ELECTRONIC MEASUREMENT & INSTRUMENTATION (BEC-29)

Instructor Dr. Brijesh Mishra Assistant Professor

Department of Electronics and Communication Engineering Madan Mohan Malaviya University of Technology , Gorakhpur

UNIT-III FREQUENCY STANDARDS

OUTLINE

Contribution to Coordinated Universal Time (UTC)

Primary and Secondary Frequency Standards

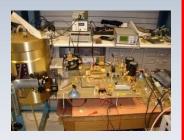
Time **Dissemination** and Services

Advancing GPS and its applications

NIST Time and Frequency Standards and Distribution

Time and Frequency Distribution Services

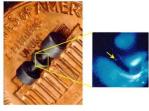
Radio broadcasts

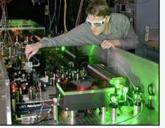


Networks

Satellites

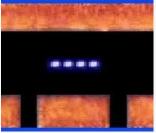
Noise metrology


Primary Frequency Standards and NIST Time Scale Realization of SI second

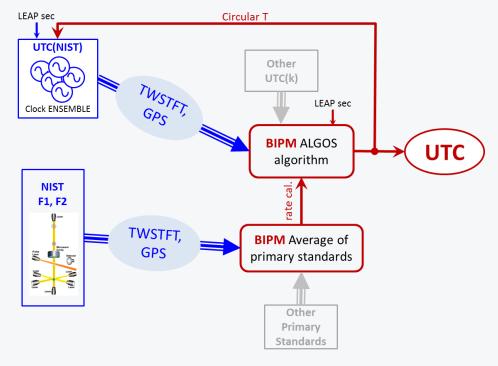

NIST-F2

Hydrogen Maser & Measurement system

Research on Future Standards and Distribution


Optical clocks

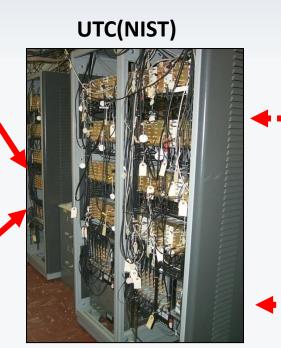
Optical frequency synthesis


Chip-scale atomic devices

Quantum computing

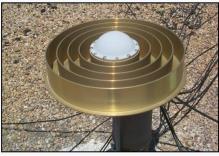
Coordinated Universal Time (**UTC**) is the official world time scale.

UTC is computed by the International Bureau of Weights and Measures (**BIPM**) in France.


- UTC(NIST) is the local realization of UTC. The UTC(NIST) time scale consists of an ensemble of hydrogen masers and cesium clocks.
- NIST maintains and operates UTC(NIST) and the U. S. Primary Frequency Standards, cesium fountain devices F1 and F2.
- The time transfer links between NIST and BIPM are based on
 - Two-Way Satellite Time and Frequency Transfer (TWSTFT) measurements utilizing geostationary satellites.
 - GPS common-view measurements.

4 Cesium Beam standards

6 Hydrogen Masers



Measurement System

Two-way satellite time & frequency transfer

CALIBRATIONS OF TIME TRANSFER LINKS

USNO shares with **NIST** the responsibility of maintaining accurate realizations of UTC in the US

PTB is the pivot point for UTC

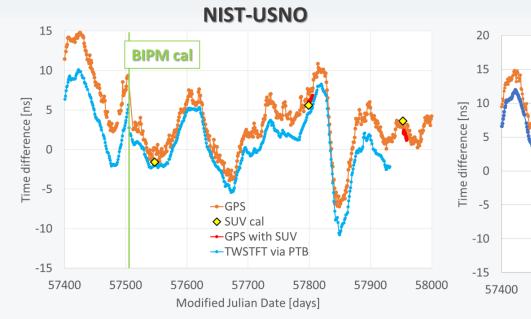
NIST-PTB

57700

Modified Julian Date [days]

BIPM cal

57500

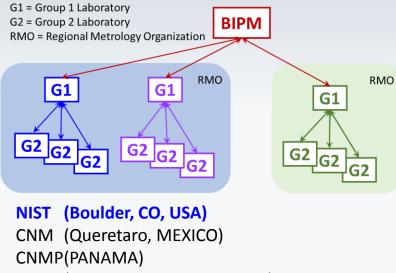

57600

TWSTFT

57900

58000

-GPS


GPS with SUV cal: common-view calibration

GPS: common-view

TWSTFT: Direct or indirect intercontinental satellite link SUV: TWSTFT mobile station owned by USNO, periodically driven to NIST in Boulder, CO

