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It states that the force F between two point charges Q1 and Q2 is

F =
kQ1Q2

R2

In Vector form

Coulomb’s Law

Or

If we have more than two point charges



Q

F
E =

Electric Field Intensity is the force per unit charge when placed in the

electric field

Electric Field Intensity

In Vector form

E

If we have more than two point charges



Electric Field due to Continuous Charge

If there is a continuous c
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on say along a line, on a  

surface, or in a volume

The charge element dQ and the total charge Q due to these charge  

distributions can be obtained by



The electric field intensity due to each charge distribution ρL, ρS and

ρV may be given by the summation of the field contributed by the

numerous point charges making up the charge distribution.



The electric field intensity depends on the medium in which the  

charges are placed.

Suppose a vector field D independent of the medium is defined by

D =o E

The electric flux ψ in terms of D can be defined as

Electric Flux Density

The vector field D is called the electric flux density and is measured in  

coulombs per square meter.



Electric Flux Density

For an infinite sheet the electric flux density D is given by

For a volume charge distribution the electric flux density D is given  

by

In both the above equations D is a function of charge and position  

only (independent of medium)



Gauss Law

It states that the total electric flux ψ through any closed surface is  

equal to the total charge enclosed by that surface.

 = Qenc

(i)



Using Divergence Theorem

(ii)

Comparing the two volume integrals in (i) and (ii)

This is the first Maxwell’s equation.

It states that the volume charge density is the same as the divergence  

of the electric flux density.



Electric Potential

Electric Field intensity, E due to a charge distribution can be obtained  

from Coulomb’s Law.

or using Gauss Law when the charge distribution is symmetric.

We can obtain E without involving vectors by using the electric scalar  

potential V.

From Coulomb’s Law the force on point  

charge Q is

F = QE

The work done in displacing the charge  

by length dl is

dW = −F.dl = −QE.dl

The negative sign indicates that the work is being done by an external agent.



The total work done or the potential energy required in moving the

point charge Q from A to B is B

W = −Q E.dl
A

Dividing the above equation by Q gives the potential energy per unit  

charge.

W
B

= − E.dl =VAB

Q
A

VAB is known as the potential difference between points A and B.

is negative, there is loss in potential energy in moving Q

is positive, there

1. IfVAB

from A to B (work is being done by the field)V, iAfB
is a gain in potential energy in the movement (an external agent does  

the work).
2. It is independent of the path taken. It is measured in Joules per

Coulomb referred as Volt.



The potential at any point due to a point charge Q located at the origin is

The potential at any point is the potential difference between that

point and a chosen point at which the potential is zero.

Assuming zero potential at infinity, the potential at a distance r from

the point charge is the work done per unit charge by an external agent

in transferring a test charge from infinity to that point.
r

V = − E.dl


If the point charge Q is not at origin but at a point whose position

vector is r ' , the potential V (r ' ) at r ' becomes

4o | r − r' |
V (r)=

Q

Q

4or
V =



For n point charges Q1, Q2, Q3…..Qn located at points with position

vectors the potential at r isr1, r 2 , r3.....r n

k =1 | r − rk |

n

V (r) =
 1


Qk

4o

If there is continuous charge distribution instead of point charges then

the potential at r becomes



Relationship between E and V

The potential difference between points A and B is independent of the

path taken

B

VAB = − E.dl
A

and

VAB = −VBA

A

VBA =  E.dl
B

+VBA =  E.dl = 0VAB

E.dl = 0

It means that the line integral of E along a closed path must be zero.

(i)



Physically it means that no net work is done in moving a charge along  

a closed path in an electrostatic field.

Applying Stokes’s theorem to equation (i)

Equation (i) and (ii) are known as Maxwell’s equation for static  

electric fields.

Equation  (i)  is in integral form while equation (ii) is in differential  

form, both depicting conservative nature of an electrostatic field.

(ii)

 E.dl =  ( E).d S = 0

 E =0



Also

E = −V

It means Electric Field Intensity is the gradient of V.

The negative sign shows that the direction of  

direction in which V increases.

E is opposite to the



Consider an atom of the dielectric consisting of an electron cloud (-Q)  

and a positive nucleus (+Q).

Polarization in Dielectrics

When  an electric field is applied, the positive charge is displaced

the  negative  charge is displaced by in the opposite

direction.

E
from its equilibrium position in the direction of by while

E F = QE
+

A dipole results from the displacement of charges and the dielectric is

polarized. In polarized the electron cloud is distorted by the applied

electric field.

F−= QE



This distorted charge distribution is equivalent to the original

distribution plus the dipole whose moment is

p = Qd

where d is the distance vector between -Q to +Q.

If there are N dipoles in a volume Δv of the dielectric, the total dipole  

moment due to the electric field

For the measurement of intensity of polarization, we define  

polarization P (coulomb per square meter) as dipole moment per unit  

volume



The major effect of the electric field on the dielectric is the creation of

dipole moments that align themselves in the direction of electric field.

This type of dielectrics are said to be non-polar. eg: H2, N2, O2

Other types of molecules that have in-built permanent dipole moments

are called polar. eg: H2O, HCl

When electric field is applied to a polar material then its permanent

dipole experiences a torque that tends to align its dipole moment in the

direction of the electric field.



