Subject NameADVANCE QUANTUM MECHANICS

Subject Code- MPM-221
 Teacher Name

Dr. Abhishek Kumar Gupta
Department of Physics and Material Science

Email: akgpms@mmmut.ac.in

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Syllabus??

Credit 04 (3-1-0)

MPM-221: ADVANCE QUANTUM MECHANICS

Unit I: Formulation of Relativistic Quantum Theory

Relativistic Notations, The Klein-Gordon equation, Physical interpretation, Probability current density \& Inadequacy of Klein-Gordon equation, Dirac relativistic equation \& Mathematical formulation, α and β matrices and related algebra, Properties of four matrices α and β, Matrix representation of $\alpha_{i}^{\prime s}$ and β, True continuity equation and interpretation.

Unit II: Covariance of Dirac Equation

Covariant form of Dirac equation, Dirac gamma (γ) matrices, Representation and properties, Trace identities, fifth gamma matrix γ^{5}, Solution of Dirac equation for free particle (Plane wave solution), Dirac spinor, Helicity operator, Explicit form, Negative energy states

Unit III: Field Quantization

Introduction to quantum field theory, Lagrangian field theory, Euler-Lagrange equations, Hamiltonian formalism, Quantized Lagrangian field theory, Canonical commutation relations, The Klein-Gordon field, Second quantization, Hamiltonian and Momentum, Normal ordering, Fock space, The complex Klein-Gordan field: complex scalar field

Unit IV: Approximate Methods

Time independent perturbation theory, The Variational method, Estimation of ground state energy, The Wentzel-KramersBrillouin (WKB) method, Validity of the WKB approximation, Time-Dependent Perturbation theory, Transition probability, Fermi-Golden Rule

Books \& References:
1: Advance Quantum Mechanics by J. J. Sakurai (Pearson Education India)
2: Relativistic Quantum Mechanics by James D. Bjorken and Sidney D. Drell (McGraw-Hill Book Company; New York, 1964).
3: An Introduction to Relativistic Quantum Field Theory by S.S. Schweber (Harper \& Row, New York, 1961).
4: Quantum Field Theory by F. Mandl \& G. Shaw (John Wiley and Sons Ltd, 1984)

Session 2020-21

Lectures of Unit- II

Covariance form of the Dirac Equation
Covaisen-e tome of the Abece
Equation:
quation:-

muetsty divac -q 2
$i \hbar \frac{\partial \psi}{\partial t}=\frac{t c}{i} \tau_{i} \frac{\partial y}{\partial x}+\psi^{2}=c^{2} \psi \rightarrow C$
equas forting.

$$
\text { y } \frac{\beta / 2}{} \text { e we will inpobul }
$$

$$
\begin{aligned}
& \text { a motiar } \\
& \qquad \gamma^{0}=p \quad \gamma^{3}=p \alpha, i=1,3 \\
& e \text { wes wet as fllowe: }
\end{aligned}
$$

$$
i \hbar \beta \frac{\partial \psi}{x(t)}=-i \hbar\left[\beta \beta_{n} \frac{\partial v}{\partial x^{x}}\right]+m c \psi
$$

$$
\left.\begin{array}{c}
i \hbar\left[\beta \frac{\partial \phi}{\partial x^{2}}+\beta \alpha, \frac{\partial \psi}{\partial x^{2}}+\beta \alpha_{2} \frac{\partial \psi}{\partial x^{2}}+\beta^{\alpha} \frac{\partial \alpha^{2}}{\partial x^{2}}\right] \\
-\left(x_{c} c\right) \psi=0
\end{array}\right]
$$

$$
-(x c) \psi=0
$$

$$
i \hbar\left[r^{0} \frac{\partial \varphi}{\partial x^{0}}+r^{4} \frac{\partial \psi}{\partial x^{1}}+r^{2} \frac{\partial \phi}{\partial x^{2}}+\frac{\left.\gamma^{3} \frac{\partial \psi}{\partial x^{3}}\right]}{}\right.
$$

$$
\operatorname{in} 0, \psi=0
$$

$$
i h\left[r^{0} \frac{\partial y}{\partial x^{0}}+\gamma^{k} \frac{\partial y}{\partial x^{k}}\right]-\left(x^{2}\right) \psi-0
$$

Covariance form of the Dirac Equation
In natural wits, the Dirac eqn una be written as

$$
\left(i r^{\mu} \partial_{\mu}-m\right) \begin{aligned}
& \psi=0 \\
& L \text { where } \psi \text { is a Vised } \\
& \text { spinor }
\end{aligned}
$$

In feynman notation, ne disc eft:

$$
(2 \phi-m) \psi=0)
$$

ψ is a multi-combenent object (Spinor).

$$
\bar{\psi}=\psi^{+} \gamma^{0} \text { takes care of } \bar{\gamma}^{+}=-\vec{\gamma}
$$

Eusefal in taking Hermitian conjugate of ole equation.

G ximua Matrices :-
It is important to realize in Dirace ean that, the wave funchizs (ψ) is now \&-combonent cotmin vector.
We wler now, introduce detail eprobertion, new matrices $\gamma \mu$. aljebrai of new matrices $\gamma \mu$.
Since. γ matrices are defined on:

$$
\gamma^{0}=\beta \quad \& \gamma^{\dot{j}}=\beta \alpha_{j} ; \dot{j}=1,2 \lambda
$$

f we have already ixtoduced that
wing pacll spin matrices, α if β matricesies ane

$$
\begin{array}{cc}
\text { defined cas }
\end{array} \alpha_{j}=\left(\begin{array}{cc}
0 & \sigma_{j} \\
\sigma_{j} & 0
\end{array}\right) \text { \& } \beta=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

where I donder unt 2×2 malrix \& Then the γ-matrices are.

$$
\begin{aligned}
V^{0} & =\beta=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) \\
\& \gamma^{\dot{j}} & =\beta \alpha_{j}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{j} \\
\sigma_{j} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \sigma_{j} \\
-\dot{\sigma j} & 0
\end{array}\right)
\end{aligned}
$$

e e
$\left\{r^{0}, r^{1}, r^{2}, r^{3}\right\}$ also hnoam a Divac matrices, ore a ret of conventronal matrices with specitic anti commutation rens

In Disece
Spinors facililitate shacethe combutations f are vey fundannowl to she Disac Eqre for relatinidicy Shin $\xlongequal[2]{ }$ toubeles.

In Dirac reproventadiong the for contravaiont gamma matices are:

$$
\left.\begin{array}{l}
\gamma_{0}^{0}=\left(\begin{array}{llll}
1 & & & \\
& & 1 & -1 \\
& & & -1
\end{array}\right)=\gamma^{1}=\left(\begin{array}{ccc}
& 1 & 1 \\
-1 & &
\end{array}\right) \\
\gamma^{2}=\left(\begin{array}{cccc}
0 & & & \\
0 & i & &
\end{array}\right), \gamma^{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
\end{array}\right)
$$

other three are space like matrices. (2) follown anti

Properties of Gamma Matrices
properties of Divas γ-matices
(I) V^{θ} is Hemiction while γ^{j} are antihemition oberator.

