used for determining the centroid of a line.

$$
\overline{\mathrm{x}}=\frac{\int_{\mathrm{L}} \mathrm{x} d \mathrm{~L}}{\int_{\mathrm{L}} d \mathrm{~L}} \quad \overline{\mathrm{y}}=\frac{\int_{\mathrm{L}} \mathrm{y} d \mathrm{~L}}{\int_{\mathrm{L}} d \mathrm{~L}} \quad \overline{\mathrm{z}}=\frac{\int_{\mathrm{L}} z d \mathrm{~L}}{\int_{\mathrm{L}} d \mathrm{~L}}
$$

- To determine the centroid of a volume, the equation takes the form of

$$
\overline{\mathrm{x}}=\frac{\int_{\mathrm{V}}^{\mathrm{x}} d \mathrm{~V}}{\int_{\mathrm{V}} d \mathrm{~V}} \quad \overline{\mathrm{y}}=\frac{\int_{\mathrm{V}} \mathrm{y} d \mathrm{~V}}{\int_{\mathrm{V}} d \mathrm{~V}} \quad \overline{\mathrm{z}}=\frac{\int_{\mathrm{V}} z d \mathrm{~V}}{\int_{\mathrm{V}} d \mathrm{~V}}
$$

Example 2

- Determine the centroid of the quarter circle.

Example 2

- The key step in solving this type of problems is to establish and define an appropriate differential element.
- Let us consider a vertical differential element with thickness $d x$ and height h.

$$
\begin{aligned}
& d \mathrm{~A}=\mathrm{h} \cdot \mathrm{dx} \\
& \mathrm{~h}=\sqrt{\mathrm{r}^{2}-\mathrm{x}^{2}}
\end{aligned}
$$

Example 2

- Because the section is symmetric about a line that is at 45° to the x - and y-axes, the centroid lies on this line.

$$
\begin{gathered}
\overline{\mathrm{x}}=\frac{\int_{\mathrm{A}} \mathrm{x} d \mathrm{~A}}{\int_{\mathrm{A}} d \mathrm{~A}}=\frac{\int_{0}^{\mathrm{R}} \mathrm{x} \sqrt{\mathrm{r}^{2}-\mathrm{x}^{2}} d \mathrm{x}}{\int_{\mathrm{A}} d \mathrm{~A}} \\
\overline{\mathrm{x}}=\frac{\int_{0}^{\mathrm{r}} \mathrm{x} \sqrt{\mathrm{r}^{2}-\mathrm{x}^{2}} d \mathrm{x}}{\left(\frac{\pi}{4} \mathrm{r}^{2}\right)}=\frac{\left[-\frac{\left(\mathrm{r}^{2}-\mathrm{x}^{2}\right)^{\frac{3}{2}}}{3}\right]_{0}^{\mathrm{r}}}{\left(\frac{\pi}{4} \mathrm{r}^{2}\right)} \overline{\mathrm{X}}=\frac{4}{3} \frac{\mathrm{r}}{\pi} \\
\overline{\mathrm{y}}=\frac{4}{3} \frac{\mathrm{r}}{\pi}
\end{gathered}
$$

Example 3

- Locate the centroid of the line whose equation is
with $x=1-x^{2}$
with x ranging from 0 to 1

Example 3

$$
\begin{gathered}
d \mathrm{~L}=\sqrt{(d \mathrm{x})^{2}+(d \mathrm{y})^{2}}==\sqrt{1+\left(\frac{d \mathrm{y}}{d \mathrm{x}}\right)^{2}} \cdot d \mathrm{x} \\
\frac{d \mathrm{y}}{d \mathrm{x}}=-2 \mathrm{x} \\
d \mathrm{~L}=\sqrt{1+4 x^{2}} d \mathrm{x}
\end{gathered}
$$

Example 3

$$
\begin{array}{cc}
\bar{x}=\frac{\int_{\mathrm{L}} \mathrm{x} d \mathrm{~L}}{\int_{\mathrm{L}} d \mathrm{~L}} & \overline{\mathrm{y}}=\frac{\int_{\mathrm{L}} \mathrm{y} d \mathrm{~L}}{\int_{\mathrm{L}} d \mathrm{~L}} \\
\overline{\mathrm{x}}=\frac{\int_{0}^{1} \mathrm{x} \sqrt{1+4 \mathrm{x}^{2}} d \mathrm{x}}{\int_{0}^{1} \sqrt{1+4 \mathrm{x}^{2}} d \mathrm{x}} & \overline{\mathrm{y}}=\frac{\int_{0}^{1}\left(1-\mathrm{x}^{2}\right) \sqrt{1+4 \mathrm{x}^{2}} d \mathrm{x}}{\int_{0}^{1} \sqrt{1+4 \mathrm{x}^{2}} d \mathrm{x}} \\
\overline{\mathrm{X}}=\mathbf{0 . 8 6 6 7} & \overline{\mathrm{y}}=0.2861
\end{array}
$$

Example 8.17

A uniform rod is bent into the shape as shown in Fig. 8.29. Determine the coordinates of its centroid.

Figure 8.29 Figure for Ex. 8.17

Solution

The length of the straight part and the coordinates of its centroid are 16 cm and $(8,0,0) \mathrm{cm}$, respectively. These are $8 \pi \mathrm{~cm}$ and $\left(0,8, \frac{16}{\pi}\right) \mathrm{cm}$ for the circular part. For convenience, this problem would be solved in the tabular form given below.

Part	\boldsymbol{L}_{i}	\bar{x}_{i}	\bar{y}_{i}	$\overline{\bar{z}}_{i}$	$\boldsymbol{L}_{i} \bar{x}_{i}$	$\boldsymbol{L}_{i} \bar{y}_{i}$	$\boldsymbol{L}_{i} z_{i}$
Straight	16	8	0	0	128	0	0
Circular	8π	0	8	$\frac{16}{\pi}$	0	64π	128
Total	41.13				128	201.06	128

Equation 8.5 can now be used for finding out the coordinates of the centroid:

$$
\begin{aligned}
& \bar{x}=\frac{\sum L_{1} \bar{x}_{i}}{L}=\frac{128}{41.13}=3.11 \mathrm{~cm} \\
& \bar{y}=\frac{\sum L_{i} \bar{y}_{i}}{L}=\frac{201.06}{41.13}=4.89 \mathrm{~cm} \\
& \bar{z}=\frac{\sum L_{i} \bar{y}_{i}}{L}=\frac{128}{41.13}=3.11 \mathrm{~cm}
\end{aligned}
$$

Example 8.18

The homogeneous wire ABCD is bent as shown in Fig. 8.30. It is attached to a hinge at C . Deema the length / for which portion BCD of the wire remains horizontal. All dimensions are in mm

Figure $\mathbf{8 . 3 0}$ Figure for Ex. 8.18

Solution

$$
A B=\sqrt{A C^{2}+B C^{2}}=\sqrt{60^{2}+80^{2}}=100 \mathrm{~mm}
$$

For equilibrium to be possible in the position shown, the centroid of the bent wire must lic on line the Centroids of both AB and BC lie $\frac{80}{2}(=40 \mathrm{~mm})$ towards leff of AC , and that of $C D$ is at $\frac{1}{2}$ ion xab right. We choose C as the origin and CD as the x-axis.

Part	\boldsymbol{L}_{i}	\bar{x}_{i}	$\boldsymbol{L}_{i} \bar{x}_{i}$
AB	100	-40	-4000
BC	80	-40	-3200
CD	l	$\frac{l}{2}$	$\frac{l^{2}}{2}$
Total	$180+l$		$\frac{l^{2}}{2}-7200$

$$
\begin{aligned}
& \qquad \begin{aligned}
\bar{x} & =\frac{\sum L_{l} \bar{x}_{i}}{L}=\frac{\frac{l^{2}}{2}-7200}{180+1} \\
\text { For } \bar{x} \text { to be zero, } \frac{l^{2}}{2} & =7200 \\
\therefore l & =120 \mathrm{~mm}
\end{aligned}
\end{aligned}
$$

Example 8.19

ris in in a closed loop A-B-C-D-E-A as shown in Fig, 8.31. Portion AB is a circular arc didus 5 m . Determine the centroid of the wire.

Figure 8.31 Figura for Ex. 8.19

Solution
We will ase the result that the centroid of a quarter or a semicircular arc lies at a distance of $\frac{2 r}{\mathrm{~K}}$ from
h (see Fig. 8.2).

Part	$\boldsymbol{L}_{\boldsymbol{i}}$	$\overline{\boldsymbol{x}}_{\boldsymbol{i}}$	$\overline{\boldsymbol{y}}_{\boldsymbol{i}}$	$\boldsymbol{L}_{\boldsymbol{i}} \overline{\boldsymbol{x}}_{\boldsymbol{i}}$	$\boldsymbol{L}_{\boldsymbol{i}} \overline{\boldsymbol{y}}_{\boldsymbol{i}}$
AB	$\frac{5 \pi}{2}$	$5-\frac{10}{\pi}$	$10+\frac{10}{\pi}$	14.270	103.540
BC	5	7.5	15	37.5	75
CD	15	10	7.5	150	112.5
DE	10	5	0	50	0
EA	10	0	5	0	50
Total	47.854			251.77	341.04

$$
\begin{aligned}
& \bar{x}=\frac{\sum L_{i} \bar{x}_{i}}{L}=\frac{251.77}{47.854}=5.26 \mathrm{~m} \\
& \bar{y}=\frac{\sum L_{i} \bar{y}_{i}}{L}=\frac{341.04}{47.854}=7.13 \mathrm{~m}
\end{aligned}
$$

Solution
Wevillusetheresultsthat the centroidofasemicirculardiscofradius rliesatadistance of $\frac{4 r}{3 \pi}$ fromits base (se Fige 8.12), and that of a triangle of altitude h lies $\frac{h}{3}$ above its base (see Fig. 8.7).