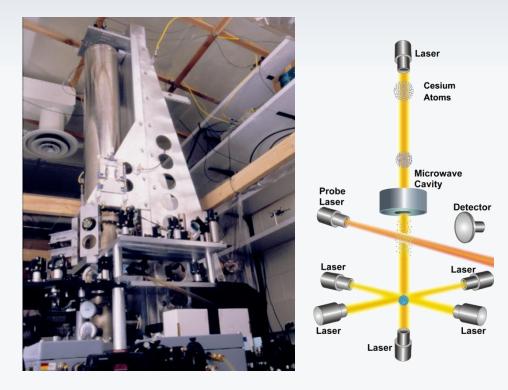
57800

BIPM issued updated Calibration Guidelines for all laboratories contributing to UTC

- INTI (Buenos Aires, ARGENTINA)
- INXE (Rio de Janeiro, BRAZIL)
- NRC (Ottawa, CANADA)
- ONRJ (Rio de Janeiro, BRAZIL)
- INM (Bogota, COLOMBIA)
- INCP (Lima, PERU)

USNO (Washington, DC, USA)

APL (Laurel, MD, USA)IGNA (Buenos Aires, ARGENTINA)NRL (Washington, DC, USA)ONBA (Buenos Aires, ARGENTINA)


G2 CALIBRATION CAMPAIGNS

Frequency Standards

PRIMARY FREQUENCY STANDARD FOR THE UNITED STATES NIST-F1 Atomic Fountain Clock

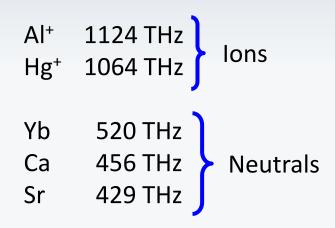
1 second is defined as the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the ¹³³Cs atom.

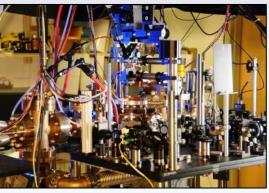
Current accuracy (uncertainty):

- 3 x 10⁻¹⁶ second.
- 25 trillionths of a second per day.
- 1 second in 100 million years.

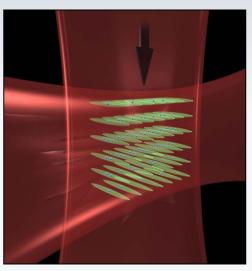
Re-evaluation of all systematic effects after move to new labs