Prool: \rightarrow Since $2 j \& \beta$ both one
Rence.
$\because \gamma^{0}=\beta \rightarrow \gamma^{\circ}$ is Hemition oberact \& $\quad \vec{r}=\beta \alpha_{j}$

$$
\begin{aligned}
\vec{\gamma}=\beta \alpha_{j} & \left(\beta \alpha_{j}^{+}\right. \\
\Rightarrow\left(\gamma^{j}\right)^{+} & =(\beta)^{+} \\
& =\alpha_{j}^{+} \beta^{+} \\
& =2 j \beta \\
& =-\beta \beta_{j} \\
& =-\gamma^{j}
\end{aligned}
$$

$\Rightarrow \overrightarrow{\gamma^{\prime}}$ antikermition opentr.
(2) Anticommutation Property $=-$

$$
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} I
$$

$$
\text { or }\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 z^{\mu \nu} I
$$

where $j^{-n v}=\left(\begin{array}{ccc}1 & 0 & - \\ 0 & -i & -i \\ 0 & 0 & -i\end{array}\right)$
\& $\mathrm{J} \rightarrow 4 \times 4$ nit mortix)

$$
\begin{aligned}
& \ldots g_{00}=-g_{11}=-g_{22}=-g_{30}+1 \\
&-0 \text { tor } \mu \neq \nu
\end{aligned}
$$

$$
\sim g_{\mu \nu}=0 \text { for } \mu \neq \nu
$$

Properties of Gamma Matrices

Prof (xx)

$$
\begin{aligned}
& \gamma^{0} \gamma^{2}+\gamma^{\nu} \gamma^{0}, \nu \neq 0 \\
& r^{0} r^{2}+r^{2} r^{0}=0 \\
& \because \gamma^{\circ} \gamma^{\gamma}=\beta \alpha_{0}=\beta\left(-\alpha_{\gamma} \beta\right) \\
& \text { - }-\beta \alpha, \beta \\
& =-\gamma^{2} \beta \\
& =-\gamma^{2} \gamma^{0} \\
& \Rightarrow \sqrt{r^{0} r^{2}+r^{y} r^{0}}=0 \\
& \text { (ब) for } \mu \neq \nu \neq 0 \\
& \gamma^{\mu} \gamma^{\nu}=\left(\beta \alpha_{\mu}\right)\left(\beta \alpha_{\nu}\right) \\
& =\left(\beta \alpha_{\mu}\right)\left(-\alpha_{\nu} \beta\right) \\
& =-\beta\left(\alpha_{\mu} \alpha_{\nu}\right) \beta \\
& =\beta\left(\alpha_{\nu} \alpha_{\mu}\right) \beta \\
& =(\beta \alpha \nu)(2 \mu \beta) \\
& =-\gamma^{\nu} \gamma^{\mu} \\
& \Rightarrow \sqrt{\gamma^{\mu} \gamma^{\mu}+\gamma^{\nu} \gamma^{\mu}}=0
\end{aligned}
$$

(iii) for $\mu=v$

$$
\begin{aligned}
& \text { (iii) for } \mu=v \\
& \Rightarrow\left\{r^{\mu \nu} \nabla^{* v}\right\}=\left(r^{\mu}\right)^{2}+\left(r^{\mu}\right)^{2}
\end{aligned}
$$

 opecatr: $(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B)$
(2) $\operatorname{rr}(\operatorname{ra})=r \operatorname{tr}(A)$
(3) $\operatorname{Tr}(A B C)=\operatorname{Tr}(C+B)=\operatorname{Tr}(B C A)$
(3) Trace identities

The gamma matrices obey the following trace istentitias
(\&)(4)(4) $\operatorname{tr}_{\gamma}\left(\gamma^{\mu}\right)=0$

$$
\text { ne- } \gamma^{\mu \prime} \text { is are tracalesnmather }
$$

$$
\operatorname{Tr}\left(r^{*}\right)=\operatorname{Tr}(\beta)=\operatorname{Tr}\left(\begin{array}{ll}
1 & -1
\end{array}\right)
$$

$$
\operatorname{Tr}\left(\gamma^{\dot{2}}\right)=T_{\gamma}\left(\gamma^{i}-\gamma^{\circ} \gamma^{\circ}\right) \quad\left\{\because\left(r^{\circ}\right)^{2}=1\right.
$$

$$
=\operatorname{Tr}\left(\boldsymbol{v}^{0} v^{j} r^{o}\right)
$$

$$
\left\{\begin{array}{c}
\because \operatorname{Tr}(A B C)=\operatorname{Tr}(C A B) \\
=\operatorname{Tr}(B C A)
\end{array}\right.
$$

$$
\begin{array}{r}
-\operatorname{Tr}\left(v^{i} r^{0} r^{0}\right) \\
\text { (ansi }
\end{array}
$$

(cant conman)

$$
\Rightarrow \quad \operatorname{Tr}\left(\gamma^{i}\right)=0
$$

Sun (3) 2 (5)
$\Rightarrow \quad \operatorname{tr}\left(r^{\mu}\right)=0$

$$
\begin{aligned}
& \text { (3) square of } \gamma \text {-matrices: } \\
& \left(\gamma^{0}\right)^{2}=p^{2}=1 \\
& \left(\gamma^{i}\right)^{2}=\gamma^{i} \gamma^{i} \\
& =(\beta 2 ;)(\beta i) \\
& -(\alpha ; \beta)\left(\beta^{2 i}\right)=-\alpha i r^{2} 2 ; \\
& =-(\alpha ;)^{2}=-1 \\
& \Rightarrow \sqrt{\left(\gamma^{j}\right)^{2}=-1}
\end{aligned}
$$

Properties of Gamma Matrices
More bace identitios
(3)

$$
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu}
$$

Prif: -

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=\frac{1}{2}\left[\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)+\operatorname{Tr}\left(\gamma^{\gamma} \gamma^{\mu}\right)\right] \\
& =\frac{1}{2} \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\gamma} \gamma^{\mu}\right) \\
& =\frac{1}{2} \operatorname{Tr}\left(\left\{\gamma^{\mu}, \gamma^{\nu}\right\}\right) \\
& =\frac{1}{2} \operatorname{Tr}\left(2 g^{\mu \nu} I\right) \\
& =\frac{1}{2} \times 2 g^{\mu \nu} \quad \operatorname{Tr}(I) \\
& =4 g^{\mu \nu} \quad\left\{\because \quad 4=\begin{array}{c}
4 \times \mu \text { unct }
\end{array}\right\} .
\end{aligned}
$$