Part	$\boldsymbol{A}_{\boldsymbol{i}}$	\bar{x}_{i}	$\overline{\boldsymbol{y}}_{i}$	$\boldsymbol{A}_{i} \bar{x}_{i}$	$\boldsymbol{A}_{i} \overline{\boldsymbol{y}}_{\boldsymbol{i}}$
Semicircular sector ABC	$\frac{\pi \times 2.5^{2}}{2}$	$2.5-\frac{4 \times 2.5}{3 \pi}$	2.5	14.127	24.544
Rectangle ACDE	50	7.5	2.5	375	125
Triangle EFG	12.5	10	$5+\frac{5}{3}$	125	83.333
Total	72.317			514.127	232.877

$$
\begin{aligned}
& \bar{x}=\frac{\sum A_{i} \bar{x}_{i}}{A}=\frac{514.127}{72.317}=7.11 \mathrm{~cm} \\
& \bar{y}=\frac{\sum A_{i} \bar{y}_{i}}{A}=\frac{232.877}{72.317}=3.22 \mathrm{~cm}
\end{aligned}
$$

Example 8.22

A trangle as remoned from a semicircular dise as shown in Fig. 8.34. Locate the centrod of b, remaining part (shaded).

Figure 8.34 Figure for Ex. 8.22

Solution

Radius of the circle $=\frac{9}{2}=4.5 \mathrm{~cm}$
Altitude $(B D)$ of the riangle $=\sqrt{O D^{2}-O 5^{2}}=\sqrt{4.5^{2}-(6-4.5)^{2}}=4.243 \mathrm{~cm}$

Part	A_{i}	\bar{x}_{i}	\bar{y}_{i}	$A_{i} \bar{x}_{i}$	$A_{i} \bar{y}_{i}$
Semicircular daxc	$\frac{\pi \times 4.5^{2}}{2}$	4.5	$\frac{4 \times 4.5}{3 \pi}$	143.139	60.75
Triangle ABD	$-\frac{6 \times 4.243}{2}$	$6-\frac{6}{3}$	$\frac{4.243}{3}$	-50.916	-18.003
Triangle BCD	$-\frac{3 \times 4.243}{2}$	$6+\frac{3}{3}$	$\frac{4.243}{3}$	-44.532	-9.002
Total	12.715			47.671	31.745

$$
\begin{aligned}
& \bar{Y}=\frac{\sum 4 \bar{y}_{i}}{4}=\frac{47.671}{12.715}=3.75 \mathrm{~cm} \\
& \bar{y}=\frac{\sum 4 \bar{y}_{i}}{4}=\frac{33.745}{12.715}=2.65 \mathrm{~cm}
\end{aligned}
$$ Subtracting an area is equivalent of triangles ABD and BCD from the area of the semincircular th Subtracting an area is equivaient to adding a negative area of the same magnitude.

ple centroid of the channel section shown in Fig. 8.35.

Figure 8.35 Figure for Ex, 8. 23

Selltion

Tis prosem can be solved by considering three rectangles of areas $100 \times 10,40 \times 10$ and again 40 110 (oher combinations are also possible). The other way is to consider the outer rectangle of area 10×35, and the inner rectangle of negative ares 80×40. We will adopt the second approach since twald ivelve fewer calculations.

Part	\boldsymbol{A}_{i}	\bar{x}_{i}	\bar{y}_{i}	$\boldsymbol{A}_{i} \bar{x}_{i}$	$\boldsymbol{A}_{i} \overline{\boldsymbol{y}}_{i}$
Outer rectangle	5000	25	50	125000	250000
Inner rectangle	-3200	$50-20$	50	-96000	-160000
Total	1800			29000	90000

$$
\begin{aligned}
& \bar{x}=\frac{\sum A_{i} \bar{x}_{i}}{A}=\frac{29000}{1800}=16.11 \mathrm{~mm} \\
& \bar{y}=\frac{\sum A_{i} \bar{y}_{i}}{A}=\frac{90000}{1800}=50 \mathrm{~mm}
\end{aligned}
$$

ExAMPLE 7.6 . wouth the The composite area has been divided into phot segments namely a triangle, a rectangle and a woni-circle. The areas and the co-ordinates of centroid of these segments with respect to the given axes are: roangular segment:

$$
\begin{aligned}
& a_{1}=\frac{1}{2} \times 3 \times 4=6 \mathrm{~m}^{2} \\
& x_{1}=5+\frac{1}{3} \times 3=6 \mathrm{~m} ; \quad y_{1}=\frac{4}{3}=1.33 \mathrm{~m} \\
& \text { ulat segment: } \quad a_{2}=5 \times 4=20 \mathrm{~m}^{2}
\end{aligned}
$$

Fig. 7.10
titangular segment:

Seni-circular segment:

$$
\begin{aligned}
& x_{2}=\frac{5}{2}=2.5 \mathrm{~m} ; \quad y_{2}=\frac{4}{2}=2 \mathrm{~m} \\
& a_{3}=\frac{1}{2} \times \pi \times 2^{2}=6.28 \mathrm{~m}^{2} \\
& x_{3}=-\frac{4 R}{3 \pi}=-\frac{4 \times 2}{3 \times \pi}=-0.849 \mathrm{~m} \\
& y_{3}=\frac{4}{2}=2 \mathrm{~m}
\end{aligned}
$$

The negative with co-ordinate x_{3} stems from the fact that this co-ordinate lies on the left of y ads

Then:
and

$$
\begin{aligned}
& \bar{x}=\frac{a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}}{a_{1}+a_{2}+a_{3}}=\frac{6 \times 6+20 \times 25+6.28(-0.849)}{6+20+6.28}=2.5 \mathrm{~m} \\
& \bar{y}=\frac{a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}}{a_{1}+a_{2}+a_{3}}=\frac{6 \times 1.33+20 \times 2+6.28 \times 2}{6+20+6.28}=1.875 \mathrm{~m}
\end{aligned}
$$

EXAMPLE 7.7
A tringuler plate in the form of an isosceles triangle $A B C$ has base $B C=10 \mathrm{~cm}$ and altitude $=12 \mathrm{~cm}$. From this plate, a portion ir the shape of an isosceles Iriangle $O B C$ is remoend. If O is the mid-point of the atinute of triangle $A B C$, then determine the distance of CG of the remainder section from the base.
Solution: Refer Fig 7.11
For a triangle of height h, the CG lies on the axis at a distance h/3 from the base.

For triangle $A B C$,

$$
\begin{aligned}
\text { Area } A_{1} & =\frac{1}{2} \times 10 \times 12=60 \mathrm{~cm}^{2} \\
y_{1} & =12 / 3=4 \mathrm{~cm} \text { from base } B C
\end{aligned}
$$

For triangle $O B C$,

$$
\begin{aligned}
& A_{2}=\frac{1}{2} \times 10 \times 6=30 \mathrm{~cm}^{2} \\
& y_{2}=6 / 3=2 \mathrm{~cm} \text { from base } B C .
\end{aligned}
$$

Let y be the distance of CG of the section $A B O C A$ from the base line $B C$.

$$
y=\frac{A_{1} y_{1}+A_{2} y_{2}}{A_{1}+A_{2}}=\frac{60 \times 4+(-30) \times 2}{60+(-30)}
$$

The Center of Mass

- The center of mass is a point that locates the average position of the mass of an object.
- For an object with uniform density, it coincides with the centroid.
- It is often called the center of gravity because the gravitational pull on an object can be represented as a concentrated force acting at this point.

The Center of Mass

- The equation for finding the center of mass of a volume takes the form of

$$
\overline{\mathrm{x}}=\frac{\int_{\mathrm{m}}^{\mathrm{x}} d \mathrm{~m}}{\int d \mathrm{~m}} \quad \overline{\mathrm{y}}=\frac{\int_{\mathrm{m}} \mathrm{y} d \mathrm{~m}}{\int d \mathrm{~m}} \quad \overline{\mathrm{z}}=\frac{\int_{\mathrm{m}} z d \mathrm{~m}}{\int d \mathrm{~m}}
$$

- For a three-dirmensional surfacem of uniform thickness and density, the center of mass coincides with the centroid of the surface.

$$
\overline{\mathrm{x}}=\frac{\int_{\mathrm{A}} \mathrm{x} d \mathrm{~A}}{\int_{\mathrm{A}} d \mathrm{~A}} \quad \overline{\mathrm{y}}=\frac{\int_{\mathrm{A}} \mathrm{y} d \mathrm{~A}}{\int_{\mathrm{A}} d \mathrm{~A}} \quad \overline{\mathrm{z}}=\frac{\int_{\mathrm{A}} \mathrm{z} d \mathrm{~A}}{\int_{\mathrm{A}} d \mathrm{~A}}
$$

- The same concepts can be used to determine the center of mass of a line. The equation takes the form of

$$
\overline{\mathrm{x}}=\frac{\int_{\mathrm{L}}^{\mathrm{L}} \mathrm{x} d \mathrm{~L}}{\int_{\mathrm{L}} d \mathrm{~L}} \quad \overline{\mathrm{y}}=\frac{\int_{\mathrm{L}} \mathrm{y} d \mathrm{~L}}{\int_{\mathrm{L}} d \mathrm{~L}} \quad \overline{\mathrm{z}}=\frac{\int_{\mathrm{L}} z d \mathrm{~L}}{\int_{\mathrm{L}} d \mathrm{~L}}
$$

It may be recalled that the moment of force about a point is the product of force (F) and the perpendicular distance (x) between the point and the line of action of force.

$$
\text { Moment of force }=F x
$$

If this moment $F x$ is further multiplied by the distance x, then a quantity $F x^{2}$ is obtained which is referred to as the moment of moment or the second moment of force

Moment of moment $=F x \times x=F x^{2}$
If the term force F in the above identity is replaced by area or mass of the body, the resulting parameter is called the moment of inertia (MOI). Thus

Moment of inertia of a plane area $=A x^{2}$
Mass moment of inertia of a body $=m x^{2}$
where A and m respectively denote the area and mass of the body.
Inertia refers to the property of a body by virtue of which the body resists any change in its state of rest or of uniform motion. Area moment of inertia is considered only for plane figures for which the mass is assumed to be negligible. It is essentially a measure of resistance to bending, and is applied while dealing with the deflection or deformation of members in bending.

The mass moment of inertia pertains only to solid bodies having mass. It gives a measure of the resistance that body offers to change in angular velocity and accordingly is used in conjunction with rotation of rigid bodies.

