

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

VLSI Design (BEC-41) (Unit-1, Lecture-5)

Presented By: Prof. R. K. Chauhan

Department of Electronics and Communication Engineering

MOSFET capacitances

MOSFET.

Figure 3.30 Lumped representation of the parasitic MOSFET capacitances.

Oxide related capacitance(1)

- The gate electrode overlap capacitance
 - $C_{GD(overlap)} = C_{ox}WL_{D}$
 - $C_{GS(overlap)} = C_{ox}WL_{D}$
 - With $C_{ox} = \varepsilon_{ox} / t_{ox}$
 - Both capacitance do not depend on the bias condition, they are voltage-independent
- The capacitances result from the interaction between the gate voltage and the channel charge
 - Cut-off mode
 - $C_{gs} = C_{gd} = 0$
 - C_{gb}=C_{ox}WL
 - Linear mode
 - C_{gb}=0
 - $C_{gs} \cong C_{gd} \cong (1/2) C_{ox} WL$
 - Saturation mode
 - $C_{gb} = C_{gd} = 0$ • $C_{gs} \cong (2/3) C_{ox}WL$

Figure 3.31 Schematic representation of MOSFET oxide capacitances during (a) cut-off, (b) linear, and (c) saturation modes.

40

Oxide related capacitance(2)

- The sum of all three voltage-dependent (distributed) gate oxide capacitances (C_{gb}+C_{gs}+C_{gd})
 - A minimum value of 0.66 C_{ox} WL, in saturation mode
 - A maximum value of $C_{ox}WL$, in cut off and linear modes
 - For simple hand calculation
 - The three capacitances can be considered to be in parallel
 - A constant worst-case value of $C_{ox}W(L+2L_D)$ can be used for the sum of MOSFET gate oxide capacitances

Figure 3.32 Variation of the distributed (gate-to-channel) oxide capacitar functions of gate-to-source voltage V_{GS} .

Junction capacitance(1)

The depletion region thickness
$$x_d = \sqrt{\frac{2 \cdot \varepsilon_{Si}}{q} \cdot \frac{N_A + N_D}{N_A \cdot N_D}} (\varphi_0 - V)$$

The built - in potential $\varphi_0 = \frac{kT}{q} \cdot \ln \left(\frac{N_A \cdot N_D}{n_i^2} \right)$
The depletion region charge $Q_j = A \cdot q \cdot \left(\frac{N_A \cdot N_D}{N_A + N_D} \right) \cdot x_d = A \sqrt{2 \cdot \varepsilon_{Si} \cdot q \cdot \frac{N_A \cdot N_D}{N_A + N_D}} (\varphi_0 - V)$
The junction capacitance $C_j = \left| \frac{dQ_j}{dV} \right| = A \cdot \sqrt{\frac{\varepsilon_{Si} \cdot q}{2} \cdot \left(\frac{N_A \cdot N_D}{N_A + N_D} \right)} \cdot \frac{1}{\sqrt{\varphi_0 - V}}$
 $C_j(V) = \frac{AC_{j0}}{\left(1 - \frac{V}{\varphi_0}\right)^m}$, the parameter m is grading coefficient

The zero bias junction capacitance per unit area $C_{j0} = \sqrt{\frac{\varepsilon_{Si} \cdot q}{2} \cdot \left(\frac{N_A \cdot N_D}{N_A + N_D}\right) \cdot \frac{1}{\varphi_0}}$

The equivalent large - signal capacitance can be defined as

$$\begin{split} C_{eq} &= \frac{\Delta Q}{\Delta V} = \frac{Q_j(V_2) - Q_j(V_1)}{V_2 - V_1} = \frac{1}{V_2 - V_1} \int_{V_1}^{V_2} C_j(V) dV \\ &= -\frac{A \cdot C_{j0} \cdot \phi_0}{(V_2 - V) \cdot (1 - m)} \cdot \left[\left(1 - \frac{V_2}{\phi_0}\right)^{1 - m} - \left(1 - \frac{V_1}{\phi_0}\right)^{1 - m} \right] \end{split}$$

For the special case of abrupt pn - junctions

$$\begin{split} C_{eq} &= -\frac{2 \cdot A \cdot C_{j0} \cdot \varphi_0}{\left(V_2 - V\right)} \cdot \left[\sqrt{1 - \frac{V_2}{\phi_0}} - \sqrt{1 - \frac{V_1}{\phi_0}}\right]\\ C_{eq} &= A \cdot C_{j0} \cdot K_{eq}\\ K_{eq} &= -\frac{2\sqrt{\phi_0}}{V_2 - V_1} \cdot \left(\sqrt{\phi_0 - V_2} - \sqrt{\phi_0 - V_1}\right) \end{split}$$

Table 3.7Types and areas of the pn-junctionsshown in Fig. 3.33

Junction	Area	Туре
1	$W \cdot x_j$	n ⁺ /p
2	$Y \cdot x_j$	n ⁺ /p ⁺
3	$W \cdot x_j$	n+/p+
4	$Y \cdot x_j$	n ⁺ /p ⁺
5	$W \cdot Y$	n+/p

Figure 3.33 Three-dimensional view of the n^+ diffusion region within the p-type substrate.