Field due to a Polarized Dielectric

Consider a dielectric material consisting of dipoles with Dipole  

moment P per unitvolume.

The potential dV at an external point O due to Pdv'

(i)

where R2 = (x-x’)2+(y-y’)2+(z-z’)2 and R is the

distance between volume element dv’ and the

point O.

But

Applying the vector identity

= -



Put this in (i) and integrate over the entire volume v’ of the dielectric

Applying Divergence Theorem to the first term

(ii)

where an’ is the outward unit normal to the surface dS’ of the dielectric

The two terms in (ii) denote the potential due to surface and volume  

charge distributions with densities



where ρps and ρpv are the bound surface and volume charge densities.

Bound charges are those which are not free to move in the dielectric  

material.

Equation (ii) says that where polarization occurs, an equivalent

volume charge density, ρpv is formed throughout the dielectric while

an equivalent surface charge density, ρps is formed over the surface of  

dielectric.

The total positive bound charge on surface S bounding the dielectric is

while the charge that remains inside S is



Total charge on dielectric remains zero.

Total charge =

When dielectric contains free charge

If ρv is the free volume charge density then the total volume charge  

density ρt

Hence

Where



is to incrDeaseThe effect of the dielectric on the electric fielEd

inside it by an amPount .

The polarization would vary directly as the applied electric field.

Where e is known as the electric susceptibility of the material

It is a measure of how susceptible a given dielectric is to electric fields.



We know that

Dielectric Constant and Strength

Thus

or

and

where
 = o r

and

where є is the permittivity of the dielectric, єo is the permittivity of the  

free space and єr is the dielectric constant or relative permittivity.



No dielectric is ideal. When the electric field in a dielectric is

sufficiently high then it begins to pull electrons completely out of the

molecules, and the dielectric becomes conducting.

When a dielectric becomes conducting then it is called dielectric

breakdown. It depends on the type of material, humidity, temperature

and the amount of time for which the field is applied.

The minimum value of the electric field at which the dielectric

breakdown occurs is called the dielectric strength of the dielectric

material.
or

The dielectric strength is the maximum value of the electric field that a  

dielectric can tolerate or withstand without breakdown.



Continuity Equation and Relaxation Time

According to principle of charge conservation, the time rate of

decrease of charge within a given volume must be equal to the net

outward current flow through the closed surface of the volume.

The current Iout coming out of the closed surface

(i)

where Qin is the total charge enclosed by the closed surface.  

Using divergence theorem

But



Equation (i) now becomes

This is called the continuity of current equation.

Effect of introducing  

conductor/dielectric

According to Ohm’s law

charge at some interior point of a

or

According to Gauss’s law

(ii)



Equation (ii) now becomes

or

This is homogeneous liner ordinary differential equation. By separating  

variables we get

Integrating both sides



where

(iii)

Equation (iii) shows that as a result of introducing charge at some

interior point of the material there is a decay of the volume charge

density ρv.

The time constant Tr is known as the relaxation time or the relaxation

time.

Relaxation time is the time in which a charge placed in the interior of a  

material to drop to e-1 = 36.8 % of its initial value.

For Copper Tr = 1.53 x 10-19 sec (short for good conductors)  

For fused Quartz Tr = 51.2 days (large for good dielectrics)



Boundary Conditions

If the field exists in a region consisting of two different media, the

conditions that the field must satisfy at the interface separating the

media are called boundary conditions

These conditions are helpful in determining the field on one side of

the boundary when the field on other side is known.

We will consider the boundary conditions at an interface separating

1. Dielectric (єr1) and Dielectric (єr2)

2. Conductor and Dielectric

3. Conductor and free space

For determining boundary conditions we will use Maxwell’s equations

and



Boundary Conditions (Between two different

dielectrics)
Consider the E field existing in a region consisting of two different

dielectrics characterized by є1 = є0 єr1 and є2 = є0єr2

E1 and E2 in the media 1 and 2 can  

be written as

E1 = E1t + E1n and E2 = E2t + E2n

But

Assuming that the path abcda is very  

small with respect to the variation in E



As Δh 0

Thus the tangential components of E are the same on the two sides of  

the boundary. E is continuous across the boundary.

But

Thus

or

Here Dt undergoes some change across the surface and is said to be  

discontinuous across the surface.



Applying

Putting Δh 0 gives

Where ρs is the free charge density placed deliberately at the boundary

If there is no charge on the boundary i.e. ρs = 0 then

Thus the normal components of D is continuous across the surface.



Biot-Savart’s Law

It states that the magnetic field intensity dH produce at a point P by

the differential current element Idl is proportional to the product Idl

and the sine of angle α between the element and line joining P to the

element and is inversely proportional to the square of distance R

between P and the element.

or

The direction of dH can be determined by the right hand thumb rule

with the right hand thumb pointing in the direction of the current, the

right hand fingers encircling the wire in the direction of dH



Ampere’s circuit Law

The line integral of the tangential component of H around a close path  

is the same as the net current Iinc enclosed by the path.