8.1. MOMENT OF INERTIA AND RADIUS OF GYRATION

Moment of inertia (MOI) of any lamina is the second moment of all elemental areas $d A$ comprising the lamina. With refence to Fig. 8.1.

$$
I_{x x}=\text { moment of inertia about } x \text {-axis }=\Sigma(y d A) y
$$

nnece $y d A$ is the first moment of area $d A$ about x-axis and $(y d A) y$ is the moment of first now (called second moment) of area $d A$ about x-axis.

Likewise:

$$
I_{y x}=\Sigma y^{2} d A
$$

$$
\begin{aligned}
I_{3 y} & =\text { moment of inertia about y-axis } \\
& =\Sigma x^{2} d A
\end{aligned}
$$

poviously moment of inertia of a section about an axis opmertibed by the cummulative product of area and square dithe distance from that axis.
The units of moment of MOt are the fourth power of -qth. When the measurements are in $\mathrm{mm}, \mathrm{MOI}$ has units of

Fig. 8.1
11.1. Porallel axis theorem

The moment of inertia of a plane lamina about any axis is equal to the sum of its MOf about apallel axis through its centre of gravity G and the product of its area (mass) and the square of trdslance between the two axes. With reference to Fig. 8.2.

$$
\begin{equation*}
I_{A A}=I_{g X X}+A h^{2} \tag{8.3}
\end{equation*}
$$

where $I_{5 \bar{x}}$ is MOI of the lamina about an axis $x-\pi$ pasing through its CC and I_{A} is the $M O I$ about any axis M which is parallel to $x-x$ and at a distance h from it.

Proof : The lamina consists of an infintite number of sull elemental components parallel to the x-axis. Let me sech elemental component of area $d A$ be located at Usance y from the x-axis. Obviously then its distance fin the axis AA will be $(h+y)$.

Morent of inertia of the elemental component about **) AA will be

Then moment of inertia of the entire lamina about axis $A A$

$$
\begin{aligned}
& =\Sigma d A(h+y)^{2} \\
& =\Sigma d A h^{2}+\Sigma d A y^{2}+\Sigma d A(2 h y) \\
& =h^{2} \Sigma d A+\Sigma d A y^{2}+2 h \Sigma d A y
\end{aligned}
$$

Now, $h^{2} \Sigma d A=A h^{2}$

$$
(\because \Sigma d A=A)
$$

$\Sigma d A y^{2}=$ moment of inertia of the lamina about the axis $x \cdot x$.
$\Sigma d A y=0$ because $x-x$ is centroicial axis.
That gives:

$$
\begin{align*}
& I_{A A}=I_{B x}+A h^{2} \tag{8.4}\\
& I_{\text {en }}=I_{1}+A A^{2}
\end{align*}
$$

8.1.2. Perpendicular axis theorem The moment of inertia of a plane lana is equal to the sum perpendicular to the plane of the lamina is equ the two axes at of the moments of inertia of the laminecting each other at the right angles to each other and intersecting each or it. Proof: With reference to Fig. in the plane of lamina, and mutually perpendicular axes lying in the plane of haugh, and σz is the axis normal to the lamina and passing through o (the point of intersection of the axes σx and $o y$). The distance of an elemental component of area $d A$ from αz, i.c., from point o is r.

Moment of inertia of the elemental component about axis

Fig. 83 $0 z$

$$
=d A r^{2}=d A\left(x^{2}+y^{2}\right)
$$

Moment of inertia of the elemental component about axis $o z$

$$
I_{x t}=\Sigma d A\left(x^{2}+y^{2}\right)=\Sigma d A x^{2}+\Sigma d A y^{2}
$$

But,

$$
\sum d A x^{2}=\text { moment of inertia of the lamina about the axis oy }=L_{n}
$$

$$
\Sigma d A y^{2}=\text { moment of inertia of the lamina about the axis } \alpha x=I_{z}^{\prime \prime}
$$

$$
\therefore I_{z r}=I_{n c}+I_{w}
$$

8.1.3. Radius of gyration

If the entire area (or mass) of a lamina is considered to be concentrated at a point such that there is no change in the moment of inertia about a given axis, then distance of that point from the given axis is called the radius of syration.

The relation between radius of gyration k and moment of inertia I can be put in the form

$$
\begin{equation*}
I=A k^{2} ; k=\sqrt{\frac{T}{A}} \tag{4}
\end{equation*}
$$

Flg. 8.4
Apparently the radius of gyration of a lamina is the square root of the ratio of its mond 6 inertia to its area.

The moment of inertia of common standard sections are presented below:
(i) For a rectangular section with breadth b and depth d (Fig. 8.4a).

$$
I_{x i}=\frac{b d^{3}}{12} ; I_{y y}=\frac{d b^{3}}{12}
$$

For a hollow rectangular section (Fig. 8.4 b)

$$
I_{\mathrm{x}}=\frac{B D^{3}-b d^{3}}{12} ; I_{\mathrm{w}}=\frac{D B^{3}-d b^{3}}{12}
$$

For a triangular section (Fig, 8.5)

$$
\begin{align*}
& I_{2 x}=\frac{b h^{3}}{36} \\
& I_{A B}=\frac{b h^{3}}{12}
\end{align*}
$$

Fig. 8.5
(ini)For a circular section of diameter d (Fig. 8.6a)

$$
I_{X Y}=I_{y y}=\frac{\pi}{64} d^{4}
$$

If if is the axis perpendicular to lamina and passing through CG, then

$$
I_{z x}=I_{x x}+I_{y y}=\frac{\pi}{32} d^{4}
$$

(a)

(b)

Fig. 8.6
For a hollow circular section with outer diameter d_{0} and inner diameter d_{i}

$$
I_{x x}=I_{3 y}=\frac{\pi}{64}\left(d_{0}^{4}-d_{i}^{4}\right)
$$

${ }^{4} \pi$ is the axis perpendicular to the plane of lamina and passing through CG then

$$
I_{z z}=I_{z x}+I_{y y}=\frac{\pi}{32}\left(d_{0}^{4}-d_{i}^{4}\right)
$$

(a)

(b)
(ic) For a semi-circle (Fig. 8.7 a)

$$
\begin{aligned}
& I_{z 1}=0.11 r^{4} \text { and } \\
& I_{y y}=\frac{\pi r^{4}}{8}
\end{aligned}
$$

For a quarter circle (Fig. 8.7b)

$$
I_{x x}=I_{y y}=0.055 r^{4}
$$

(p) For an ellipse (Fig 8.8),

$$
I_{x x}=\frac{\pi a b^{3}}{4}, I_{y y}=\frac{\pi b a^{3}}{4}
$$

Fig. 8.8

8.2. MOMENT OF INERTIA OF LAMINAE OF DIFFERENT SHAPES

8.2.1. Rectanguiar lamina

Consider a rectangular lamina $A B C D$ of width b and depth d. Let $x x$ and $y y$ be the axis which pass through the centroid of the area and are parallel to the sides of the lamina. The centroid lies at the mid point of the width as well as the depth.

Consider a small strip of thickness dy located at a distance y from the axis $x x$.

Area of the elemental strip $=b d y$
Moment of inertia of the elemental component about the axis x.

$$
=d A \times y^{2}=b d y \times y^{2}=b y^{2} d y
$$

Moment of inertia of the entire lamina about the axis $x x$,

$$
\begin{aligned}
I_{x x} & =\int_{-\frac{d}{2}}^{\frac{d}{2}} b y^{2} d y=b\left|\frac{y^{3}}{3}\right|_{-\frac{d}{2}}^{\frac{d}{2}} \\
& =b\left[\frac{d^{3}}{24}+\frac{d^{3}}{24}\right]=\frac{b d^{3}}{12}
\end{aligned}
$$

Fig. 8.9

$$
\begin{aligned}
& \qquad I_{y y}=\frac{d b^{3}}{12} \\
& \text { Let } I_{A B} \text { be the moment of inertia of the lamina about its bottom face } A B \text {. Then from the } \\
& \text { parallel axis }
\end{aligned}
$$ of parallel axis

Similarly the moment of inertia of the lamina about the axis $y y$ is

$$
\begin{aligned}
& \qquad I_{A B}=I_{z x}+A h^{2}=\frac{b d^{3}}{12}+b d\left(\frac{d}{2}\right)^{2}=\frac{b d^{3}}{12}+\frac{b d^{3}}{4}=\frac{b d^{3}}{3} \\
& \text { Similarly the moment of inertia of the lamina about the face } A D \text { would be }
\end{aligned}
$$

$$
1_{A D}=\frac{d b^{3}}{3}
$$

From the theorem of perpendicular axds, the polar moment of inertia I_{p} of the lamina is

$$
\begin{equation*}
t_{p}=t_{x z}+I_{w y}=\frac{b d^{3}}{12}+\frac{d b^{3}}{12} \tag{8.10}
\end{equation*}
$$

The polar moment of inertia is the inertia about the polar Hosc an ais which passes through the centroid of the lamina asis normal to it.
For a rectangular lamina ($B \times D$) with a rectangular hole (\#xd) made centrally (Fig. 8.10) the moment of inertia about any ourodal axis is
= MOI of bigger rectangle - MOI of smaller rectangle

Thus: $\quad I_{\mathrm{a}}=\frac{B D^{3}}{12}-\frac{b d^{3}}{12}$

Fig. 8.10
122. Triangular tamina

Let ABC be the triangle of base width b and height \& Consider an elementary strip of width l, thickness dy und locabed at distance y from the base of the triangle. for this elemental strip.

$$
\text { area }=I d y
$$

moment of inertia of this strip about base BC

$$
=y^{2} d A=y^{2} 1 d y
$$

Since the integration is to be done with respect to y Witin the limits 0 to h, it is necessary to express I in m of y. For that, we have the following correlation trom the similarity of triangles $A D E$ and $A B C$,