Example 7

Consider a simple abrupt pn-junction, which is reverse-biased with a voltage V_{bias} . The doping density of the n-type region is $N_D = 10^{19}$ cm⁻³, and the doping density of the p-type region is given as $N_A = 10^{16}$ cm⁻³. The junction area is $A = 20 \,\mu$ m × 20 μ m.

First, we will calculate the zero-bias junction capacitance per unit area, C_{j0} , for this structure. The built-in junction potential is found as

$$\phi_0 = \frac{kT}{q} \cdot \ln\left(\frac{N_A \cdot N_D}{n_i^2}\right) = 0.026 \text{ V} \cdot \ln\left(\frac{10^{16} \cdot 10^{19}}{2.1 \times 10^{20}}\right) = 0.88 \text{ V}$$

Using (3.105), we can calculate the zero-bias junction capacitance:

$$C_{j0} = \sqrt{\frac{\varepsilon_{Si} \cdot q}{2} \cdot \left(\frac{N_A \cdot N_D}{N_A + N_D}\right) \cdot \frac{1}{\phi_0}}$$

= $\sqrt{\frac{11.7 \cdot 8.85 \times 10^{-14} \text{ F/cm} \cdot 1.6 \times 10^{-19} \text{ C}}{2} \cdot \left(\frac{10^{16} \cdot 10^{19}}{10^{16} + 10^{19}}\right) \cdot \frac{1}{0.88 \text{ V}}}$
= $3.1 \times 10^{-8} \text{ F/cm}^2$

Next, find the equivalent large-signal junction capacitance assuming that the reverse bias voltage changes from $V_1 = 0$ to $V_2 = -5$ V. The voltage equivalence factor for this transition can be found as follows:

$$K_{eq} = -\frac{2\sqrt{\phi_0}}{V_2 - V_1} \cdot \left(\sqrt{\phi_0 - V_2} - \sqrt{\phi_0 - V_1}\right)$$
$$= -\frac{2\sqrt{0.88}}{-5} \cdot \left(\sqrt{0.88 - (-5)} - \sqrt{0.88}\right) = 0.56$$

Then, the average junction capacitance can be found simply by using (3.109).

$$C_{eq} = A \cdot C_{j0} \cdot K_{eq} = 400 \times 10^{-8} \text{ cm}^2 \cdot 3.1 \times 10^{-8} \text{ F/cm}^2 \cdot 0.56 = 69 \text{ fF}$$

Department of ECE MMMUT, Gorakhpur

43

Junction capacitance(2)

The sidewalls of a typical MOSFET source or drain diffusion region are surrounded by a p^+ channel-stop implant, with a higher doping density than the substrate doping density N_A

Assume the sidewall doping density is given by $N_{A(sw)}$,

the zero - bias capacitance per unit area can be found as

$$C_{j0sw} = \sqrt{\frac{\varepsilon_{Si} \cdot q}{2} \cdot \left(\frac{N_{A(sw)} \cdot N_D}{N_{A(sw)} + N_D}\right) \cdot \frac{1}{\varphi_{0sw}}}$$

 $C_{jsw} = C_{j0sw} \cdot x_j$

The sidewall voltage equivalence factor

$$K_{eq(sw)} = -\frac{2\sqrt{\phi_{0sw}}}{V_2 - V_1} \cdot \left(\sqrt{\phi_{0sw} - V_2} - \sqrt{\phi_{0sw} - V_1}\right)$$

The equivalent large - signal junction capacitance $C_{eq(sw)}$ for

a sidewall of length (perimeter)P can be

$$C_{eq(sw)} = P \cdot C_{jsw} \cdot K_{eq(sw)}$$

Example 8 (1)

Consider the n-channel enhancement-type MOSFET shown below. The process parameters are given as follows:

Substrate doping $N_A = 2 \times 10^{15} \,\mathrm{cm}^{-3}$ Source/drain doping $N_D = 10^{19} \,\mathrm{cm}^{-3}$ Sidewall (p⁺) doping $N_A(sw) = 4 \times 10^{16} \,\mathrm{cm}^{-3}$ Gate oxide thickness $t_{ox} = 45 \,\mathrm{nm}$ Junction depth $x_j = 1.0 \,\mu\mathrm{m}$

Note that both the source and the drain diffusion regions are surrounded by p^+ channel-stop diffusion. The substrate is biased at 0 V. Assuming that the drain voltage is changing from 0.5 V to 5 V, find the average drain-substrate junction capacitance C_{db} .