Properties of Gamma Matrices

It is usetue t defin the produd
\& a gamuar notrices an tollows:

$$
\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

γ^{5} has arso an alternative frue

$$
\sqrt{\gamma^{5}=\frac{a^{2}}{4!} \text { Eerxep } \gamma^{\mu} \gamma^{\prime} \gamma^{\alpha} \gamma^{F}} \text { Some prhertice are of } \gamma^{5} \text { are: }
$$

$$
\left(r^{5}\right)^{7}=r^{5}
$$

it eirgenvalues one ± 1 beca-

$$
\left(\gamma^{5}\right)^{2}=I_{4}=1
$$

it anticommute in the 4 gas
wabrices:

$$
\left\{\gamma^{5} \gamma^{\mu}\right\}=\gamma^{5} \gamma^{\mu}+\gamma^{\mu} \gamma^{5}=0
$$

The arove Diracematrices can be custiten in termin of birac bais. Dirac bowin is defined by tollowg

$$
\gamma^{0}=\left(\begin{array}{ll}
J & 0 \\
0 & -1
\end{array}\right)=\beta \& \overrightarrow{2}=\left(\begin{array}{ll}
0 & \overrightarrow{0} \\
0
\end{array}\right)
$$

$$
\gamma^{k}=\left(\begin{array}{ccc}
0 & \sigma & k \\
0_{0} & 0
\end{array}\right), \begin{aligned}
& \text { Wher } k=1 \rightarrow 03 \\
& k \sigma_{p} \text { ane mataica. }
\end{aligned}
$$

$$
\gamma^{5}=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)
$$

$$
\left\{\begin{array}{l}
\text { where; }\left(\begin{array}{ll}
0 & 1 \\
\sigma_{1} & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \\
\sigma_{3}=\left(\begin{array}{c}
1 \\
0
\end{array}\right.
\end{array}\right\}\left\{\begin{array}{l}
\text { satishone sein} \\
\frac{\sigma i}{} \sigma_{j}=\delta_{i j}+i \varepsilon_{i j k} \sigma_{k}
\end{array}\right\}
$$

Properties of Gamma Matrices
(i) Trace of γ^{5} :
(1.) Trace of $\gamma^{5}=0$

Prot :-

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{5}\right)=\operatorname{Tr}\left(\gamma^{0} \gamma^{0} \gamma^{5}\right) \\
& \because \gamma^{\circ} \gamma^{0}=1 \\
& =-\operatorname{tr}\left(r^{0} \gamma^{5} r^{0}\right) \\
& \left\{\begin{array}{l}
\text { anti commute } \\
r^{s} \text { init } r
\end{array}\right\} \\
& \left.r^{s} \text { win } r \cdot\right\} \\
& =-\operatorname{tr}\left(r^{0} r^{0} r^{5}\right) \\
& \operatorname{ar}(\mathrm{MCC})=\operatorname{sr}(\operatorname{CAB} B) \\
& =-\operatorname{tr}\left(r^{5}\right) \\
& \Rightarrow \quad 2 \operatorname{tr}\left(r^{5}\right)=0 \\
& \Rightarrow \quad \operatorname{tr}\left(r^{5}\right)=0
\end{aligned}
$$

similaney, we can Now ont

$$
\operatorname{tr}\left(r^{\mu} \gamma^{\nu} \gamma^{5}\right)=0
$$

pe. Pace 1 odd no. of γ is ser. Ir $\left(\gamma^{\mu}\right)=0$

Tr $($ odd $x \cos r)=0$

Solution of Dirac Equation for free particles: Plane wave solution

Solution of Dirac Equation for free particles: Continue...

$$
\begin{aligned}
& \Rightarrow \quad\left(p^{2}-m^{2}\right)^{2}=0 \\
& \Rightarrow \quad p^{2}=m^{2} \\
& \Rightarrow \quad p_{0}^{2}-\vec{p}^{2}=m^{2} \\
& \text { on } \quad p_{0}^{2}=\vec{p}^{2}+m^{2}
\end{aligned}
$$

$$
\text { or, } p_{0}= \pm E(\bar{p}) \text { (in national, }
$$

$\left\{\because \quad E(\vec{p})=\sqrt{\vec{p}^{2}+w^{2}}\right\}-(5)$
\Rightarrow there exists two solution $u+(\bar{p}) \& \quad u-(\vec{F})$ corrospudy to two values of eneray $+E(\vec{p}) \&-E(\vec{p})$ respatimes.

- Let us suppose surat $u_{+}(\vec{P})$ is a solution for $p_{0}=+E(\bar{p})=\sqrt{\bar{p}^{2} \tan 2}$
so that $u+(\vec{p})$ satisfied me bine eq.,

$$
\Rightarrow \quad 1(\bar{\alpha} \cdot \bar{p}+\beta m) u_{+}(\bar{p})=E(\bar{p}) u_{+}(\bar{p})
$$

Let us write
$u_{+}=\binom{u_{1}}{u_{2}}$, where $u_{1} 4 u_{2}$ with
have two camperents and adobe The value of $\stackrel{\text { mower }}{\alpha} \& \beta$ as:

$$
\vec{\alpha}=\left(\begin{array}{ll}
0 & F \\
\frac{\sigma}{\sigma} & 0
\end{array}\right) \& \beta=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

Hence eq x written a.
$\left.\left.\left[\left(\begin{array}{cc}0 & \sigma \\ \sigma & 0\end{array}\right) \vec{p}+\left(\begin{array}{cc}J & 0 \\ 0 & -I\end{array}\right) m\right]\binom{u_{1}}{u_{2}} \overline{E(P)}(\vec{P})^{E(P)} \right\rvert\, \begin{array}{l}u_{1} \\ u_{2}\end{array}\right)$

$$
\begin{array}{r}
\left.\Rightarrow\left[\begin{array}{cc}
0 & \bar{\sigma} \cdot p \\
\bar{\sigma} \cdot p & 0
\end{array}\right)+\left(\begin{array}{cc}
m & 0 \\
0 & -m
\end{array}\right)\right]\binom{u_{1}}{u_{2}} \\
\\
=\binom{E(\bar{p}) u_{1}}{E(\bar{p}) u_{2}}
\end{array}
$$

$$
\rightarrow\left(\begin{array}{cc}
m & \bar{\sigma} \cdot \vec{p} \\
\bar{\sigma} \cdot \bar{p} & -m
\end{array}\right)\binom{u_{1}}{u_{2}}=\left(\begin{array}{ll}
E(\bar{p}) & u_{1} \\
E(\bar{p}) & u_{2}
\end{array}\right)
$$