Fig. 8.11

$$
\frac{l}{b}=\frac{h-y}{h} ; \quad l=b\left(1-\frac{y}{h}\right)
$$

a. Moment of inertia of the triangle about the base

$$
\begin{align*}
I_{\text {hase }} & =\int_{a}^{h} y^{2} b\left(1-\frac{y}{h}\right) d y \\
& =b \int_{0}^{b}\left(y^{2}-\frac{y^{3}}{h}\right) d y=b\left|\frac{y^{3}}{3}-\frac{y^{4}}{4 h}\right|_{a}^{h}=b\left(\frac{h^{3}}{3}-\frac{h^{3}}{4}\right)=\frac{b h^{3}}{12} \tag{8.12}
\end{align*}
$$

For a triangle, the centroidal axis $I_{z=}$ is at a distance of $y_{t}=h / 3$ from the base. Then from the teotetn of parallel axds : $I_{\text {hase }}=I_{z r}+A y_{c}{ }^{2}$, we have

$$
\begin{equation*}
\therefore \quad I_{x=}=I_{\text {basp }}-A y_{c}^{2}=\frac{b h^{3}}{12}-\left(\frac{1}{2} b h\right) \times\left(\frac{h}{3}\right)^{2}=\frac{b h^{3}}{12}-\frac{b h^{3}}{18}=\frac{b h^{3}}{36} \tag{8.13}
\end{equation*}
$$

${ }^{123}$, Circular lamina
Corsider an element of sides $r d \theta$ and $d r$ within a circular lamina of radius R. Moment of this
(enental area about the diametrical axis $x-x$,

$$
=y^{2} d A=(r \sin \theta)^{2} \times r d \theta d r=r^{3} \sin ^{2} \theta d \theta d r
$$

\therefore Moment of inertia of the entire circular lamina

$$
\begin{aligned}
I_{z x} & =\int_{0}^{\pi} \int_{0}^{2 \pi} r^{3} \sin ^{2} \theta d \theta d r \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} r^{3} \frac{1-\cos 2 \theta}{2} d \theta d r \\
& =\int_{0}^{\pi} \frac{r^{3}}{2}\left[\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{2 \pi} d r \\
& =\int_{0}^{\pi} \frac{r^{3}}{2}(2 \pi) d r=2 \pi\left|\frac{r^{4}}{8}\right|_{0}^{\pi}=\frac{\pi}{4} R^{4}
\end{aligned}
$$

If d is the diameter of the circular lamina, then

$$
\begin{equation*}
I_{z x}=\frac{\pi}{4}\left(\frac{d}{2}\right)^{4}=\frac{\pi}{64} d^{4} \tag{K.14}
\end{equation*}
$$

Likewise

$$
I_{y y}=\frac{\pi}{64} d^{4}
$$

If $z z$ is the axis through the centroid and normal to the plane of the lamina, then

$$
\begin{align*}
I_{z z} & =I_{z i}+I_{w}={ }_{64}^{\pi} d^{4}+\frac{\pi}{64} d^{4} \\
& =\frac{\pi}{32} d^{4} \tag{8.15}
\end{align*}
$$

The axis $z z$ is called the polar axis and $I_{z z}$ is referred to as the polar moment of ineriat
Polar moment of inertia has application in problems relating to torsion of cyãndral and rotation of slabs.
 moment of inertia about any centroidal axis is

$$
I_{u x}=t_{y y}=\frac{\pi}{64}\left(D^{4}-d^{4}\right)
$$

The corresponding polar moment of inertia is

$$
I_{z}=I_{p}=\pi_{32}^{\pi}\left(D^{4}-d^{4}\right)
$$

8.2.4. Semi-circular lamina

The moment of inertia of a circular lamina having diameter d about tits diameticel ath

$$
=\frac{\pi}{64} d^{4}
$$

For the semd-circular lamina with $A B$ as its base, the moment of inertia about $A B$

$$
I_{A B}=\frac{1}{2} \times\left(\frac{\pi}{64} d^{4}\right)=\frac{\pi}{128} d^{4}
$$

It can be obtained from first principles if the limit of integration is taken ss 0 to ${ }^{\kappa}$

$$
\begin{equation*}
I_{A B}=\int_{0}^{R \pi} \int_{\rho}^{3} r^{3} \sin ^{2} \theta d \theta d r=\frac{\pi}{8} R^{4}=\frac{\pi}{128} d^{4} \tag{K,1H}
\end{equation*}
$$

The distance of centroidal axis $x x$ of the semicircle from its base $A B$ is

$$
\begin{aligned}
& h=\frac{4 R}{3 \pi}=\frac{2 d}{3 \pi} \\
& \text { Area of semicircle }=\frac{1}{2}\left(\frac{\pi}{4} d^{2}\right)=\frac{\pi d^{2}}{8}
\end{aligned}
$$

Froter parallel axis theorem,

$$
\begin{aligned}
& \frac{\pi d^{4}}{128}=I_{x x}+\frac{\pi d^{2}}{8} \times\left(\frac{2 d}{3 \pi}\right)^{2}=I_{x x}+\frac{d^{4}}{18 \pi} \\
& \therefore I_{x x}=\frac{\pi d^{4}}{128}-\frac{d^{4}}{18 \pi}=0.00686 d^{4}=0.11 R^{4}
\end{aligned}
$$

125. Ouarter of a circle

Fig. 8.14

Folerence Fig, B.15, LAB is the quadrant of a circular lamina of diameter d. The moment of netis of a quadrant equals $1 / 4$ th of the moment of inertia of the circular lamina.

$$
\therefore J_{A B}=\frac{1}{4} \times\left(\frac{\pi}{64} d^{4}\right)=\frac{\pi}{256} d^{4}
$$

Z can be obtained from first principles if the limit of iskgration is taken as 0 to $\pi / 2$ instead of 0 to 2π in the diriation of moment of inertia of a circular lamina about * dumetral axis. That is

$$
\begin{align*}
I_{A B} & =\int_{00}^{\pi} \int_{0}^{\frac{\pi}{2}} r^{3} \sin ^{2} \theta d \theta d r \\
& =\frac{\pi}{16} R^{4}={ }_{256}^{\pi} d^{4} \tag{8.20}
\end{align*}
$$

The distance of the centroid of the quadrant $L A B$ from

$$
h=\frac{4 R}{3 \pi}=\frac{2 d}{3 \pi}
$$

Area of quadrant $=\frac{1}{4} \times\left(\frac{\pi}{4} d^{2}\right)=\frac{\pi}{16} d^{2}$
From parallel axds theorem,

$$
\begin{align*}
t_{A B} & =I_{x x}+A h^{2} \\
\text { or } \quad \frac{\pi d^{4}}{256} & =t_{z x}+\frac{\pi d^{2}}{16} \times\left(\frac{2 d}{3 \pi}\right)^{2}=t_{A x}+\frac{d^{4}}{36 \pi} \\
\therefore \quad t_{\pi x} & =\frac{\pi d^{4}}{256}-\frac{d^{4}}{36 \pi}=0.00343 d^{4}=0.055 R^{4} \tag{8.21}
\end{align*}
$$

The Moment of Inertia

Moment of inertia about x-axis:	$I_{x}=\int_{\mathrm{A}} \mathrm{y}^{2} d \mathrm{~A}$
Moment of inertia about y-axis:	$I_{y}=\int_{\mathrm{A}} \mathrm{x}^{2} d \mathrm{~A}$
Polar moment of inertia:	$J_{O}=\int_{\mathrm{A}} \mathrm{r}^{2} d \mathrm{~A}$
Product of inertia:	$I_{x y}=\int_{\mathrm{A}} \mathrm{x} y d \mathrm{~A}$

The moment of inertia is sometimes expressed in terms of the radius of gyration. The radius of gyration determines how the area is distributed around the centroid.

$$
R_{g}=\sqrt{\frac{I}{\mathrm{~A}}}
$$

Example 4

- Determine the moments of inertia about the x - and y-axes. Also, determine the polar moment of inertia.

Example 4

$$
\begin{gathered}
I_{x}=\int_{\mathrm{A}} \mathrm{y}^{2} d \mathrm{~A}=\int_{-\frac{\mathrm{d}}{2}}^{\frac{\mathrm{d}}{2}} \mathrm{y}^{2}(\mathrm{~b} \cdot d \mathrm{y})=\mathrm{b} \int_{-\frac{\mathrm{d}}{2}}^{\frac{\mathrm{d}}{2}} \mathrm{y}^{2} d \mathrm{y} \\
I_{x}=\frac{\mathrm{bd}^{3}}{12} \\
I_{y}=\frac{\mathrm{db}^{3}}{12} \\
J_{O}=I_{x}+I_{y} \quad J_{O}=\frac{\mathrm{bd}}{12}\left(\mathrm{~b}^{2}+\mathrm{d}^{2}\right)
\end{gathered}
$$

Parallel Axis Theorem

$$
\begin{aligned}
I_{x} & =\int_{\mathrm{A}} \mathrm{y}^{2} d \mathrm{~A} \\
I_{x} & =\int_{\mathrm{A}}\left(\mathrm{y}^{\prime}+\mathrm{d}_{\mathrm{y}}\right)^{2} d \mathrm{~A} \\
& =\int_{\mathrm{A}} \mathrm{y}^{\prime 2} d \mathrm{~A}+2 \int_{\mathrm{A}} \mathrm{y}^{\prime} \mathrm{d}_{\mathrm{y}} d \mathrm{~A}+\int_{\mathrm{A}} \mathrm{~d}_{\mathrm{y}}^{2} d \mathrm{~A} \\
& =I_{x^{\prime}}+2 \mathrm{~d}_{\mathrm{y}} \int_{\mathrm{A}} \mathrm{y}^{\prime} d \mathrm{~A}+\mathrm{d}_{\mathrm{y}}^{2} \int_{\mathrm{A}} d \mathrm{~A}
\end{aligned}
$$

In the second term, is equal to zero as the x -axis passes through the centroid.

$$
\begin{gathered}
I_{x}=I_{x^{\prime}}+\operatorname{Ad}_{\mathrm{y}}^{2} \quad I_{y}=I_{y^{\prime}}+\mathrm{Ad}_{\mathrm{x}}^{2} \\
J_{O}=J_{C}+\mathrm{Ad}^{2}
\end{gathered}
$$

Example 5

- Determine the moments of inertia about the x^{\prime} - and y^{\prime} axes about the centroid.
- Also, determine the
 polar moment of inertia.

