Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Theory of Relativity

UNIT I

Relativistic Mechanics

Lecture-3

हमे हर वक्त ये एहसास दामनगीर रहता है

पडे है ढेर सारे काम और मोहलत जरा सी है

LORENTZ TRANSFORMATION EQUATIONS

- Using the postulates of special theory of relativity Lorentz derive the real relativistic transformation equations known as Lorentz transformation equations of space and time

LORENTZ TRANSFORMATION EQUATIONS CONTD...

- The measurement in the x-direction made in frame S is proportional to that made in frame S,

$$
x^{\prime}=k(x-v t)
$$

where k is the factor independent of x and t but may be the function of $\overrightarrow{\mathrm{v}}$

- On the basis of first postulate of special theory of relativity, we can write the same equation for x which can be determined in terms of x ' and t^{\prime}. Thus, we can write

$$
x=k\left(x^{\prime}-\left(-v t^{\prime}\right)\right)
$$

LORENTZ TRANSFORMATION EQUATIONS CONTD...

- Using the value of x ' we can find the value of t ' in terms of t, v and x

$$
t^{\prime}=\frac{\left(1-k^{2}\right)}{k v} x+k t
$$

- Let a light signal be given at the origin O at time $\mathrm{t}=\mathrm{t}^{\prime}=0$. The distance travelled by the signal in frames S and S^{\prime} can be given as follows:

```
In frame S,
\[
x=c t
\]
and in frame S',
\[
x^{\prime}=c t^{\prime}
\]
```


LORENTZ TRANSFORMATION EQUATIONS CONTD...

- Using the values of x^{\prime} and t^{\prime} we can write

$$
\begin{aligned}
& x^{\prime}=c\left\{\frac{\left(1-k^{2}\right) x}{k v}+k t\right\} \\
&=\frac{c\left(1-k^{2}\right) x}{k v}+c k t \\
& k(x-v t)=\frac{c\left(1-k^{2}\right) x}{k v}+c k t
\end{aligned}
$$

- Simplifying above equation and putting the value of x we get

LORENTZ TRANSFORMATION EQUATIONS CONTD...

- Putting the value of k in following equation

$$
t^{\prime}=\frac{\left(1-k^{2}\right)}{k v} x+k t
$$

- We get

$$
t^{\prime}=\frac{t-\frac{v x}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

$$
x^{\prime}=\frac{(x-v t)}{\sqrt{1-\frac{v^{2}}{c^{2}}}}, y^{\prime}=y, z^{\prime}=z, \text { and } \quad t^{\prime}=\frac{t-\frac{v x}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Inverse Lorentz Transformation Equations

- In this transformation frame S^{\prime} is static and S is moving in backward direction
- Thus the Inverse Lorentz transformations can be obtained by changing non dashed coordinates to dashed coordinate and replacing v by $-v$ in the Lorentz transformation equations.

$$
\begin{aligned}
& x=\frac{x^{\prime}+v t^{\prime}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& y=y^{\prime} \\
& z=z^{\prime} \\
& t=\frac{t^{\prime}+\frac{v x^{\prime}}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{aligned}
$$

Consequences of Lorentz Transformation Equations

Consequences of Lorentz Transformation Equations

Length
 Contraction

Length Contraction

$>$ Let us consider a rod of proper length l_{0} placed in a moving frame of reference and l is the length of rod observed by the observer being in stationary frame.

$$
\begin{aligned}
& l_{0}=x_{2}^{\prime}-x_{1}^{\prime} \\
& l=x_{2}-x_{1}
\end{aligned}
$$

$$
l=l_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}
$$

Length Contraction

man on rocket

Time $=t^{\prime}=t / k$
time=t
$\mathrm{L}=\mathrm{vt}$

Length $\left(L^{\prime}\right)=v t^{\prime}=v t / k=\quad L / k=\quad L \sqrt{1-\frac{v^{2}}{c^{2}}}$