Frequency Standards


SECONDARY: OPTICAL


Cs 0.0092 THz F1, F2

Frequency Standards


SECONDARY STANDARDS: OPTICAL CLOCKS

Δf/f ~ 6 x 10⁻¹⁸


Sr or YB optical lattice clocks

∆f/f ~ 8 x 10⁻¹⁸

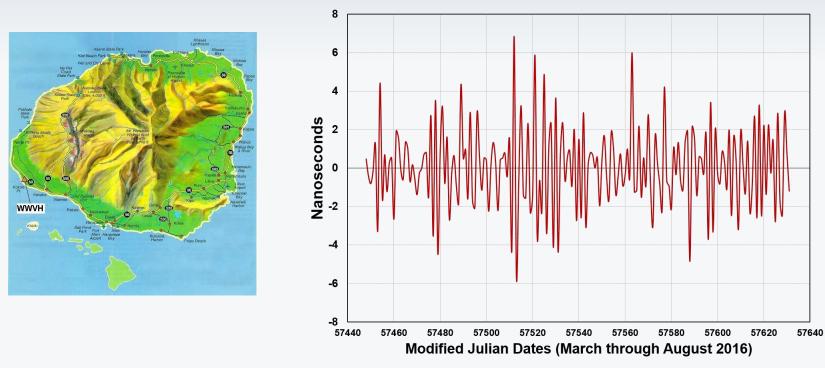
∆f/f ~ 10 x 10⁻¹⁸

Al ion logic clock

TMAS FMAS NISTDO

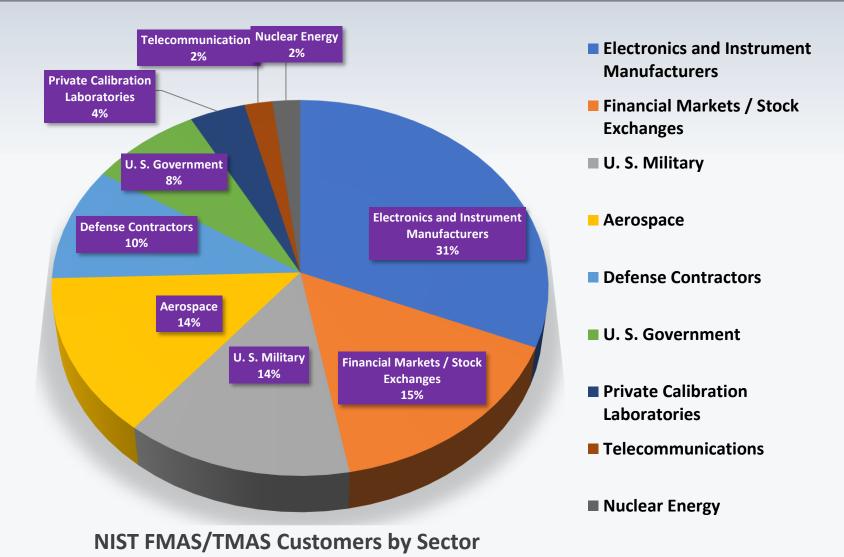
- NIST provides common-view GPS measurement systems to its remote customers, allowing them to compare their clocks to UTC(NIST) by using the GPS.
- The common-view data is processed in real-time and shows the time or frequency difference between UTC(NIST) and the customer's clock.

FMAS: reports frequency uncertainty to the customerTMAS: reports time uncertainty to the customerNISTDO: locks the customer's clock (rubidium or cesium) to the UTC(NIST)


Customers can then show traceability to the International System (SI) of units through NIST.

Map of Common-View GPS Systems

(78 total systems deployed, 53 at customer sites and 25 in SIM Time Network)



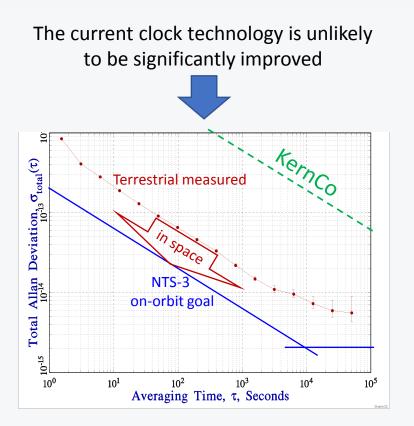
A NISTDO is the station clock at WWVH in Kauai

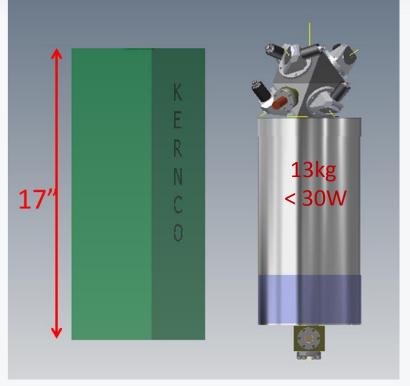
WWVH Station Clock (NISTDO in Hawaii) - UTC(NIST)

- The Boulder-Kauai baseline is long (5324 km) and Internet access at WWVH is through a satellite and is not always available.
- Even so, the average time offset is near 0 and peak-to-peak time variations are usually within ±10 ns of UTC(NIST) in Boulder.

Time By Radio: WWVB

NEW LABORATORIES


- Time scale migration in process
- Second TW station for link with USNO
- Room-temperature fountain standard (F1)
- Optical frequency standards and frequency comb
- Optical fiber link between buildings (time scale)
- Secondary time reference points (clock trips)



EXPLORING NEW IDEAS

Laser-cooled Atomic clocks for GPS satellites

NIST is involved in the Air Force Research Lab program to support the Navigation Technology Satellite 3 (NTS-3), as well as possible future clocks for GPS.

Volume ~ 1.3 * legacy KernCo

Work in Progress

- BIPM-sponsored pilot program with Beidou GNSS receiver for time transfer
- Regular measurements of maser frequency using Yb optical clocks
- Regular intercomparisons between optical clocks (Yb, Al and Sr)
- First report of optical secondary frequency standards to BIPM
- Atomic Clock Ensemble in Space (ACES): installation of Microwave Ground Terminal next spring

THANK YOU!