Solution of Dirac Equation for free particles: Continue

Solution of Dirac Equation for free particles: Continue

To add the contribution of spin of the partice parrallel to the disectian 4 onotion, we wiel atro check same what differectay how the opeuts comesheandito to spin 1 particle (re. Helicity ovenant $s(\bar{p})$ or simkly the helicity If the pautile behave work.. Hamiltomian orenator

$$
\bar{H}=c \bar{\alpha} \cdot \bar{p}+\beta m c^{2} .
$$

we usel find the , the randetonian opendtr commutes जith $\$(\bar{P})$ where.

$$
\text { i. } s(\bar{P})=\frac{\sum \cdot \bar{p}}{|\bar{P}|} \text {, winere } \bar{\Sigma}=\left(\begin{array}{l}
\bar{\sigma} \\
0 \\
0
\end{array}\right)
$$

is a helicity opevator or siukes heteciby g the pathile; \& paprically it correspands to the stin of the partide parrallel to the direchion of motim:

$$
s(\bar{r})=\bar{z} \cdot \hat{n} \text {, wh } \hat{n}=\frac{\bar{p}}{|\bar{r}|}
$$

Hoco, here we coill mention done
propenties of $S(T)$ and we will show that $=$ since ..
(1) $S(V)$ comulte inth \vec{H} obeutm

$$
\text { ve }[s(\vec{y}), x]=0 \text { \& }
$$

(III) $s^{2}(\bar{p})=1$ \& (IIIDignean values

$$
\text { of } s(\bar{p})= \pm 1
$$

hence the solutions A the Disac eq^{m} can be thenefore chosen to be simuetaneous eagen tructions of \bar{H} \& $S(\bar{P})$.
\& also since $\varepsilon v^{\prime} s f(F)= \pm 1$,
\therefore for a given monentan \& sign of she cheral, the solutions can therefore be clainfied accosding to the einenvalues (EU'S) +1 or -1 of $\delta(\bar{p})$.

- Thenetore, the enesyolns can be clamify accoxding to eizen values of Helicity opertor. .e. for a siven $\bar{p} L+E, S(\bar{p})= \pm 1$.

$u_{+}^{+} \rightarrow$ eneroy	$+E$	+1
u_{+}	$+E$	-1

Solution of Dirac Equation for free particles: Continue

Solution of Dirac Equation for free particles: Continue

Explicite fro of two linearly inderendant solution :

An explicit form for two linearly independent sols for the energy $\&$ momention \bar{P} is given by.

$$
u_{+}^{(2)}(\bar{p})=N(\bar{r})\left[\begin{array}{c}
\binom{0}{1} \\
\frac{\bar{\sigma} \cdot \bar{p}}{E(\bar{p})+m}\binom{0}{1}
\end{array}\right]
$$

where $N(\bar{p})$ is normali zation. constant determine b) the requirement hat :-

$$
u^{*} u=1
$$

use $13 a$ in this condor

$$
\begin{aligned}
& u^{x} u=1 \\
& \Rightarrow \quad N^{2}(p)\left[\begin{array}{lll}
1 & 0 & \frac{\bar{\sigma} \bar{p}}{E(\bar{p})+m}
\end{array} 0\left[\begin{array}{c}
1 \\
0 \\
\frac{\bar{\sigma} p}{\overline{F(k)+m}} 0
\end{array}\right]=1\right.
\end{aligned}
$$

$$
\Rightarrow N^{2}(p)\left(1+0+\frac{(\bar{\sigma} \bar{p})^{2}}{[E(r)+w]^{2}}+0\right)=1
$$

$$
\Rightarrow \quad N^{2}(r)\left[1+\frac{\bar{p}^{2}}{(\mathbb{E}+m)^{2}}\right]=1 .
$$

$$
\left[\because(\bar{\sigma} \cdot \bar{p})^{2}=\bar{p}^{2}\right]
$$

$$
\Rightarrow \quad N^{2}(r)\left[1+\frac{E^{2}-m^{2}}{E+m y^{2}}\right]=1
$$

$$
\left\{\begin{array}{l}
\therefore E^{2}=\bar{b}^{2}+m^{2} \\
\Rightarrow b^{2}=E^{2}-m^{2}
\end{array}\right\}
$$

$$
\Rightarrow \quad N^{2}(r)\left[\frac{E+m+E-m}{E+m}\right]=1
$$

$$
\Rightarrow \quad N^{2}(r)\left(\frac{2 E}{E+m}\right)=1
$$

$$
\left.\Rightarrow N^{2}(r)\left(\frac{E+m}{2 E}\right)^{m}-(r)=\sqrt{2 \pi}\right)
$$

put this in $13 a=\triangle 113 b$ set the, explicit form two linearly sadependert solis or the energy \& momertion \bar{p}. (Put \& $\&$ ind of may Woken that these two solutions 132 * (136) are orthogonal to each other, $2 e$.,

$$
u_{+}^{(r)^{x}}(r) u_{+}^{(s)}(p)=\delta_{r s}, \quad r, s=1,2
$$

Solution of Dirac Equation for free particles: Continue

The above soms $(13 a<13 b)$ are not eigenfunctions of $S(b)$. Positine energy soms. comespoudy to dofinite helicidy are obtaind by th mofing that corsidesing the eigenvalue $e q^{n}$ as follous:

$$
s(\bar{p}) u_{+}^{(\pm)}(\bar{p})= \pm u_{+}^{(\pm)}(\bar{p}) \longrightarrow 16
$$

In ean (16) Pat followings:.
(1) $s(\bar{F})=\frac{\bar{\sum} \cdot \bar{r}}{|\bar{p}|}=\sum \cdot \frac{\bar{p}}{|\bar{p}|}=\overline{\sum n}=\left(\begin{array}{cc}\bar{\sigma} \cdot \bar{n} & 0 \\ 0 & \bar{\sigma} \cdot \dot{n}\end{array}\right.$
$\rightarrow 17$
where \bar{x} is the unit veet in the diret ${ }^{\text {w }}$

$$
\text { of } \vec{p} \quad \& \quad \bar{n}=\frac{\bar{p}}{|\bar{p}|}
$$

(fi)

$$
\left.\begin{array}{l}
=\binom{u_{1}^{(\pm)}}{|\bar{p}| \frac{\bar{\sigma} \bar{n}}{E+m} u_{1}^{(t)}}\left\{\text { whare } \frac{\overline{E+i n}}{\bar{E}+m} u_{1}^{(t)}=u_{2}^{(\pm)}\right.
\end{array}\right\}
$$

Sohere. $u_{1}^{(\pm)}$\& $u_{2}^{(t)}$ are ohe lepter 2 lower componart respectively of