Applicat ion of Am pere’s law : Inf in it e S heet 

Current
Consider an infinite current sheet in z = 0 plane.

If the sheet has a uniform current density then

^

K = Ky ay

Applying Ampere’s Law on closed

rectangular path (Amperian path) we

get

(i)

To solve integral we need to know how H is like

We assume the sheet comprising of filaments dH above and below the  

sheet due to pair of filamentary current.



The resultant dH has only an x-component.

Also H on one side of sheet is the negative of the other.

Due to infinite extent of the sheet, it can be regarded as

consisting of such filamentary pairs so that the characteristic of

H for a pair are the same for the infinite current sheets

(ii)

where Ho is to be determined.



Evaluating the line integral of H along the closed path

(iii)

Comparing (i) and (iii), we get

(iv)

Using (iv) in (ii), we get



where an is a unit normal vector directed from the current sheet to the  

point of interest.

Generally, for an infinite sheet of current density K



Magnetic Flux Density

The magnetic flux density B is similar to the electric flux density D  

Therefore, the magnetic flux density B is related to the magnetic field  

intensity H

where µo is a constant and is known as the permeability of free space.  

Its unit is Henry/meter (H/m) and has the value

The magnetic flux through a surface S is given by

where the magnetic flux ψ is in webers (Wb) and the magnetic flux  

density is in weber/ square meter or Teslas.



Magnetic flux lines due to a straight

wire with current coming out of the

page

Each magnetic flux line is closed

with no beginning and no end and

are also not crossing each other.

In an electrostatic field, the flux passing through a closed surface is  

the same as the charge enclosed.

Thus it is possible to have an isolated  

electric charge.

Also the electric flux lines are not  

necessarily closed.



Magnetic flux lines are always close  

upon themselves,.

So it is not possible to have an isolated  

magnetic pole (or magnetic charges)

An isolated magnetic charge does not exist.

Thus the total flux through a closed surface in a magnetic field must  

be zero.

This equation is known as the law of conservation of magnetic flux or  

Gauss’s Law for Magnetostatic fields.

Magnetostatic field is not conservative but magnetic flux is conserved.



Applying Divergence theorem, we get

or

This is Maxwell’s fourth equation.

This equation suggests that magnetostatic fields have no source or  

sinks.

Also magnetic flux lines are always continuous.



Faraday’s law

According to Faraday a time varying magnetic field produces an

induced voltage (called electromotive force or emf) in a closed circuit,

which causes a flow of current.

The induced emf (Vemf) in any closed circuit is equal to the time rate of

change of the magnetic flux linkage by the circuit. This is Faraday’s

Law and can be expressed as

where N is the number of turns in the circuit and ψ is the flux through  

each turn.

The negative sign shows that the induced voltage acts in such a way to  

oppose the flux producing in it. This is known as Lenz’s Law.



Transformer and Motional EMF

For a circuit with a single turn (N = 1)

In terms of E and B this can be written as

(i)

where ψ has been replaced by and S is the surface area of  

the circuit bounded by a closed path L..

The equation says that in time-varying situation, both electric and  

magnetic fields are present and are interrelated.



The variation of flux with time may be caused in three ways.

1. By having a stationary loop in a time-varying B field.

2. By having a time-varying loop area in a static B field.

3. By having a time-varying loop area in a time-varying B field.

S t at ion ary loop in a t im e-vary in g B f ield 

(Transformer emf)

Consider a stationary conducting

loop in a time-varying magnetic B

field. The equation (i) becomes



This emf induced by the time-varying current in a stationary loop is

often referred to as transformer emf in power analysis since it is due to

the transformer action.

By applying Stokes’s theorem to the middle term, we get

Thus

This is one of the Maxwell’s equations for time-varying fields.  

It shows that the time-varying field is not conservative.



2. Moving loop in static B field (Motional emf)

When a conducting loop is moving in a static B field, an emf is  

introduced in the loop.

The force on a charge moving with uniform velocity u in a magnetic  

field B is

The motional electric field Em is defined as

Consider a conducting loop moving with uniform velocity u, the emf  

induced in the loop is

(i)

This kind of emf is called the motional emf or flux-cutting emf.  

Because it is due to the motional action. eg,. Motors, generators



By applying Stokes’s theorem to equation (i), we get



also

3. Moving loop in time-varying field

Consider a moving conducting loop in a time-varying magnetic field  

Then both transformer emf and motional emf are present.

Thus the total emf will be the sum of transformer emf and motional  

emf



Displacement Current

For static EM fields

(i)

But the divergence of the curl of a vector field is zero. So

(ii)

But the continuity of current requires

(iii)

Equation (ii) and (iii) are incompatible for time-varying conditions  

So we need to modify equation (i) to agree with (iii)

Add a term to equation (i) so that it becomes

(iv)

where Jd is to defined and determined.



Again the divergence of the curl of a vector field is zero. So

In order for equation (v) to agree with (iii)

(v)

Putting (vi) in (iv), we get

This is Maxwell’s equation (based on Ampere Circuital Law) for a

time-varying field. The term is known as displacement

current density and J is the conduction current density .

or (vi)



Maxwell’s Eq uat ions in Final Form