Moving objects appear shorter

$$
\mathrm{L}=\mathrm{L}_{\mathrm{o}} /{ }_{\mathrm{T}}^{\mathrm{K}>1} \boldsymbol{\mathrm { L } < \mathrm { L } _ { \mathrm { o } }}<\substack{\text { Length measured when } \\ \text { object is at rest }}
$$

Length Contraction

Examples of Length contraction

- Due to the phenomenon of length contraction, a circle and a square in one frame of reference (stationary) appear to the observer in the other frame (moving) as ellipse and rectangle, respectively, as shown in following figure

Time Dilation

- According to the time dilation, if a clock at rest in the frame S 'measures the times $t^{\prime}{ }_{1}$ and $t^{\prime}{ }_{2}$ of two events occurring at a fixed position x ' in this frame, then the time interval between these events is known as proper time and is given as $\Delta t^{\prime}=t^{\prime}{ }_{2}-t^{\prime}{ }_{1}$
- If t_{1} and t_{2} are the times of same events recorded by a clock at rest in the frame S, then $\Delta t=t_{2}-t_{1}$
- Now the relation between Δt and Δt^{\prime} can be given as

$$
\Delta t=\frac{\Delta t^{\prime}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Light Clock

Sees from ground

Mythical Evidence (Age of Brahmaji)

- 1 DAY OF BRAHMA = 14 MANU's +15 Junction points $=14 \times 71 \times 4,320,000$ years+ $15 \times 1,728,000=4,294,080,000+25,920,000=4,320,000,000$ years $($ 4.32 billion)

LIFE OF BRAHMA
311.04 trillion years (36,000 kalpas [days of Brahma) and an equal number of nights)

Experimental verification of time dilation

- Experimentally, it is verified that the time dilation is a real effect.
- It can be justified by taking the example of meson decay.
- A μ-meson is an elementary particle whose mean lifetime is $2.2 \times 10^{-6} \mathrm{~s}$ in the frame in which it is at rest.
- Such meson particles have their speed $2.994 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
- These particles are created $8-10 \mathrm{~km}$ above the surface of the earth in the atmosphere by fast cosmic ray particles.

Experimental verification of time dilation

- When these particles travel with the velocity $2.994 \times 10^{8} \mathrm{~m} / \mathrm{s}$, then in time $2.2 \times 10^{-6} \mathrm{~s}$, they can travel a distance

$$
\begin{aligned}
2.994 \times 10^{8} \times 2.2 \times 10^{-6} & =6.5868 \times 10^{2} \mathrm{~m} \\
& =658 \mathrm{~m}
\end{aligned}
$$

Using the concept of time dilation for meson particles, the lifetime will be given as

$$
t=\frac{t_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{2.2 \times 10^{-6}}{\sqrt{1-\frac{\left(2.994 \times 10^{8}\right)^{2}}{\left(3 \times 10^{8}\right)^{2}}}}=34.8 \times 10^{-6} \mathrm{~s}
$$

- With this lifetime ($34.8 \times 10^{-6} \mathrm{~s}$), the μ-particles can travel a distance of $2.994 \times 10^{8} \mathrm{~m} / \mathrm{s} \mathrm{x} 34.8 \times 10^{-6} \mathrm{~s}=10.42 \mathrm{~km}$.

Madan Mohan Malaviya Univ. of Technology, Gorakhpur Conceptual Questions

Show that $x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ is invariant under the Lorentz transformation.

Show that the space-time interval between two events remains invariant under the Lorentz transformation.

Solution

We have to show that $x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ remains invariant, i.e., the form of expression remains as such in the inertial frames S and S^{\prime}.

From the inverse Lorentz transformation, we know that

$$
x=\frac{x^{\prime}+v t^{\prime}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}, y=y^{\prime}, z=z^{\prime}, \text { and } t=\frac{t^{\prime}+\frac{v x^{\prime}}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Using these values of coordinates in the given expression, we get