First, we recognize that three sidewalls of the rectangular drain diffusion structure form n^+/p^+ junctions with the p^+ channel-stop implant, while the bottom area and the sidewall facing the channel form n^+/p junctions. Start by calculating the built-in potentials for both types of junctions.

$$\phi_0 = \frac{kT}{q} \cdot \ln\left(\frac{N_A \cdot N_D}{n_i^2}\right) = 0.026 \text{ V} \cdot \ln\left(\frac{2 \times 10^{15} \cdot 10^{19}}{2.1 \times 10^{20}}\right) = 0.837 \text{ V}$$
$$\phi_{0sw} = \frac{kT}{q} \cdot \ln\left(\frac{N_A(sw) \cdot N_D}{n_i^2}\right) = 0.026 \text{ V} \cdot \ln\left(\frac{4 \times 10^{16} \cdot 10^{19}}{2.1 \times 10^{20}}\right) = 0.915 \text{ V}$$

Next, we calculate the zero-bias junction capacitances per unit area:

Example 8 (2)

$$C_{j0} = \sqrt{\frac{\varepsilon_{Si} \cdot q}{2} \cdot \left(\frac{N_A \cdot N_D}{N_A + N_D}\right) \cdot \frac{1}{\phi_0}} = \sqrt{\frac{11.7 \cdot 8.85 \times 10^{-14} \text{ F/cm} \cdot 1.6 \times 10^{-19} \text{ C}}{2} \cdot \left(\frac{2 \times 10^{15} \cdot 10^{19}}{2 \times 10^{15} + 10^{19}}\right) \cdot \frac{1}{0.837 \text{ V}}} = 1.41 \times 10^{-8} \text{ F/cm}^2}$$

$$C_{j0sw} = \sqrt{\frac{\varepsilon_{Si} \cdot q}{2} \left(\frac{N_A(sw) \cdot N_D}{2}\right) - 1}}$$

$$= \sqrt{\frac{\varepsilon_{Si} \cdot q}{2}} \cdot \left(\frac{N_A(sw) \cdot N_D}{N_A(sw) + N_D}\right) \cdot \frac{1}{\phi_{0sw}}$$

= $\sqrt{\frac{11.7 \cdot 8.85 \times 10^{-14} \text{ F/cm} \cdot 1.6 \times 10^{-19} \text{ C}}{2}} \cdot \left(\frac{4 \times 10^{16} \cdot 10^{19}}{4 \times 10^{16} + 10^{19}}\right) \cdot \frac{1}{0.915 \text{ V}}$
= 6.01 × 10⁻⁸ F/cm²

The zero-bias sidewall junction capacitance per unit length can also be found as follows.

$$C_{jsw} = C_{j0sw} \cdot x_j = 6.01 \times 10^{-8} \text{ F/cm}^2 \cdot 10^{-4} \text{ cm} = 6.01 \text{ pF/cm}$$

In order to take the given drain voltage variation into account, we must now calculate the voltage equivalence factors, K_{eq} and $K_{eq}(sw)$, for both types of junctions. This will allow us to find the average large-signal capacitance values.

$$K_{eq} = -\frac{2\sqrt{0.837}}{-5 - (-0.5)} \cdot \left(\sqrt{0.837 + 5} - \sqrt{0.837 + 0.5}\right) = 0.51$$
$$K_{eq}(sw) = -\frac{2\sqrt{0.915}}{-5 - (-0.5)} \cdot \left(\sqrt{0.915 + 5} - \sqrt{0.915 + 0.5}\right) = 0.53 \cong K_{eq}$$

The total area of the n^+/p junctions is calculated as the sum of the bottom area and the sidewall area facing the channel region.

 $A = (10 \times 5) \ \mu \text{m}^2 + (5 \times 1) \ \mu \text{m}^2 = 55 \ \mu \text{m}^2$

The total length of the n^+/p^+ junction perimeter, on the other hand, is equal to the sum of three sides of the drain diffusion area. Thus, the combined equivalent (average) drain-substrate junction capacitance can be found as follows:

$$\langle C_{db} \rangle = A \cdot C_{j0} \cdot K_{eq} + P \cdot C_{jsw} \cdot K_{eq}(sw)$$

= 55 × 10⁻⁸ cm² · 1.41 × 10⁻⁸ F/cm² · 0.51
+ 25 × 10⁻⁴ cm · 6.01 × 10⁻¹² F/cm · 0.53 = 11.9 × 10⁻¹⁵ F = 11.9 fF

46