Let us first soluc ean val for twe helicixy only, Dhener evaluating aly for v_{1}.
$\therefore 19 a$ becares

$$
\left(\frac{19 a}{\sigma}, \bar{r}\right) u_{+1}^{+1}=+u_{1}^{+1}
$$

put here: \rightarrow calli"vatio

$$
\bar{\sigma} \cdot \bar{n}=\sigma_{1} n_{1}+\sigma_{2} n_{2}+r_{3} n_{3}
$$

$$
\begin{aligned}
& =\bar{n}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) n_{1}+\left(\begin{array}{cc}
0 & -i \\
; & 0
\end{array}\right) n_{2}+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) n_{3} \\
& =
\end{aligned}
$$

$$
=\left(\begin{array}{ll}
\infty & n_{1} \\
n_{1} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & -i n_{2} \\
\operatorname{en} 2 & 0
\end{array}\right)+\left(\begin{array}{cc}
n_{3} & 0 \\
0 & -n_{3}
\end{array}\right)
$$

$$
-\left[\begin{array}{ll}
\left(n_{3}\right) & \left(n_{1}-i n_{2}\right) \\
\left(n_{1}+i m_{2}\right. & -n_{3}
\end{array}\right]-22 a
$$

\& also liet us chorse

$$
u_{1}(t)=\binom{A}{B} \rightarrow 22 b
$$

Where $A \& \&$ are contarts need to be deternined here.
put $[22 \& 8$ \& in 21 \& we get

Solution of Dirac Equation for free particles: Continue

Solution of Dirac Equation for free particles: Continue

So, for a given momentum these cue 4 -linearly independed som tor Dirac equation. These are chasecterijed by

$$
\pm E(p) \quad \& \quad s(p)= \pm 1
$$

Dirac quatio ,

2

Schrödinger - Klein-Gordon - Dirac

Quantum mechanical E \& \boldsymbol{p} operators: $\left[\begin{array}{ll}\mathrm{E}=i \frac{\partial}{\partial t} \\ \vec{p}=-i \vec{\nabla} & \begin{array}{l}\boldsymbol{p}^{\mu}=(E, \vec{p}) \\ \rightarrow i \partial^{\mu}=i\left(\frac{\partial}{\partial t^{\prime}},-\vec{V}\right)\end{array}\end{array}\right.$
You simply 'derive' the Schrödinger equation from classical mechanics:

$$
\mathrm{E}=\frac{\boldsymbol{p}^{2}}{2 m} \rightarrow i \frac{\partial}{\partial t} \phi=-\frac{1}{2 m} \nabla^{2} \phi
$$

Schrödinger equation

With the relativistic relation between $E, p \& m$ you get:
$E^{2}=\boldsymbol{p}^{2}+m^{2} \rightarrow \frac{\partial^{2}}{\partial t^{2}} \phi=\nabla^{2} \phi-m^{2} \phi$
The negative energy solutions led Dirac to try an equation with first order derivatives in time (like Schrödinger) as well as in space

$$
i \frac{\partial}{\partial t} \phi=-i \vec{\alpha} \cdot \vec{\nabla} \phi+\beta m \phi
$$

Does it make sense?

Also Dirac equation should reflect: $\quad E^{2}=\overrightarrow{\boldsymbol{p}}^{2}+\boldsymbol{m}^{2}$

Basically squaring: $\boldsymbol{i} \frac{\boldsymbol{\partial}}{\boldsymbol{\partial} \boldsymbol{t}} \phi=-\boldsymbol{i} \vec{\alpha} \cdot \overrightarrow{\boldsymbol{\nabla}} \phi+\beta \boldsymbol{m} \phi=\vec{\alpha} \cdot \overrightarrow{\boldsymbol{p}} \phi+\beta \boldsymbol{m} \phi$
Tells you:

$$
\begin{aligned}
\underbrace{(\vec{\alpha} \cdot \vec{p}+\beta m c)^{2}=} & \left(\alpha_{i} p_{i}+\beta m c\right)\left(\alpha_{j} p_{j}+\beta m c\right) \\
= & \beta^{2} m^{2} c^{2} \longrightarrow \\
& +\sum_{i}\left[\alpha_{i}^{2} p_{i}^{2}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) p_{i} m c\right] \longrightarrow
\end{aligned} \begin{aligned}
& \beta_{i}^{2}=1 \\
& \mathbf{E}^{2}=1
\end{aligned}
$$

Properties of α_{i} and β

β and α can not be simple commuting numbers, but must be matrices

Because $\beta^{2}=\alpha_{i}{ }^{2}=1$, both β and α must have eigenvalues ± 1
Since the eigenvalues are real (± 1), both β and α must be Hermitean

$$
\alpha_{i}^{\dagger}=\alpha_{i} \quad \text { en } \quad \beta^{\dagger}=\beta
$$

$$
A_{i j} B_{j k} C_{k i}=C_{k i} A_{i j} B_{j k}=B_{j k} C_{k i} A_{i j}
$$

Both β and α must be traceless matrices: $\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)=\operatorname{Tr}(B C A)$

anti

$$
\beta^{2}=1 \quad \text { cyclic } \quad \text { commutation } \quad \beta^{2}=1
$$

$\operatorname{Tr}\left(\alpha_{i}\right)=\operatorname{Tr}\left(\alpha_{i} \beta \beta\right)=\operatorname{Tr}\left(\beta \alpha_{i} \beta\right)=-\operatorname{Tr}\left(\alpha_{i} \beta \beta\right)=-\operatorname{Tr}\left(\alpha_{i}\right)$ and hence $\operatorname{Tr}\left(\alpha_{i}\right)=0$
You can easily show the dimension d of the matrices β, α to be even:
either: $i \neq j:\left|\alpha_{i} \alpha_{j}\right|=\left|-\alpha_{j} \alpha_{i}\right|=(-1)^{d}\left|\alpha_{j} \alpha_{i}\right|= \begin{cases}-\left|\alpha_{i} \alpha_{j}\right|, & \text { d odd } \\ +\left|\alpha_{i} \alpha_{j}\right|, & \text { d even }\end{cases}$ or: with eigenvalues ± 1, matrices are only traceless in even dimensions

Explicit expressions for α_{i} and β

In 2 dimensions, you find at most 3 anti-commuting matrices, Pauli spin matrices:

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

In 4 dimensions, you can find 4 anti-commuting matrices, numerous possibilities, Dirac-Pauli representation:

$$
\beta=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad \alpha_{k}=\left(\begin{array}{lr}
0 & \sigma_{k} \\
\sigma_{k} & 0
\end{array}\right)
$$

$\beta=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right) \quad \alpha_{1}=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right) \quad \alpha_{2}=\left(\begin{array}{cccc}0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0\end{array}\right) \quad \alpha_{3}=\left(\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right)$
Any other set of 4 anti-commutating matrices will give same physics
(if the Dirac equation is to make any sense at all of course and ... if it would not: we would not be discussing it here!)

