

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

VLSI Design (BEC-41) (Unit-1, Lecture-4)

Presented By: Prof. R. K. Chauhan

Department of Electronics and Communication Engineering

MOSFET scaling and small-geometry effects

- High density chip
 - The sizes of the transistors are as small as possible
 - The operational characteristics of MOS transistor will change with the reduction of iys dimensions
- There are two basic types of size-reduction strategies
 - Full scaling (constant-field scaling)
 - Constant-voltage scaling
- A new generation of manufacturing technology replaces the previous one about
 - every two or three years
 - The down-scaling factor S about 1.2 to1.5
- The scaling of all dimensions by a factor of S>1 leads to the reduction of the area occupied by the transistor by a factor of S²

Department of ECE MMMUT, Gorakhpur

Table 3.1Reduction of the minimum feature size (minimum dimensions that can be
defined and manufactured on chip) over the years, for a typical CMOS gate-array process

Full scaling (constant-field scaling)

To achieve this goal, all potentials must be scaled down proportionally, by the same scaling factor Assuming the surface mobility μ_n is not significantly affected by the scaled doping density

The gate oxide capacitance per unit area

$$\mathbf{C}_{ox}' = \frac{\varepsilon_{ox}}{t_{ox}'} = S \cdot \frac{\varepsilon_{ox}}{t_{ox}} = S \cdot C_{ox}$$

The aspect ratio W/L unchanged \Rightarrow the k_n will also scaled by a factor of S The linear mode drain current

$$I'_{D}(lin) = \frac{k'_{n}}{2} \cdot \left[2 \cdot \left(V'_{GS} - V'_{T}\right) \cdot V'_{DS} - V'^{2}_{DS}\right]$$
$$= \frac{S \cdot k_{n}}{2} \cdot \frac{1}{S^{2}} \cdot \left[2 \cdot \left(V_{GS} - V_{T}\right) \cdot V_{DS} - V'^{2}_{DS}\right] = \frac{I_{D(lin)}}{S}$$

The saturation mode drain current

$$I_{D}^{'}(sat) = \frac{k_{n}^{'}}{2} \cdot \left(V_{GS}^{'} - V_{T}^{'}\right)^{2} = \frac{S \cdot k_{n}}{2} \cdot \frac{1}{S^{2}} \cdot \left(V_{GS}^{'} - V_{T}^{'}\right)^{2} = \frac{I_{D(sat)}}{S}$$

The power dissipation

$$P' = I'_{D} \cdot V'_{DS} = \frac{1}{S^{2}} \cdot I_{D} \cdot V_{DS} = \frac{P}{S^{2}}$$

The significant reduction of the power dissipation is one of the most attractive features of full scaling

The power density per unit area remaining virtually unchanged

 C_g is scaled down by a factor of $S \Rightarrow$ the charge - up, and charge - down time improved

A reduction of various parasitic capacitances abd resistances

Departmen MMMUT, O

 Table 3.2
 Full scaling of MOSFET dimensions, potentials, and doping densities

Quantity	Before scaling	After scaling
Channel length	L	L' = L/S
Channel width	W	W' = W/S
Gate oxide thickness	t_{ox}	$t_{ox}' = t_{ox}/S$
Junction depth	x_j	$x'_j = x_j/S$
Power supply voltage	V_{DD}	$V_{DD}' = V_{DD}/S$
Threshold voltage	V_{T0}	$V_{T0}' = V_{T0}/S$
Doping densities	N_A	$N'_A = S \cdot N_A$
	N_D	$N'_D = S \cdot N_D$

 Table 3.3
 Effects of full scaling upon key device characteristics

Quantity	Before scaling	After scaling
Oxide capacitance	C_{ox}	$C_{ox}' = S \cdot C_{ox}$
Drain current	I_D	$I'_D = I_D/S$
Power dissipation	Р	$P' = P/S^2$
Power density	P/Area	P'/Area' = P/Area

Constant-voltage scaling

All dimensions of the MOSFET are reduced by a factor of S.