Example 5

Example 5

Part	Dimen -sions	Area (sq. in)	\mathbf{X}	y	$\begin{aligned} & \left(\text { in }^{3}\right) \\ & x_{i} A_{i} \end{aligned}$	$\begin{aligned} & \left(\text { in }^{3}\right) \\ & y_{i} A_{i} \end{aligned}$	I^{\prime}	I^{\prime},	d_{x}	d_{y}	Ad $^{2}{ }^{2}$	$\operatorname{Ad}_{\mathbf{y}}{ }^{2}$
Area 1	$2^{\prime \prime} \times 4^{\prime \prime}$	8	3	5	24	40	10.67	2.67	4.91	0	192.86	0
Area 2	$10^{\prime \prime} \times 6^{\prime \prime}$	60	9	5	540	300	180	500	1.09	0	71.286	0
$\begin{gathered} \text { Area } \\ 3 \end{gathered}$	$\begin{gathered} 2^{\prime \prime} \\ \text { radius } \end{gathered}$	-4π	10	5	-40π	-20π	-0.785	-0.785	2.09	0	-54.89	0
Summation		55.43			438.34	277.17	189.89	501.89			209.26	

Example 5

$$
\begin{gathered}
I_{x}=I_{x^{\prime}}+\mathrm{Ad}_{\mathrm{y}}^{2} \quad I_{y}=I_{y^{\prime}}+\mathrm{Ad}_{\mathrm{x}}^{2} \\
I_{x}=189.89 \mathrm{in}^{4} \quad I_{x}=711.15 \mathrm{in}^{4} \\
J_{O}=I_{x}+I_{y} \\
J_{O}=901.04 \mathrm{in}^{4}
\end{gathered}
$$

EXAMPLE 8.1
The moment of inertia of rectangular section beam about x-x and y-y axes passing and p th respectively of the rect Solution : Let b and d denote the breadth and depth respectively of the rectangular se
Then
and

$$
\begin{align*}
& I_{x x}=\frac{b d^{3}}{12} ; 250 \times 10^{6}=\frac{b d^{3}}{12} \tag{i}\\
& I_{3 y}=\frac{d b^{3}}{12} ; 40 \times 10^{6}=\frac{d b^{3}}{12} \tag{ii}
\end{align*}
$$

Dividing expression (i) by expression (ii)

$$
5.25=\left(\frac{d}{b}\right)^{2} \text { or } \frac{d}{b}=2.5
$$

Substituting $d=2.5$ bin expression (i), we get

$$
\begin{aligned}
b_{12}(2.5 b)^{3} & =250 \times 10^{6} \\
\text { or } \quad b^{4} & =\frac{250 \times 10^{6} \times 12}{(2.5)^{3}}=1.92 \times 10^{8}
\end{aligned}
$$

That gives: $b=117.7 \mathrm{~mm}$ and $d=2.5 \times 117.7=294.25 \mathrm{~mm}$ Therefore required size of the section is:

$$
=117.3 \mathrm{~mm} \text { (breadth) } \times 294.25 \mathrm{~mm} \text { (depth) }
$$

EXAMPLE 8.2

Find the moment of inertia of a rolled steel joist girder of symmetrical I section shown in Fig. 816. Solution : The areas of the three rectangles comprising the I-section are:

$$
\text { upper flange } A_{1}=6 a \times a=6 a^{2}
$$

$$
\text { web } A_{2}=8 a \times a=8 a^{2}
$$

lower flange $A_{3}=6 a \times a=6 a^{2}$
MOI of upper flange about x -axis (using parallel axis theorem)

$$
\begin{aligned}
& =\frac{6 a \times a^{3}}{12}+6 a^{2} \times\left(4 a+\frac{a}{2}\right)^{2} \\
& =\frac{a^{4}}{2}+\frac{243 a^{4}}{2}=122 a^{4}
\end{aligned}
$$

MOI of web about x-axis $=\frac{a \times(8 a)^{3}}{12}=\frac{128 a^{4}}{3}$
MOI of lower flange about x-axis (using parallel axis theorem)

$$
\begin{aligned}
& =\frac{6 a \times a^{3}}{12}+4 a^{2}\left(4 a+\frac{a}{2}\right)^{2} \\
& =\frac{a^{4}}{2}+\frac{243 a^{4}}{2}=122 a^{4}
\end{aligned}
$$

Toulal MOI of the given 1 -section about x-axis

$$
\begin{aligned}
& =122 a^{4}+\frac{128 a^{4}}{3}+122 a^{4} \\
& =\frac{860}{3} a^{4} \\
& \text { ection could also be } \\
& \text { Fig. 8.17. } \\
& \frac{640}{3} a^{4}=\frac{5 a \times(8 a)^{3}}{12} \\
& \frac{860}{3} a^{4}
\end{aligned}
$$

The MOI of the given 1 -section could also be nod out with reference to Fig. 8.17.

$$
\begin{aligned}
I_{n} & =I_{n}-I_{n 2} \\
& =\frac{6 a \times(10 a)^{3}}{12}-\frac{5 a \times(8 a)^{3}}{12} \\
& =500 a^{4}-\frac{640}{3} a^{4}={ }_{3}^{860} a^{4}
\end{aligned}
$$

GUNPLE 8.3
Fig. 8.17
Danne the mowent of inertia of the T-section shown in Fig. 7.13 about an axis passing through the setiod and parallei to top most fibre of the section. Proceed to determine the moment of inertia about

solation : From the calculations made in Example 7.10 the CG of the given T-section lies on the p wis and at distance 43.71 mm from the top face of its flange

$$
\bar{x}=0 \text { and } \bar{y}=43.71 \mathrm{~mm}
$$

Befering to this centroidal axis, the centroid of a_{1} is $(0.0,38.71 \mathrm{~mm})$ and that of a_{2} is (1.4 .29 mm),

Moment of inertia of the section about centroid axis is

$$
\begin{aligned}
I_{a x}= & \text { MOI of area } a_{1} \text { about centroidal axis } \\
& + \text { MOI of area } a_{2} \text { about centroidal axis } \\
= & {\left[\frac{160 \times 10^{3}}{12}+1600 \times(38.71)^{2}\right]+\left[\begin{array}{c}
10 \times 150^{3} \\
12
\end{array}+1500 \times(41.29)^{2}\right] } \\
= & 7780672 \mathrm{~mm}^{4}
\end{aligned}
$$

$$
\text { Similarly } \quad I_{3 y}=\frac{10 \times 160^{3}}{12}+\frac{150 \times 10^{3}}{12}=3425833 \mathrm{~mm}^{4}
$$

The tadius of gyration is given by $k=\sqrt{\frac{T}{A}}$

$$
\begin{aligned}
\therefore & k_{x y}=\sqrt{\frac{7780672}{3100}}=50.1 \mathrm{~mm} \\
& k_{y y}=\sqrt{\frac{3425833}{3100}}=34.24 \mathrm{~mm}
\end{aligned}
$$

$\mathrm{XH}_{4} \mathrm{PLE}_{8,4}$
Wicidee the moment of inertia of the area shown shaded in Fig. 8.18 about axis $\mathbf{x x}$ which tilish with the base edge AB.
Moment of given section comprises the full rectangle $A B C D$ minus the semi-circle DEC.

$$
I_{1}=I_{C 1}+A_{1} h_{1}{ }^{2}
$$

$$
\begin{aligned}
& =\frac{2 \times 2.5^{3}}{12}+(2 \times 2.5) \times 1.25^{2} \\
& =2.604+7.812=10.416 \mathrm{~cm}^{4}
\end{aligned}
$$

Mornent of inertia of semi-dircle about $A B$

$$
\begin{aligned}
I_{2} & =I_{C I}+A_{2} h_{2}^{2} \\
& =0.11 r^{2}+\frac{1}{2} \pi r^{2} \times\left(2.5-\frac{4 r}{3 \pi}\right)^{2}
\end{aligned}
$$

The parameter $\frac{4 r}{3 \pi}$ is the distance of centroid of semicircle from DC.

$$
\begin{aligned}
\therefore \quad I_{2} & =0.11 \times 1^{2}+\frac{1}{2} \approx \times(1)^{2} \times\left(2.5-\frac{4 \times 1}{3 \pi}\right)^{2} \\
& =0.11+6.76=6.87 \mathrm{~cm}^{4}
\end{aligned}
$$

\therefore Moment of inertia of shaded area bout $A B=10.416-6.87=3.546 \mathrm{~cm}^{4}$

EXAMPLE 8.5

Determine the polar moment of inertia of the I-section shown in Fig. 8.19. Also make calculatiaxy fortie radius of gyration with respect to x-axis and y-axis.
Solution: The 1-section is symmetrical about y-axis and accordingly its CG lies at point G on the y-axis, i.e., $x=0$. Further, the bottom fibre of lower flange has been chosen as reference axis to locate the centrold \bar{y}.

The areas and co-ordinates of centroids of the three rectangles comprising the given section are;

Lower flange: $\quad a_{1}=10 \times 1=10 \mathrm{~cm}^{2}$

Web:

$$
y_{1}=\frac{1}{2}=0.5 \mathrm{~cm}
$$

$$
a_{2}=12 \times 1-12 \mathrm{~cm}^{2}
$$

$$
y_{2}=1+\frac{12}{2}=7 \mathrm{~cm}
$$

Upper flange: $a_{3}=8 \times 18 \mathrm{~cm}^{2}$

$$
y_{3}=1+12+\frac{1}{2}=13.5 \mathrm{~cm}
$$

Then:

$$
\begin{aligned}
\bar{y} & =\frac{a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}}{a_{1}+a_{2}+a_{3}} \\
& =\begin{array}{c}
10 \times 0.5+12 \times 7+8 \times 13.5 \\
10+12+8
\end{array}=\frac{5+84+108}{30}=5.57 \mathrm{~cm}
\end{aligned}
$$

With reference to the centroidal exes, the centroid of the lower flange, web and upper finfst are $(0,5.07),(0,1.43)$ and $(0,7.93)$ respectively.