Co-variant form: Dirac γ-matrices

$i \frac{\partial}{\partial t} \phi=-i \vec{\alpha} \cdot \vec{\nabla} \phi+\beta m \phi$ does not look that Lorentz invariant
Multiplying on the left with β and collecting all the derivatives gives:

$$
m \phi=i \beta \frac{\partial}{\partial t} \phi+i \beta \vec{\alpha} \cdot \vec{\nabla} \phi \equiv i \gamma^{\mu} \partial_{\mu} \phi \quad \text { note: } \partial_{\mu}=\left(\partial_{t},+\vec{\nabla}\right)
$$

Hereby, the Dirac γ-matrices are defined as:

$$
\gamma^{0} \equiv \beta=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad \gamma^{k} \equiv \beta \alpha_{k}=\left(\begin{array}{cc}
0 & \sigma_{k} \\
-\sigma_{k} & 0
\end{array}\right)
$$

And you can verify that: $\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}$
$\begin{array}{rrr}\text { As well as: } \begin{aligned}\left(\gamma^{0}\right)^{2} & =+1 \\ \left(\gamma^{k}\right)^{2} & =-1\end{aligned} & \text { and: } \begin{aligned} \gamma^{0 \dagger} & =+\gamma^{0} \\ \gamma^{k \dagger} & =-\gamma^{k}\end{aligned} \rightarrow \gamma^{\mu+}=\gamma^{0} \boldsymbol{\gamma}^{\mu} \boldsymbol{\gamma}^{\mathbf{0}}\end{array}$

Co-variant form: Dirac γ-matrices

$\beta=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right) \quad \alpha_{1}=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right) \alpha_{2}=\left(\begin{array}{rrrr}0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0\end{array}\right) \quad \alpha_{3}=\left(\begin{array}{rrrrr}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right)$
$\boldsymbol{m} \phi=\boldsymbol{i} \gamma^{\mu} \boldsymbol{\partial}_{\mu} \phi$ with the Dirac γ-matrices defined as:

$$
\gamma^{0} \equiv \beta=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad \gamma^{k} \equiv \beta \alpha_{k}=\left(\begin{array}{cc}
0 & \sigma_{k} \\
-\sigma_{k} & 0
\end{array}\right)
$$

$$
\begin{aligned}
\gamma^{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) & \gamma^{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) \\
\gamma^{2}=\left(\begin{array}{cccc}
\mathbf{0} & \mathbf{0} & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right) & \gamma^{3}=\left(\begin{array}{cccc}
\mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Warning!

This $m \phi=i \gamma^{\mu} \partial_{\mu} \phi$ notation is misleading, γ^{μ} is not a 4-vector! The γ^{μ} are just a set of four 4×4 matrices, which do no not transform at all i.e. in every frame they are the same, despite the μ-index.

The Dirac wave-functions (ϕ or ψ), so-called 'spinors' have interesting Lorentz transformation properties which we will discuss shortly. After that it will become clear why the notation with γ^{μ} is usefu!!
\& beautifu!!
To make things even worse, we define: $\left\{\begin{array}{l}\gamma_{0}=+\gamma^{0} \\ \gamma_{k}=-\gamma^{k}\end{array}\right.$

Spinors \& (Dirac) matrices

$$
\boldsymbol{\phi}=\left(\begin{array}{l}
* \\
* \\
* \\
*
\end{array}\right) \quad \boldsymbol{\phi}^{+}=\left(\begin{array}{llll}
* & * & * & *
\end{array}\right) \quad \boldsymbol{\gamma}^{\mu}=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right)
$$

$$
\begin{aligned}
& \boldsymbol{\gamma}^{\mu} \boldsymbol{\phi}=\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right) \times\left(\begin{array}{l}
* \\
* \\
* \\
* \\
*
\end{array}\right)=\left(\begin{array}{l}
* \\
* \\
* \\
*
\end{array}\right) \quad \boldsymbol{r}^{\mu} \boldsymbol{\phi}^{+}=\left(\begin{array}{ccccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right) \times(* * * * * N
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\phi}^{+} \boldsymbol{\phi}=\left(\begin{array}{llll}
* & * & * & *
\end{array}\right) \times\left(\begin{array}{l}
* \\
* \\
* \\
*
\end{array}\right)=\left(\begin{array}{lll}
*
\end{array}\right) \quad \phi \phi^{+}=\left(\begin{array}{l}
* \\
* \\
* \\
*
\end{array}\right) \times\left(\begin{array}{lllll}
* & * & * & *
\end{array}\right)=\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right)
\end{aligned}
$$

Dirac current \& probability densities

 Proceed analogously to Schrödinger \& Klein-Gordon equations, but with Hermitean instead of complex conjugate wave-functions:$$
\begin{array}{rlrl}
0 & = & -i \hbar \partial_{\mu} \psi^{\dagger} \gamma^{\mu \dagger}-m c \psi^{\dagger} & \leftarrow \\
& =-i \hbar \partial_{0} \psi^{\dagger} \gamma^{0}+i \hbar \partial_{k} \psi^{\dagger} \gamma^{k}-m c \psi^{\dagger} \\
& \longrightarrow-i \hbar \partial_{0} \psi^{\dagger} \gamma^{0} \gamma^{0}+i \hbar \partial_{k} \psi^{\dagger} \gamma^{k} \gamma^{0}-m c \psi^{\dagger} \gamma^{0} \\
& =-i \hbar \partial_{0} \psi^{\dagger} \gamma^{0} \gamma^{0}-i \hbar \partial_{k} \psi^{\dagger} \gamma^{0} \gamma^{k}-m c \psi^{\dagger} \gamma^{0} \\
& =-i \hbar \partial_{\mu} \psi^{\dagger} \gamma^{0} \gamma^{\mu}-m c \psi^{\dagger} \gamma^{0} \\
\left(\bar{\psi} \equiv \psi^{\dagger} \gamma^{0}\right) & \longrightarrow-i \hbar \partial_{\mu} \bar{\psi} \gamma^{\mu}-m c \bar{\psi} \\
\text { Dirac equations for } \bar{\psi} \& \psi:\{\longrightarrow \bar{\psi})
\end{array}
$$

Add these two equations to get:
Conserved 4-current: $\quad 0=i \hbar\left(\partial_{\mu} \bar{\psi}\right) \gamma^{\mu} \psi+i \hbar \bar{\psi} \gamma^{\mu}\left(\partial_{\mu} \psi\right)=i \hbar \partial_{\mu}\left[\bar{\psi} \gamma^{\mu} \psi\right]$

$$
j^{\mu}=\bar{\psi} \gamma^{\mu} \psi\left\{\begin{array}{l}
j^{0}=\bar{\psi} \gamma^{0} \psi=\left|\psi_{0}\right|^{2}+\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}+\left|\psi_{3}\right|^{2} \geq 0 \\
j^{k}=\bar{\psi} \gamma^{k} \psi \quad \text { (exactly what Dirac aimed to achieve } \ldots \text {) }
\end{array}\right.
$$