The power supply voltage and the terminal voltages remained unchanged.

The doping densities must be increased by a factor of S^2 in order to preserve the charge - field relations

The gate oxide capacitance per unit area C_{ox} is increased by a factor of S

 \Rightarrow The transconductance parameter is also increased by S

The linear mode drain current

$$I'_{D}(lin) = \frac{k'_{n}}{2} \cdot \left[2 \cdot \left(V'_{GS} - V'_{T}\right) \cdot V'_{DS} - V'^{2}_{DS}\right]$$
$$= \frac{S \cdot k_{n}}{2} \cdot \left[2 \cdot \left(V_{GS} - V_{T}\right) \cdot V_{DS} - V'^{2}_{DS}\right] = S \cdot I_{D}(lin)$$

The saturation mode drain current

$$I_{D}'(sat) = \frac{k_{n}'}{2} (V_{GS}' - V_{T}')^{2} = \frac{S \cdot k_{n}}{2} \cdot (V_{GS} - V_{T})^{2} = S \cdot I_{D}(sat)$$

The drain current density increased by a factor of S^3 The power dissipation

$$P' = I'_{D} \cdot V'_{DS} = (S \cdot I_{D}) \cdot V_{DS} = S \cdot P$$

The power density incressed by a factor of S^3

To summarized, constant - voltage scaling may be preferred over full scaling in mamy practical cases

because of the external voltage-level constraints.

 $Disadv. \Rightarrow$ increasing current density, power density

 \Rightarrow electromigration, hot carrier degradation, oxide breakdown, and electrical over - stress

Quantity	Before scaling	After scaling
Oxide capacitance	C_{ox}	$C'_{ox} = S \cdot C_{ox}$
Drain current	I_D	$I'_D = S \cdot I_D$
Power dissipation	Р	$P' = S \cdot P$
Power density	P/Area	$P'/Area' = S^3 \cdot (P/Area)$

 Table 3.5
 Effects of constant-voltage scaling upon key device characteristics

Short-channel effects

- A MOS transistor is called a short-channel device
 - If its channel length is on the same order of magnitude as the depletion region thickness of the S and D junction
 - The effective channel length $L_{eff} \approx S$, D junction depth x_j
 - Two physical phenomena arise from short-channel effects
 - The limitations imposed on electron drift characteristics in the channel
 - The lateral electric field E_y increased, v_d reached saturation velocity

$$-I_{D(sat)} = W \cdot v_{d(sat)} \cdot \int_{0}^{L_{eff}} q \cdot n(x) \cdot dx = W \cdot v_{d(sat)} \cdot |Q_{I}| = W \cdot v_{d(sat)} \cdot C_{ox} \cdot V_{DSAT}$$

- » No longer a quadratic function of V_{GS} , virtually independent of the channel length
- The carrier velocity in the channel also a function of E_x
 - » Influence the scattering of carriers in the surface

$$\mu_n(eff) = \frac{\mu_{no}}{1 + \Theta \cdot Ex} = \frac{\mu_{no}}{1 + \frac{\Theta \varepsilon_{ox}}{t_{ox} \varepsilon_{Si}} \cdot (V_{GS} - V_c(y))} = \frac{\mu_{no}}{1 + \eta \cdot (V_{GS} - V_T)}$$

 The modification of the threshold voltage due to the shortening channel length

Short-channel effects-modification of V_T

- The n⁺ drain and source diffusion regions in p-type substrate induce a significant amount of depletion charge
 - The long channel VT, overetimates the depletion charge support by the gate voltage
 - The bulk depletion region ⇒ asymmetric trapezoidal shape
 - A significant portion of the total depletion region charge is due the S and D junction depletion

Example 6 (1)

Consider an n-channel MOS process with the following parameters: substrate doping density $N_A = 10^{16} \text{ cm}^{-3}$, polysilicon gate doping density N_D (gate) = 2 × 10^{20} cm^{-3} , gate oxide thickness $t_{ox} = 50 \text{ nm}$, oxide-interface fixed charge density $N_{ox} = 4 \times 10^{10} \text{ cm}^{-2}$, and source and drain diffusion doping density $N_D = 10^{17} \text{ cm}^{-3}$. In addition, the channel region is implanted with p-type impurities (impurity concentration $N_I = 2 \times 10^{11} \text{ cm}^{-2}$) to adjust the threshold voltage. The junction depth of the source and drain diffusion regions is $x_j = 1.0 \ \mu\text{m}$.