Moment of inertia of the I-section about centroidal axis is

- MOI of area a_{1} about centroidal axis + MOI of area a_{2} about centroldal axis +MOl d 1 al a_{3} about centroidal axis.

$$
\begin{aligned}
& { }_{A}\left(g_{1}+A_{1} b_{1}^{2}\right)+\left(I_{G 2}+A_{2} h_{2}^{2}\right)+\left(I_{G 3}+A_{3} h_{3}{ }^{2}\right) \\
& =\left[\frac{10 \times 11^{3}}{12}+10 \times(5.07)^{2}\right]+\left[\begin{array}{c}
1 \times 12^{3} \\
12
\end{array}+12 \times(1.43)^{2}\right] \\
& +\left[\frac{8 \times 1^{3}}{12}+8 \times(7.93)^{2}\right] \\
& \text {.(08139 }+257.05)+(144+24.54)+(0.67+503.08) \\
& =980.17 \mathrm{~cm}^{4} \\
& \text { ad } I_{w v}=\frac{1 \times 10^{3}}{12}+\frac{12 \times 1^{3}}{12}+\frac{1 \times 8^{3}}{12} \\
& \begin{array}{r}
=83.33+1+42.64=127 \mathrm{~cm}^{4} \\
\text { Falar moment of inertia }=I_{x x}+I_{y w}=930.17+127
\end{array} \\
& =1057.17 \mathrm{~cm}^{4} \\
& \text { if the radius of gyration is given by: } k=\sqrt{\frac{T}{A}} \\
& \therefore k_{2 x}=\sqrt{\frac{930.17}{30}}=5.567 \mathrm{~cm} \\
& k_{y y}=\sqrt{\frac{127}{30}}=2.057 \mathrm{~cm}
\end{aligned}
$$

Fig. 8.19 (b)

SHMPLE 8.6

Devnixe the moment of inertia about centroidal axes $x-x$ and y-y of the channel section showen in Fig. 8.20. Salation ; The section is divided into three rectangles with reas

$$
\begin{aligned}
A_{1} & =10 \times 1.5=15 \mathrm{~cm}^{2} \\
A_{2} & =(40-1.5-1.5) \times 1=37 \mathrm{~cm}^{2} \\
A_{3} & =10 \times 1.5=15 \mathrm{~cm}^{2} \\
\Sigma A & =A_{1}+A_{2}+A_{3} \\
& =15+37+15=67 \mathrm{~cm}^{2}
\end{aligned}
$$

The given section is symmetrical about the horizontal Wis passing through the centroid of rectangle A_{2}.
The distance of the centrold of the section with indence to section $1-1$ is

$$
\frac{\Sigma_{A x}}{\sum_{A}}=\frac{(15 \times 5)+\left(37 \times \frac{1}{2}\right)+(15 \times 5)}{67}=2.51 \mathrm{~cm}
$$

Withoids reference to the centroidal axes $x-x$ and $y-y$, the

Fig. 8.20

$$
\left[(3-2.51),\left(\frac{40}{2}-\frac{1.5}{2}\right)\right] \text { or }(2.49,19.25) \text { for rectangle } A_{1}
$$

$\left[\left(2.51-\frac{1}{2}\right), 0.0\right]$ or $\quad(2.01,0.0)$ for rectangle A_{2}
$\left[(5-2.51),\left(\frac{40}{2}-\frac{1.5}{2}\right)\right]$ or $(2.49,19.25)$ for rectangle A_{3}
Then invoking parallel axis theorem, the moment of inertia of areas A_{1}, A_{2}, and A_{3} ate
$x-x$,

$$
\begin{aligned}
I_{x x} & =\left[\frac{10 \times 1.5^{3}}{12}+15 \times 19.25^{2}\right]+\left[\begin{array}{c}
1 \times 37^{3} \\
12
\end{array}\right]+\left[\begin{array}{c}
10 \times 1.5^{3} \\
12
\end{array}+15 \times 19.252\right. \\
& =(2.812+5558.437)+(4221.083)+(2.812+558.437)=155313.35 \mathrm{cq}^{1}
\end{aligned}
$$

Similarly,

$$
\left.\begin{array}{rl}
I_{w} & =\left[\frac{1.5 \times 10^{3}}{12}+15 \times 2.49^{2}\right]+\left[\frac{37 \times 1^{3}}{12}\right]+\left[\begin{array}{c}
1.5 \times 10^{3} \\
12
\end{array}+15 \times 2.45^{2}\right.
\end{array}\right]
$$

EXAMPLE 8.7
Determine $I_{x x}$ and $I_{y y}$ of the cross-section of a cast iron beam shown in Fig. 8.21.
Solution : The MOl of the given sections can be worked out by looking it as a rectangle nina two semi-circles.
$\therefore \quad I_{x F}=I_{x y}$ of rectangle $-I_{x F}$ of circular part

$$
\begin{aligned}
& =\frac{b d^{3}}{12}-\frac{\pi r^{4}}{4} \\
& =\frac{12 \times 15^{3}}{12}-\frac{\pi \times 5^{4}}{4} \\
& =33.75-490.87 \\
& =2884.13 \mathrm{~cm}^{4}
\end{aligned}
$$

Likewise : $I_{y g}=I_{y}$ of rectangle

$$
-I_{y y} \text { of semi-circular parts }
$$

$$
I_{y y} \text { of rectangle }=\frac{15 \times 12^{3}}{12}=2160 \mathrm{~cm}^{4}
$$

For the semi-circular part ACB;

MOI about its diameter, $I_{A B}=\frac{1}{2} \times \frac{\pi \times 5^{4}}{4}=245.43 \mathrm{~cm}^{4}$
Distance of its CG from the diameter,

$$
\begin{gathered}
\qquad=\frac{4 r}{3 \pi}=\frac{4 \times 5}{3 \pi}=2.12 \mathrm{~cm} \\
\text { Area } A=\frac{1}{2} \pi r^{2}=\frac{1}{2} \pi \times 5^{2}=39.27 \mathrm{~cm}^{2}
\end{gathered}
$$

From the correlation, $I_{A B}=I_{\mathrm{GG}}+A h^{2}$, the moment of inertia of semi-circular part about ${ }^{5}$ centroidal axis

$$
I_{C C}=245.43-39.27 \times(2.12)^{2}=68.94 \mathrm{~cm}^{4}
$$

Whec $h_{1}=$ distance between axis and G-axis, $=6-2.12=3.88 \mathrm{~cm}$
Soce there are two $\mathrm{I}_{\mathrm{yg}}=68.94+39.27 \times 3.88^{2}=660.13 \mathrm{~cm}^{4}$
fort Wo semi-circular parts $=2 \times 660.13=1320.26 \mathrm{~cm}^{4}$
$\therefore 1_{n}$ for the section $=2160-1320.26=839.74 \mathrm{~cm}^{4}$
guluple 8.8
paraice the numperts of inertia about the x and y centroidal axis of a beam whose cross-sectional area is as
whit fig. 8.22. All dimensions are in cm , divided into three

$$
\begin{aligned}
& \text { semtion: The gived marked } 1,2 \text { and } 3 \\
& \begin{aligned}
\left(I_{2 x}\right)_{1} & =I_{G_{1}}+A_{1} h_{1}^{2}=I_{G_{1}}+A_{1}\left(\bar{y}-y_{1}\right)^{2} \\
& =\frac{1}{12} \times 10 \times 30^{3}+(30 \times 10)(35-15)^{2} \\
& =1.425 \times 10^{5} \mathrm{~cm}^{4} \\
\left(I_{21} h_{2}\right. & =I_{G_{2}}+A_{2} h_{2}^{2}=I_{G_{2}}+A_{2}\left(\bar{y}-y_{2}\right)^{2} \\
& =\frac{1}{12} \times 10^{3} \times 60+(60 \times 10) \times 0 \\
& =0.05 \times 10^{5} \mathrm{~cm}^{4}
\end{aligned}
\end{aligned}
$$

$$
\left(a_{a}\right)_{3}=I_{C_{3}}+A_{3} h_{3}^{2}=I_{C_{3}}+A_{3}\left(\bar{y}-y_{3}\right)^{2}
$$

$$
=\frac{1}{12} \times 10 \times 30^{3}+(30 \times 10)(35-15)^{2}=1.425 \times 10^{5} \mathrm{~cm}^{4}
$$

$$
\therefore \quad t_{\mathrm{x}}=1.425 \times 10^{5}+0.05 \times 10^{5}+1.425 \times 10^{5}=2.90 \times 10^{5} \mathrm{~cm}^{4}
$$

$$
\left(I_{w}\right)_{1}=I_{G_{1}}+A_{1} h_{1}^{2}=I_{C_{1}}+A_{1}\left(\bar{x}-x_{1}\right)^{2}
$$

$$
=\frac{1}{12} \times 30 \times 10^{3}+(30 \times 10) \times(30-5)^{2}=1.9 \times 10^{5} \mathrm{~cm}^{4}
$$

$$
\left(I_{w} h_{2}=I_{G_{3}}+A_{2} h_{2}^{2}=I_{G_{2}}+A_{2}\left(\bar{x}-x_{2}\right)^{2}\right.
$$

$$
=\frac{1}{12} \times 60^{3} \times 10+(60 \times 10) \times 0=1.8 \times 10^{5} \mathrm{~cm}^{4}
$$

$$
\left.d_{n}\right)_{3}=I_{G_{3}}+A_{3} h_{3}^{2}=I_{G_{3}}+A_{3}\left(\bar{x}-x_{3}\right)^{2}
$$

$$
=\frac{1}{12} \times 30 \times 10^{3}+(30 \times 10) \times(30-5)^{2}
$$

$$
=1.9 \times 10^{5} \mathrm{~cm}^{4}
$$

Find the moment of inertia about the centroid horizontal axis of the area shown shaded section consists of triangle $A B C$, semi-circle on $B C$ as diameter, and a circular hole of diamuter 4 cm with its centre on $B C$.
Solution : The shaded area can be considered as a triangle (1), semicircle (2) and a circular hole (3)