Solutions: particles @ rest $\overrightarrow{\boldsymbol{p}}=\overrightarrow{\mathbf{0}}$

Dirac equation for $\vec{p}=\overrightarrow{0}$ is simple: $i \hbar \gamma^{0} \partial_{0} \psi-m c \psi=0$
Solve by splitting 4-component in two 2-components: $\psi=\binom{\psi_{A}}{\psi_{B}}$ with $\left.\partial_{0} \equiv 1 / c\right) \partial_{t}$ follows: $\quad\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)\binom{\partial \psi_{A} / \partial_{t}}{\partial \psi_{B} / \partial_{t}}=-\frac{i m c^{2}}{\hbar}\binom{\psi_{A}}{\psi_{B}}$
solutions:

$$
\psi^{(1)} \propto e^{-\frac{i m c^{2}}{\hbar} t}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \psi^{\psi^{(2)}} \propto e^{-\frac{i m c^{2}}{\hbar} t}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

$$
\left.\psi^{(3)} \propto e^{+\frac{i m^{2}{ }^{2}}{\hbar} t}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)\right\rangle_{\psi}
$$

$$
\psi_{\psi^{(4)}} \propto e^{+\frac{i m c^{2}}{\hbar} t}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

Solutions: moving particles $\overrightarrow{\boldsymbol{p}} \neq \overrightarrow{\mathbf{0}}$

 Dirac equation for $\vec{p} \neq \overrightarrow{\mathbf{0}}$ less simple: $\quad i \hbar \gamma^{\mu} \partial_{\mu} \psi-m c \psi=0$ Anticipate plane-waves: $\quad \psi=u(p) e^{-\frac{i}{\hbar}(E t-\vec{p} \cdot \vec{x})}=u(p) e^{-\frac{i}{\hbar} p \cdot x}$And again anticipate two 2-components: $\quad u(p)=\binom{u_{A}(p)}{u_{B}(p)}$
Plugging this in gives: $\quad 0=\left(\gamma^{\mu} p_{\mu}-m c\right) u(p)=\left(\gamma^{0} p_{0}-\gamma^{k} p_{k}-m c\right) u(p)$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
E / c-m c & -\vec{p} \cdot \vec{\sigma} \\
\vec{p} \cdot \vec{\sigma} & -E / c-m c
\end{array}\right)\binom{u_{A}(p)}{u_{B}(p)} \\
& =\binom{(E / c-m c) u_{A}(p)-\vec{p} \cdot \vec{\sigma} u_{B}(p)}{\vec{p} \cdot \vec{\sigma} u_{A}(p)-(E / c+m c) u_{B}(p)} \\
& \Rightarrow\left\{\begin{array}{l}
u_{A}(p)=\frac{c}{E-m c^{2}}(\vec{p} \cdot \vec{\sigma}) u_{B}(p) \\
u_{B}(p)=\frac{c}{E+m c^{2}}(\vec{p} \cdot \vec{\sigma}) u_{A}(p)
\end{array}\right.
\end{aligned}
$$

Solutions: moving particles $\overrightarrow{\boldsymbol{p}} \neq \overrightarrow{\mathbf{0}}$

Solutions: pick $u_{A}(p) \&$ calculate $u_{B}(p): \quad u_{B}(p)=\frac{c}{E+m c^{2}}(\vec{p} \cdot \vec{\sigma}) u_{A}(p)$

In limit $\overrightarrow{\boldsymbol{p}} \rightarrow \overrightarrow{\mathbf{0}}$ you retrieve the $\mathrm{E}>0$ solutions, hence these are $\overrightarrow{\boldsymbol{p}} \neq \overrightarrow{\mathbf{0}}$ electron solutions Similarly: pick $u_{B}(p) \&$ calculate $u_{A}(p): \quad u_{A}(p)=\frac{c}{E-m c^{2}}(\vec{p} \cdot \vec{\sigma}) u_{B}(p)$

In limit $\vec{p} \rightarrow \overrightarrow{\mathbf{0}}$ you retrieve the $E<0$ solutions, hence these are $\overrightarrow{\boldsymbol{p}} \neq \overrightarrow{\mathbf{0}}$ positron solutions

Dirac equation

From: $E^{2}=\vec{p}^{2}+m^{2} \&$ classical \rightarrow QM 'transcription': -

$$
\partial^{\mu}=\left(\partial_{t},-\vec{\nabla}\right)
$$

$$
\int_{-} \mathrm{E}=i \frac{\partial}{\partial t}
$$

$$
\vec{p}=-i \vec{\nabla}
$$

We found: $\boldsymbol{i} \frac{\boldsymbol{\partial}}{\boldsymbol{\partial} t} \phi=-\boldsymbol{i} \vec{\alpha} \cdot \vec{\nabla} \phi+\beta \boldsymbol{m} \phi=\vec{\alpha} \cdot \overrightarrow{\boldsymbol{p}} \phi+\beta \boldsymbol{m} \phi$
With $\beta, \alpha_{1}, \alpha_{2}$ \& $\alpha_{3}(4 \times 4)$ matrices, satisfying:
E^{2} 구 $\vec{p}^{2}+m^{2}$

$$
\begin{aligned}
\underbrace{(\vec{\alpha} \cdot \vec{p}+\beta m c)^{2}=} & \left(\alpha_{i} p_{i}+\beta m c\right)\left(\alpha_{j} p_{j}+\beta m c\right) \\
= & \beta^{2} m^{2} c^{2} \xrightarrow{2} \beta^{2}=1 \\
& +\sum_{i}\left[\alpha_{i}^{2} p_{i}^{2}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) p_{i} m c\right] \longrightarrow \begin{array}{r}
\alpha_{i}^{2}=1 \\
\mathbf{E}^{2} \alpha+\beta \alpha=0
\end{array} \\
& +\sum_{i>j}\left[\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) p_{i} p_{j}\right] \longrightarrow i \neq j: \alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=0
\end{aligned}
$$

$$
\beta=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}-1.1\right) \alpha_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad \alpha_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right) \alpha_{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & -1 \\
0 & -1 & 0 & 0
\end{array}\right)
$$

Co-variant form: Dirac γ-matrices

 Dirac's original form does not look covariant: $i \frac{\partial}{\partial t} \phi=-i \vec{\alpha} \cdot \vec{\nabla} \phi+\beta m \phi$ Multiplying on the left with β and collecting all the derivatives gives covariant form:$$
m \phi=i \beta \frac{\partial}{\partial t} \phi+i \beta \vec{\alpha} \cdot \vec{\nabla} \phi \equiv i \gamma^{\mu} \partial_{\mu} \phi \quad \text { note: } \partial_{\mu}=\left(\partial_{t},+\vec{\nabla}\right)
$$

