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MOSFET scaling and small-geometry effects
• High density chip

– The sizes of the transistors are as small as possible
– The operational characteristics of MOS transistor will change with the reduction of iys

dimensions
• There are two basic types of size-reduction strategies

– Full scaling (constant-field scaling)
– Constant-voltage scaling

• A new generation of manufacturing technology replaces the previous one about 
– every two or three years
– The down-scaling factor S about 1.2 to1.5

• The scaling of all dimensions by a factor of S>1 leads to the reduction of the area 
occupied by the transistor by a factor of S2
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Full scaling (constant-field scaling)
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Constant-voltage scaling
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Short-channel effects

• A MOS transistor is called a short-channel device
– If its channel length is on the same order of magnitude as the 

depletion region thickness of the S and D junction
– The effective channel length Leff S, D junction depth xj

– Two physical phenomena arise from short-channel effects
• The limitations imposed on electron drift characteristics in the

channel
– The lateral electric field Ey increased, vd reached saturation velocity
–

» No longer a quadratic function of VGS, virtually independent of the 
channel length 

– The carrier velocity in the channel also a function of Ex
» Influence the scattering of carriers in the surface
»

• The modification of the threshold voltage due to the shortening 
channel length
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Short-channel effects-modification of VT

• The n+ drain and source diffusion regions in p-type substrate induce a 
significant amount of depletion charge

– The long channel VT, overetimates the depletion charge support by the gate 
voltage

– The bulk depletion region asymmetric trapezoidal shape
• A significant portion of the total depletion region charge is due the S and D junction 

depletion
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Example 6 (1)



35

Example 6 (2)
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Example 6 (3)
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Narrow-channel effect  

• Channel width W on the same 
order of magnitude as the 
maximum depletion region 
thickness xdm

• The actual threshold voltage of 
such device is larger than that 
predicted by the conventional 
threshold voltage

• Fringe depletion region under 
field oxide
–
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Other limitations imposed by small-device geometries
• The current flow in the channel are controlled by two dimensional electric field vector
• Subthreshold conduction

– Drain-induced barrier lowering (DIBL)
– A nonzero drain current ID for VGS<VT0

–

• Punch-through
– The gate voltage loses its control upon the drain current, and the current rises sharply 

• Gate oxide thickness tox scaled to tox/S, is restricted by processing difficulties 
– Pinholes, oxide breakdown

• Hot-carrier effect
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