Plot the variation of the zero-bias threshold voltage V_{T0} as a function of the channel length (assume that $V_{DS} = V_{SB} = 0$). Also find V_{T0} for $L = 0.7 \,\mu\text{m}$, $V_{DS} = 5 \,\text{V}$, and $V_{SB} = 0$.

First, we have to find the zero-bias threshold voltage using the conventional formula (3.23). The threshold voltage *without* the channel implant was already calculated for the same process parameters in Example 3.2, and was found to be $V_{T0} = 0.40$ V. The additional p-type channel implant will increase the threshold voltage by an amount of $q N_I / C_{ox}$. Thus, we find the long-channel zero-bias threshold voltage for the process described above as

$$V_{T0} = 0.40 \text{ V} + \frac{q \cdot N_I}{C_{ox}} = 0.40 \text{ V} + \frac{1.6 \times 10^{-19} \cdot 2 \times 10^{11}}{7.03 \times 10^{-8}} = 0.855 \text{ V}$$

Next, the amount of threshold voltage reduction due to short-channel effects must be calculated using (3.88). The source and drain junction built-in voltage is

$$\phi_0 = \frac{kT}{q} \cdot \ln\left(\frac{N_D \cdot N_A}{n_i^2}\right) = 0.026 \text{ V} \cdot \ln\left(\frac{10^{17} \cdot 10^{16}}{2.1 \times 10^{20}}\right) = 0.76 \text{ V}$$

For zero drain bias, the depth of source and drain junction depletion regions is found as

Example 6 (2)

$$x_{dS} = x_{dD} = \sqrt{\frac{2 \cdot \varepsilon_{Si}}{q \cdot N_A} \cdot \phi_0} = \sqrt{\frac{2 \cdot 11.7 \cdot 8.85 \times 10^{-14}}{1.6 \times 10^{-19} \cdot 10^{16}} \cdot 0.76}$$
$$= 31.4 \times 10^{-6} \text{ cm} = 0.314 \ \mu\text{m}$$

Now, the threshold voltage shift ΔV_{T0} due to short-channel effects can be calculated as a function of the gate (channel) length *L*.

$$\Delta V_{T0} = \frac{1}{C_{ox}} \cdot \sqrt{2q\varepsilon_{Si}N_A |2\phi_F|} \cdot \frac{x_j}{2L} \cdot \left[\left(\sqrt{1 + \frac{2x_{dS}}{x_j}} - 1 \right) + \left(\sqrt{1 + \frac{2x_{dD}}{x_j}} - 1 \right) \right]$$
$$= \frac{4.82 \times 10^{-8} \text{ C/cm}^2}{7.03 \times 10^{-8} \text{ F/cm}^2} \cdot \frac{1.0 \,\mu\text{m}}{L} \cdot \left(\sqrt{1 + \frac{2 \cdot 0.314 \,\mu\text{m}}{1.0 \,\mu\text{m}}} - 1 \right)$$

Finally, the zero-bias threshold voltage is found as

$$V_{T0}(short \ channel) = 0.855 \ \mathrm{V} - 0.19 \ \mathrm{V} \cdot \frac{1}{L[\mu\mathrm{m}]}$$

The following plot shows the variation of the threshold voltage with the channel length. The threshold voltage decreases by as much as 50% for channel lengths in the submicron range, while it approaches the value of 0.8 V for larger channel lengths.