$$
\begin{aligned}
& \left(\frac{x^{\prime}+v t^{\prime}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}\right)^{2}+y^{\prime 2}+z^{\prime 2}-c^{2}\left[\frac{t^{\prime}+\frac{v x^{\prime}}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}\right]^{2} \\
& =y^{\prime 2}+z^{\prime 2}-\frac{1}{\left(1-\frac{v^{2}}{c^{2}}\right)}\left[c^{2} t^{\prime 2}+\frac{v^{2} x^{\prime 2}}{c^{2}}+2 v x^{\prime} t^{\prime}-x^{\prime 2}-2 v t^{\prime} x^{\prime}-v^{2} t^{\prime 2}\right] \\
& =y^{\prime 2}+z^{\prime 2}-\frac{1}{\left(1-\frac{v^{2}}{c^{2}}\right)}\left[-x^{\prime 2}+c^{2} t^{\prime 2}\right]\left(1-\frac{v^{2}}{c^{2}}\right) \\
& =x^{\prime 2}+y^{\prime 2}+z^{\prime 2}-c^{2} t^{\prime 2}
\end{aligned}
$$

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Conceptual Questions Contd...

Show that the circle $x^{2}+y^{2}=a^{2}$ in frame S appears to be an ellipse in frame S^{\prime} that is moving with velocity v relative to S.

Solution

In frame S, the equation of a circle in the stationary frame is

$$
x^{2}+y^{2}=a^{2}
$$

In frame S^{\prime},

$$
x^{\prime}=x \sqrt{1-\frac{v^{2}}{c^{2}}} \quad \text { (Using length contraction) }
$$

and

$$
y^{\prime}=y
$$

$$
\text { (because } S^{\prime} \text { is moving along + ve } x \text {-axis) }
$$

S^{\prime} frame, moving
with velocity v along + ve x-axis

Ellipse

Fig. Shape of a circle in moving frame
Substituting these values in the equation of circle, we get

$$
\frac{x^{\prime 2}}{a^{2}\left(1-\frac{v^{2}}{c^{2}}\right)}+\frac{y^{\prime 2}}{a^{2}}=1
$$

or

$$
\frac{x^{\prime 2}}{b^{2}}+\frac{y^{\prime 2}}{a^{2}}=1, \text { where } b^{2}=a^{2}\left(1-\frac{v^{2}}{c^{2}}\right)
$$

This is the equation of an ellipse.

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Conceptual Questions Contd...

A clock measures the proper time. With what velocity should it travel relative to an observer so that it appears to go slow by 30 s in 12 h .

$$
\begin{aligned}
& \text { Solution } \\
& \text { Let } t_{0} \text { be the proper time and } t \text { be the apparent time for the } \\
& \text { that the clock appears to go slow by } 30 \mathrm{~s} \text { in the moving frat } \\
& \text { the frame of reference where the clock appears to move. } \\
& \text { Now, from the expression of time dilation we can write } \\
& \qquad t=\frac{t_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& \qquad 12 \times 60 \times 60+30=\frac{12 \times 60 \times 60}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& \qquad \sqrt{1-\frac{v^{2}}{c^{2}}}=\frac{43200}{43230} \\
& \text { or }=0.999306 \\
& \text { or } 1-\frac{v^{2}}{c^{2}}=0.998612
\end{aligned}
$$

Let t_{0} be the proper time and t be the apparent time for the moving frame of reference. Here, it is given that the clock appears to go slow by 30 s in the moving frame. Hence, 12 h will appear as $12 \mathrm{~h}+30 \mathrm{~s}$ in

Assignment based on what we learnt in this lecture?

- Define length contraction and time dilation.
- Obtain the expression for the length contraction and time dilation.
- With suitable example show that time dilation is a real effect.
- Explain time dilation using the example of twin paradox.
- A clock keeps correct time. With what speed should it be moved relative to an observer so that it may appear to loose 4 \min in 24 h .

Numerical Questions

- The mean lifetime of a μ-meson when it is at rest is $2.2 \times 10^{-6} \mathrm{~s}$. Calculate the average distance it will travel in vacuum before decay if its velocity is 0.8 c .
- A rocketship is 100 m long on the ground. When it is in flight, its length is 99 m to an observer on the ground. What is its speed?
- Calculate the percentage contraction in the length of rod in a frame of reference moving with velocity 0.8 c in the direction parallel to its length.