With Dirac γ-matrices defined as: $\gamma^{0}=\beta=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad \gamma^{k}=\beta \alpha^{k}=\left(\begin{array}{cc}0 & \sigma_{k} \\ -\sigma_{k} & 0\end{array}\right)$
$\gamma^{0}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right) \gamma^{1}=\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0\end{array}\right) \gamma^{2}=\left(\begin{array}{cccc}0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0\end{array}\right) \gamma^{3}=\left(\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$
From the properties of $\beta, \alpha_{1}, \alpha_{2} \& \alpha_{3}$ follows: $\quad \gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}$

$$
\begin{array}{ll}
\left(\gamma^{0}\right)^{2}=+1 & \gamma^{0 \dagger}=+\gamma^{0} \\
\left(\gamma^{k}\right)^{2}=-1 & \gamma^{k \dagger}=-\gamma^{k+} \rightarrow \boldsymbol{\gamma}^{\mu+}=\boldsymbol{\gamma}^{0} \boldsymbol{\gamma}^{\mu} \boldsymbol{\gamma}^{0}
\end{array}
$$

Dirac particle solutions: spinors

Ansatz solution: $\psi=\left[\begin{array}{l}u_{A}(p) \\ u_{B}(p)\end{array}\right] e^{-i p \cdot x} \longrightarrow$ Dirac eqn. $\left\{\begin{array}{l}u_{A}(p)=\frac{\vec{p} \cdot \vec{\sigma}}{E-m} u_{B}(p) \\ u_{B}(p)=\frac{\vec{p} \cdot \vec{\sigma}}{E+m} u_{A}(p)\end{array}\right.$
$\overrightarrow{\boldsymbol{p}}=\overrightarrow{\mathbf{0}}$ solutions:
$\psi^{(1)} \propto e^{-\frac{i m c^{2}}{\hbar} t}\binom{1}{0}\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) \psi^{2}=\binom{0}{1}$ spin $1 / 2$ electrons
$E>0$
$\overrightarrow{\boldsymbol{p}} \neq \overrightarrow{\mathbf{0}}$ solutions:

$$
\psi^{-\frac{i}{\hbar} p \cdot x} \propto\left(\begin{array}{c}
0 \\
1 \\
\frac{c\left(p_{x}-i p_{y}\right)}{E+m c^{2}} \\
\frac{-c p_{z}}{E+m c^{2}}
\end{array}\right)
$$

	$e^{+} \quad u_{B}=\binom{0}{1}$
$u_{B}=\binom{\mathbf{1}}{\mathbf{0}}$	
$\psi^{(3)} \propto e^{+\frac{i m c^{2}}{\hbar} t}\left(\begin{array}{l} 0 \\ 0 \\ 1 \\ 0 \end{array}\right)$	$\psi^{(4)} \propto e^{+\frac{i m c^{2}}{\hbar} t}\left(\begin{array}{l} 0 \\ 0 \\ 0 \\ 1 \end{array}\right)$
$\psi^{(3)} \propto$	$\psi^{(4)} \propto$
$e^{-\frac{i}{\hbar} p \cdot x}\left(\begin{array}{c}\frac{c p_{z}}{E E c^{2}} \\ \frac{c\left(p x+i p_{y}\right.}{} \\ \frac{E-m p^{2}}{} \\ 1 \\ 0\end{array}\right)$	$e^{-\frac{i}{\hbar} p \cdot x}\left(\begin{array}{c}\frac{c\left(p_{x}-i p_{y}\right)}{E-m c^{2}} \\ \frac{-c z_{z}}{E-m c^{2}} \\ 0 \\ 1\end{array}\right)$

Dirac equation: more onfree particles normalisation
 4-vector current anti-particles

sorry for the c's

One more look at $\vec{p} \cdot \vec{\sigma}$

The conditions: $\left\{\begin{array}{l}u_{A}(p)=\frac{c}{E-m c^{2}}(\vec{p} \cdot \vec{\sigma}) u_{B}(p) \\ u_{B}(p)=\frac{c}{E+m c^{2}}(\vec{p} \cdot \vec{\sigma}) u_{A}(p)\end{array}\right.$
Imply: $\quad u_{A}(p)=\frac{c^{2}}{E^{2}-m^{2} c^{4}}(\vec{p} \cdot \vec{\sigma})^{2} u_{A}(p)$
$\Rightarrow 1=\frac{c^{2}}{E^{2}-m^{2} c^{4}}(\vec{p} \cdot \vec{\sigma})^{2} \Rightarrow \begin{gathered}\boldsymbol{p}^{2} \boldsymbol{c}^{2}=E^{2}-\boldsymbol{m}^{2} \boldsymbol{c}^{4} \\ \text { i.e. energy-momentum } \\ \text { relation, as expected }\end{gathered}$
Check this:

$$
\begin{aligned}
(\vec{p} \cdot \vec{\sigma}) & =p_{x}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+p_{y}\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right)+p_{z}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
p_{z} & \left(p_{x}-i p_{y}\right) \\
\left(p_{x}+i p_{y}\right) & -p_{z}
\end{array}\right) \Rightarrow(\vec{p} \cdot \vec{\sigma})^{2}=\left(\begin{array}{cc}
p_{z}^{2}+\left(p_{x}-i p_{y}\right)\left(p_{x}+i p_{y}\right) & \ldots \\
\ldots
\end{array}\right)=\vec{p}^{2}
\end{aligned}
$$

Normalisation of the Dirac spinors

 Just calculate it!:Spinors 1 \& 2, E>0:

$$
\begin{aligned}
\psi^{\dagger} \psi & =1+\frac{p_{x}^{2} c^{2}+p_{y}^{2} c^{2}+p_{z}^{2} c^{2}}{\left(E+m c^{2}\right)^{2}} \\
& =1+\frac{E^{2}-m^{2} c^{4}}{\left(E+m c^{2}\right)^{2}} \\
& =1+\frac{E-m c^{2}}{E+m c^{2}}=\frac{2 E}{E+m c^{2}}=\frac{2|E|}{|E|+m c^{2}} \rightarrow N=\sqrt{|E|+m c^{2}}
\end{aligned}
$$

To normalize @ 2E particles/unit volume

Spinors 3 \& 4, $E<0$:

$$
\begin{aligned}
\psi^{\dagger} \psi & =1+\frac{p_{x}^{2} c^{2}+p_{y}^{2} c^{2}+p_{z}^{2} c^{2}}{\left(E-m c^{2}\right)^{2}} \\
& =1+\frac{E^{2}-m^{2} c^{4}}{\left(E-m c^{2}\right)^{2}} \\
& =1+\frac{E+m c^{2}}{E-m c^{2}}=\frac{2 E}{E-m c^{2}}=\frac{2|E|}{|E|+m c^{2}} \rightarrow N=\sqrt{|E|+m c^{2}}
\end{aligned}
$$

To normalize @ 2E particles/unit volume

Thanks