Example 6 (3)

Since the conventional threshold voltage expression (3.23) is not capable of accounting for this drastic reduction of V_{T0} at smaller channel lengths, its application for short-channel MOSFETs must be carefully restricted.

Now, consider the variation of the threshold voltage with the applied drain-tosource voltage. Equation (3.82) shows that the depth of the drain junction depletion region increases with the voltage V_{DS} . For a drain-to-source voltage of $V_{DS} = 5$ V, the drain depletion depth is found as:

$$x_{dD} = \sqrt{\frac{2 \cdot \varepsilon_{Si}}{q \cdot N_A} \cdot (\phi_0 + V_{DS})}$$
$$= \sqrt{\frac{2 \cdot 11.7 \cdot 8.85 \times 10^{-14}}{1.6 \times 10^{-19} \cdot 10^{16}} \cdot (0.76 + 5.0)} = 0.863 \,\mu\text{m}$$

The resulting threshold voltage shift can be calculated by substituting x_{dD} found above in (3.88).

$$\Delta V_{T0} = \frac{1}{C_{ox}} \cdot \sqrt{2q\varepsilon_{Si}N_A |2\phi_F|} \cdot \frac{x_j}{2L} \cdot \left[\left(\sqrt{1 + \frac{2x_{dS}}{x_j}} - 1 \right) + \left(\sqrt{1 + \frac{2x_{dD}}{x_j}} - 1 \right) \right]$$
$$= \frac{4.82 \times 10^{-8}}{7.03 \times 10^{-8}} \cdot \frac{1.0}{2 \cdot 0.7} \cdot \left[\left(\sqrt{1 + \frac{2 \cdot 0.314}{1.0}} - 1 \right) + \left(\sqrt{1 + \frac{2 \cdot 0.863}{1.0}} - 1 \right) \right]$$
$$= 0.45 V$$

The threshold voltage of this short-channel MOS transistor is calculated as

$$V_{T0} = 0.855 \text{ V} - 0.45 \text{ V} = 0.405 \text{ V}$$

which is significantly lower than the threshold voltage predicted by the conventional long-channel formula (3.23).

36

Narrow-channel effect

- Channel width W on the same order of magnitude as the maximum depletion region thickness x_{dm}
- The actual threshold voltage of such device is larger than that predicted by the conventional threshold voltage
- Fringe depletion region under field oxide

-
$$V_{T0}$$
 (narrow channel) = $V_{T0} + \Delta V_{T0}$

$$\Delta \mathbf{V}_{\mathrm{T0}} = \frac{1}{C_{ox}} \cdot \sqrt{2q \varepsilon_{Si} N_A |2\phi_F|} \cdot \frac{\kappa \cdot x_{dm}}{W}$$

 $\kappa = \frac{\pi}{2}$ for depletion region modeled by quarter - circular arcs

37

Figure 3.26 Cross-sectional view (across the channel) of a narrow-channel MOSFET. Note that Q_{NC} indicates the extra depletion charge due to narrow-channel effects.

Other limitations imposed by small-device geometries

- The current flow in the channel are controlled by two dimensional electric field vector
- Subthreshold conduction
 - Drain-induced barrier lowering (DIBL)
 - A nonzero drain current I_D for V_{GS} < V_{T0}

$$I_D(subthreshold) \cong \frac{qD_nWx_cn_0}{L_B} \cdot e^{\frac{q\phi_r}{kT}} \cdot e^{\frac{q}{kT}(A \cdot V_{GS} + B \cdot V_{DS})}$$

- Punch-through
 - The gate voltage loses its control upon the drain current, and the current rises sharply
- Gate oxide thickness t_{ox} scaled to t_{ox}/S , is restricted by processing difficulties
 - Pinholes, oxide breakdown
- Hot-carrier effect

Figure 3.27 Hot-carrier injection into the gate oxide and resulting oxide damage.

Department of ECE MMMUT, Gorakhpur

Figure 3.28 Typical drain current vs. drain voltage characteristics of an n-channel MOS transistor before and after hot-carrier induced oxide damage.