Location of Centroid: For the triangular element,

$$
a_{1}=\frac{1}{2} \times 6 \times 8=24 \mathrm{~cm}^{2}
$$

y_{1} (distance of centroid from $B C$)

$$
=\frac{6}{3}=2 \mathrm{~cm}
$$

For the semi-circular element,

$$
a_{2}=\frac{1}{2} \pi r^{2}={ }_{2}^{1} \pi \times 4^{2}=25.12 \mathrm{~cm}^{2}
$$

Fig. 8.23
y_{2} (distance of centroid from $B C$) $=\begin{gathered}-4 r \\ 3 \pi\end{gathered}=\begin{gathered}-4 \times 4 \\ 3 \pi\end{gathered}=-1.7 \mathrm{~cm}$
The negative sign stems from the fact that it lies below $B C$.
For the circular hole

$$
\begin{aligned}
& a_{3}=\pi r^{2}=\pi \times 2^{2}=12.56 \mathrm{~cm}^{2} \text { (this area is removed) } \\
& y_{3}=0 \text { (centroid lies on } B C \text {) }
\end{aligned}
$$

\therefore Distance of the centroid of the shaded area from $B C$

$$
=\frac{\Sigma a y}{\Sigma a}=\frac{a_{1} y_{1}+a_{2} y_{2}-a_{2} y_{3}}{a_{1}+a_{2}-a_{3}}=\frac{24 \times 2+25.12 \times(-1.7)-12.56 \times 0}{24+25.12-12.56}=0.16 a
$$

Moment of Inertia

$$
\begin{aligned}
I_{1} & =\text { moment of inertia of triangle } A B C \text { about base } B C \\
& =\frac{1}{12} b h^{3}=\frac{1}{12} \times 8 \times 6^{3}=144 \mathrm{~cm}^{4} \\
I_{2} & =\text { moment of inertia of semi-circle about } B C \\
& =\frac{1}{128} \pi d^{4}=128 \times \pi \times 8^{4}=100.48 \mathrm{~cm}^{4} \\
I_{3} & =\text { moment of inertia of circular hole about } B C \\
& =\frac{\pi}{64} d^{4}=\frac{\pi}{64} \times 4^{4}=12.56 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Moment of inertia of the shaded area about BC

$$
=144+100.48-12.56=231.92 \mathrm{~cm}^{4}
$$

Area of the shaded portion $=24+25.12-12.56=36.56 \mathrm{~cm}$ Invoking parallel axis theorem,
Moment of inertia of shaded area about centroidal axis

$$
I_{G}=I_{B C}-A h^{2}=231.92-36.56 \times 0.145^{2}=231.15 \mathrm{~cm}^{4}
$$

E 8.10 montraidal moment of thertia of the lamina ABCDEFG shown in Fig. 8.24 , tne composite figure is divided into the
A viangle $A B M: A_{1}=\frac{1}{2} b h$

Fig. 8.24
H_{i} (cetroidal distance from line $A D$) $=\frac{6}{3}=2 \mathrm{~cm}$

$$
I_{G_{2}}=\frac{6 \times 6^{3}}{12}=108 \mathrm{~cm}^{4}
$$

n^{\prime} (centroidal distance from line $A D$) $=\frac{6}{2}=3 \mathrm{~cm}$ 8. A triangle CDL: $A_{3}=\frac{1}{2} b h=\frac{1}{2} \times 3 \times 6=9 \mathrm{~cm}^{2}$

$$
I_{\mathrm{C}_{3}}=\frac{b h^{3}}{36}=\frac{3 \times 6^{3}}{36}=18 \mathrm{~cm}^{4}
$$

\quad itentroidal distance from line $A D$) $=\frac{6}{3}=2 \mathrm{~cm}$
4. A semi-circle GFE to be subtracted: $A_{4}=\frac{\pi r^{2}}{2}=\frac{\pi \times 4^{2}}{2}=25.12 \mathrm{~cm}^{2}(-\mathrm{ve})$

$$
t_{G_{4}}=0.11 \mathrm{r}^{4}=0.11 \times 4^{4}=28.16 \mathrm{~cm}^{4}
$$

ys (centroidal distance from line $A D)=\frac{4 r}{3 \pi}=\frac{4 \times 4}{3 \pi}=1.698 \mathrm{~cm}$
For the composite section

Then

$$
\begin{aligned}
\bar{y}= & \frac{\Sigma A y}{\sum A}=\frac{(9 \times 2)+(36 \times 3)+(9 \times 2)-(25.12 \times 1.698)}{9+36+9-25.12} \\
= & \frac{18+108+18-42.65}{28.88}=3.51 \mathrm{~cm} \\
I_{x x}= & I_{x x 1}+I_{x 22}+I_{x 33}-I_{x 4} \\
= & {\left[18+9 \times(3.51-2)^{2}\right]+\left[108+36 \times(3.51-3)^{2}\right] } \\
& \quad+\left[18+9 \times(3.51-2)^{2}\right]-\left[28.16+25.12(3.51-1.698)^{2}\right]
\end{aligned}
$$

he above relation has been written by applying the parallel axis theorem:

$$
I_{x y}=I_{C C}+A h^{2}
$$

8.3. MASS MOMENT OF INERTIA

The mass moment of inertia of a body about a particular axis is defined as "the product of the mass and the square of the distance between the mass centre of the body and the axis".

The mass moment of inertia is an important term for the study of the rotational motion of a rigid body. It gives a measure of the resistance that the body offers to change in angular velocity.

The body can be considered to be split up into small masses. Let
and $\quad r_{1}, r_{2} \ldots r_{n}$ be the distances of the above mentioned elements from the axis about which mass moment of inertia is to be determined.

Fig. 8.30

The mass moment of inertia of the body can be written as

$$
\begin{aligned}
I & =m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+\ldots m_{n} r_{n}^{2} \\
& =\Sigma m r^{2}
\end{aligned}
$$

The summation of a large number of terms in the above expression can be replaced by integration. Consider a small mass $d m$ rotating about and at distance r from the axis of rotation, then

$$
I=\int r^{2} d m
$$

The radius of gyration k of the body with respect to the prescribed axis is defined by the relation

$$
I=k^{2} M ; \quad k=\sqrt{\frac{I}{M}}
$$

where M is the mass of the body.

Fig. 8.31

The mass moment of inertia of the entire rod about
xady yy be worked out by integrating the above expression between the limits $-\frac{1}{2}$ to $\frac{1}{2}$. That
B

$$
t_{y y}=m \int_{-\frac{1}{2}}^{\frac{t}{2}} x^{2} d x=m\left|\frac{x^{3}}{3}\right|_{-\frac{1}{2}}^{\frac{l}{2}}=m\left(\frac{l^{3}}{24}+\frac{l^{3}}{24}\right)
$$

were $M=m$ is the mass of the whole rod.

$$
=\frac{m t^{3}}{12}=\frac{M t^{2}}{12}
$$

Fit is required to determine the mass moment of inertia of the rod about axis $Y \gamma$ at the left end of the rod, we can use the parallel axis theorem

$$
I_{\gamma Y}=I_{y y}+M h^{2}
$$

there h is the distance between the axis $Y Y$ and the centroidal axis $y y$.

$$
t_{Y Y}=\frac{M l^{2}}{12}+M\left(\frac{l}{2}\right)^{2}=\frac{M i^{2}}{3}
$$

4.2. Rectangular plate

Figure 8.34 , shows a rectangular plate of width b pth d and uniform thickness t. If ρ is the density of the Pute material, then mass of the plate

$$
M=\text { density } \times \text { volume }
$$ $=\rho b t d$

Consider an elemental strip of depth dy located at ance y from the centroidal axis $x y$
heas of the elementa strip $d m=\rho b t d y$
mass moment of inertial of the strip about axis $x x$ $=d m y^{2}=\rho b t y^{2} d y$
The moment of inertia for the entire mass of plate xals $x x$ can be worked out by integrating the above

$$
\begin{aligned}
t_{n u} & =\rho b t \int_{-\frac{d}{2}}^{\frac{4}{2}} y^{2} d y=\rho b t\left|\frac{y^{3}}{3}\right|_{-\frac{d}{2}}^{\frac{d}{2}} \\
& =\rho b t\left(\frac{d^{3}}{24}+\frac{d^{3}}{24}\right)=(\rho b t d) \times \frac{d^{2}}{12} \\
& =\frac{1}{12} M d^{2}
\end{aligned}
$$

Likewise the mass moment of inertia of the rectangular plate about the centroidal axcis $\frac{y}{}$ yis

$$
I_{v y}=\frac{1}{12} M b^{2}
$$

From perpendicular axis theorem, the moment of inertia about axis $z 7$ is $\quad-83_{3} 3$
From perpendicular axis theorem, the moment of inertia about avis $z z$ is

$$
I_{m i}=I_{x i x}+I_{y g}
$$

$$
\begin{equation*}
={ }_{12}^{1} M d^{2}+{ }_{12}^{1} M b^{2}={ }_{12}^{1} M\left(d^{2}+b^{2}\right) \tag{36}
\end{equation*}
$$

8.4.3. Triangular plate

Figure 8.35 shows a triangular plate of base width b, height h and uniform thickness t. If p is the density of the plate material, then
mass of the plate,
$M=$ density \times volume
= density \times (area \times thickness)

$$
=\rho \times \frac{1}{2} b h t
$$

Consider an elemental strip (assumed rectangle) of width l and depth dy located at distance y from the base line.

Fig. 8.35
mass of the elemental strip $d m=\rho / t d y$
mass moment of inertia of the strip about base

$$
=d m y^{2}=\rho l t y^{2} d y
$$

Since the integration is to be done with respect to y within the limits 0 to h, it is necssary b express I in terms of y. For that we have the following correlation from the similarity of triange $A D E$ and $A B C$.

$$
\frac{l}{b}=\begin{gathered}
h-y \\
h
\end{gathered}, \quad l=b_{h}^{h-y}
$$

\therefore mass moment of inertia of the triangular plate about base line

$$
\begin{aligned}
I_{\text {hase }} & =\int_{0}^{h} \rho b\left(\frac{h-y}{h}\right) t y^{2} d y \\
& =\frac{\rho b t}{h} \int_{0}^{h}(h-y) y^{2} d y
\end{aligned}
$$

$$
\begin{align*}
& =\frac{\rho b t}{h}\left|\frac{h y^{3}}{3}-\frac{y^{4}}{4}\right|_{0}^{h}=\frac{\rho b t}{h}\left(\frac{h^{4}}{3}-\frac{h^{4}}{4}\right)=\frac{\rho b t h^{3}}{12} \\
& =\frac{\rho b h t}{2} \times \frac{h^{2}}{6}=\frac{1}{6} M h^{2} \tag{8.25}
\end{align*}
$$

44.4. Circular lamina

Figure 8.36 shows a thin circular plate of radius R and uniform thickness t. If ρ is the density of plate material, then
mass of the plate $M=$ density \times volume
$=$ density $\times($ area \times thickness $)=\rho \pi R^{2} t$

Fig. 8.36
Consider an elementary ring of radius r and width $d r$
mass of elemental ring $d m=\rho\left[\pi(r+d r)^{2}-\pi r^{2}\right] f$

$$
=\rho(2 \pi r d r) t=2 \pi t \rho r d r
$$

Mass moment of inertia of this elementary ring about the polar axis $z z$

$$
=d m r^{2}=2 \pi t \rho r^{3} d r
$$

Mass moment of inertia of the circular plate about polar axds $2 x$

$$
\begin{align*}
& =2 \pi t \rho \int_{0}^{R} r^{3} d r=2 \pi t \rho\left|\frac{r^{4}}{4}\right|_{0}^{R} \\
& =\rho \pi R^{2} t \times \frac{R^{2}}{2}=\frac{1}{2} M R^{2} \tag{8.26}
\end{align*}
$$

where $M=\rho \pi R^{2} t$ is the mass of the circular lamina
Invoking the theorem of perpendicular axis, the mass moment of inertia of a circular lamina about $x x$ or $y y$ axis is

$$
\begin{equation*}
I_{x I}=I_{y y}=\frac{I_{z x}}{2}=\frac{1}{4} M R^{2} \tag{8.27}
\end{equation*}
$$

8.5.5 Solid sphere

Figure 8.37 shows a solid sphere of radius R with O as centre. If ρ is the density of the material

of the sphere, then

mass of the sphere $=$ density \times volume

$$
=\rho \times \frac{4}{3} \pi R^{3}
$$

Let attention be focussed on a thin disc $A B$ of
thickness $d x$ and at radius x from the centre.
radius of the disce $y=\sqrt{R^{2}-x^{2}}$
mass of the disc dm

$$
\begin{aligned}
& =\rho \times \pi y^{2} d x \\
& =\rho \pi\left(R^{2}-x^{2}\right) d x
\end{aligned}
$$

Mass moment of inertia of this elementary disc about the polar axis $2 z$

$$
\begin{aligned}
d i m y^{2} & =\rho \pi\left(R^{2}-x^{2}\right) d x \times\left(R^{2}-x^{2}\right) \\
& =\rho \pi\left(R^{2}-x^{2}\right)^{2} d x \\
& =\rho \pi\left(R^{4}+x^{4}-2 R^{2} x^{2}\right) d x
\end{aligned}
$$

The mass moment of inertia of the whole sphere can be worked out by integrating the above expression between the limits $-R$ to R.
\therefore Mass moment of inertia of the sphere about polar axis $2 z$

$$
\begin{align*}
& I_{z z}=\rho \pi \int_{-R}^{R}\left(R^{4}+x^{4}-2 R^{2} x^{2}\right) d x \\
& I_{x i}=\rho \pi\left|R^{4} x+\frac{x^{5}}{5}-2 R^{2} \frac{x^{3}}{3}\right|_{-R}^{R}=\frac{16 \rho \pi R^{5}}{15}=\frac{4}{5} M R^{2}
\end{align*}
$$

where $M=\frac{4}{3} \rho \pi R^{3}$ is the mass of the solid sphere
Invoking the theorem of perpendicular axis, the mass moment of inertia of a solid sphese about $x x$ or $y y$ axis is,

$$
I_{x y}=I_{y y}=\frac{I_{z t}}{2}=\frac{2}{5} M R^{2}
$$

4.4.6. Solid cylinder

Figure 8.38 shows a solid cylinder of radius R and height h. If ρ is the density of the material of the cylinder, then

$$
\text { mass of the cylinder }=\text { density } \times \text { volume }
$$

$$
M=\rho \times \pi R^{2} h
$$

Consider a thin disc of thickness dy located at distance y from the centroidal axis x.
mass of the elemental disc, $d m=\rho \times \pi R^{2} d y$
It may be recalled that mass moment of inertia of a circular lamina about its diametral axis is given by

$$
={ }_{4}^{1} M R^{2}
$$

\therefore mass moment of inertia of the elemental disc about its diameteral axis is

$$
I_{\operatorname{dat}}=\frac{1}{4} d m R^{2}
$$

Invaking parallel axis thourem, the mison moment of inertia of elemental disc about axis $x x$ is

$$
\begin{aligned}
I_{10} & =I_{d \omega}+\left(d m m y^{2}\right. \\
& =\frac{1}{4} d m R^{2}+d m y^{2} \\
& =\frac{1}{4}\left(\rho \pi R^{2} d y\right) R^{2}+\left(\rho \pi R^{2} d y\right) y^{2} \\
& =\frac{1}{4} \rho \pi R^{4} d y+\rho \pi R^{2} y^{2} d y
\end{aligned}
$$

The mass moment of inertia of the entire solid cylinder can be worked out by integrating the above expression between the limits $-\frac{h}{2}$ to $\frac{h}{2}$. Thus,

$$
\begin{aligned}
I_{x z} & =\frac{1}{4} \rho \pi R^{4} \int_{-\frac{h}{2}}^{\frac{\hbar}{3}} d y+\rho \pi R^{2} \int_{-\frac{h}{2}}^{\frac{h}{3}} y^{2} d y \\
& =\frac{1}{4} \rho \pi R^{4} h+\frac{1}{12} \rho \pi R^{2} h^{3} \\
& =\rho \pi R^{2} h\left(\frac{R^{2}}{4}+\frac{h^{2}}{12}\right)=M\left(\frac{R^{2}}{4}+\frac{h^{2}}{12}\right)=\frac{1}{12} M\left(3 R^{2}+h^{2}\right) \quad \ldots(8.29-a)
\end{aligned}
$$

where $M=\rho \pi R^{2} h$ is the mass of the cylinder.
Similarly

$$
\begin{align*}
& I_{y y}=\frac{1}{12} M\left(3 R^{2}+h^{2}\right) \\
& I_{z z}=I_{x z}+I_{y y}=\frac{1}{6} M\left(3 R^{2}+h^{2}\right)
\end{align*}
$$

and
Note: For a thin cylinder, $\mathrm{R}=0$. That gives:

$$
t_{z x}=t_{s y}={ }_{12}^{1} M h^{2}={ }_{12}^{1} M l^{2}
$$

For a thin disc, $h=0$. That gives

$$
I_{x x}=I_{y y}=\frac{1}{4} M R^{2} \text { and } I_{z x}={ }_{2}^{1} M R^{2}
$$

8.4.7. Right circular cone

Consider a solid cone of height h and radius R. If p is the density of the material of the cone, then
mass of the cone $M=$ density \times volume

$$
=\rho \times \frac{1}{3} \pi R^{2} h
$$

Consider an element of thickness dy and radius r at distance y from the apex A mass of the elemental strip, $d m=\rho \pi r^{2} d y$ mass moment of inertia of the elemental strip about axis yy
$=\frac{1}{2} \times$ mass moment of inertia about polar axis
$=\int_{2}^{1} d m r^{2}={ }_{2}^{1}\left(\rho \pi r^{2} d y\right) r^{2}$
$=\frac{1}{2} \rho \pi r^{4} d y$
Since the integration is to be done with respect to y within the limits 0 to h, it is necessary to express r in terms of y. For that we have the following correlation from the similarity of triangles $A D E$ and $A B C$

$$
\frac{r}{R}=\frac{y}{h^{\prime}}, r=R_{h}^{y}
$$

\therefore mass moment of inertia of the cone about axis yy

$$
\begin{aligned}
I_{y y} & =\int_{0}^{h} \frac{1}{2} \rho \pi\left(R \frac{y}{h}\right)^{4} d y \\
& =\frac{\rho \pi R^{4}}{2 h^{4}}\left|\frac{y^{5}}{5}\right|_{0}^{h}
\end{aligned}
$$

$$
\begin{equation*}
=\frac{\rho \pi R^{4} h}{10}=\frac{\rho \pi R^{2} h}{3} \times \frac{3}{10} R^{2}=\frac{3}{10} M R^{2} \tag{8.31}
\end{equation*}
$$

where $M=\frac{1}{3} \pi \rho R^{2} h$ is the mass of the right circular cone.
EXAMPLE 8.15
Would you imagine that the moment of inertia of the earth around its own axis is negligible fraction of moment of inertia about the axis of rotation around the sun? Take mean nadtus of the earth as 6,371 kw wh the mean radius of rotation around the sum as $149.7 \times 10^{6} \mathrm{~km}$.
Solution : (b) Moment of inertia of the earth about its axis,

$$
I_{1}=\frac{2}{5} M R^{2}=\frac{2}{5} M(6371)^{2}=16.23 \times 10^{6} M
$$

Moment of inertia of the earth about the axis of rotation around the sun,

$$
I_{2}=I_{1}+M d^{2}=16.23 \times 10^{6} M+M \times\left(149.7 \times 10^{6}\right)^{2}
$$

$=16.23 \times 10^{6} \mathrm{M}+22410.09 \times 10^{12} \mathrm{M}$
$=22410.09002 \times 10^{12} \mathrm{M}$

$$
\text { Ratio } \frac{I_{1}}{I_{2}}=\frac{16.23 \times 10^{6}}{22410.09002 \times 10^{12}}=7.24 \times 10^{-10}
$$

Since the ratio is negligible, the moment of inertia of the earth around its own axis can be invel to be a negligible fraction of its moment of inertia about the axis of rotation around the sun.

