Control Systems

Subject Code: BEC-26

Unit-I

Shadab A. Siddique
Assistant Professor

Maj. G. S. Tripathi
Associate Professor
Third Year ECE

Department of Electronics \& Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur

Mason's Rule (Mason, 1953)

- The block diagram reduction technique requires successive application of fundamental relationships in order to arrive at the system transfer function.
- On the other hand, Mason's rule for reducing a signal-flow graph to a single transfer function requires the application of one formula.
- The formula was derived by S. J. Mason when he related the signal-flow graph to the simultaneous equations that can be written from the graph.

Mason's Gain Formula:

- The transfer function, $C(s) / R(s)$, of a system represented by a signal-flow graph is;

$$
\frac{C(s)}{R(s)}=\frac{\sum_{i=1}^{n} P_{i} \Delta_{i}}{\Delta} \quad \text { Where, }
$$

$$
\begin{aligned}
& n=\text { number of forward paths. } \\
& P_{i}=\text { the } i^{\text {th }} \text { forward-path gain. } \\
& \Delta=\text { Determinant of the system } \\
& \Delta_{i}=\text { Determinant of the } i^{\text {th }} \text { forward path }
\end{aligned}
$$

- Δ is called the signal flow graph determinant or characteristic function. Since $\Delta=0$ is the system characteristic equation.

$$
\frac{C(s)}{R(s)}=\frac{\sum_{i=1}^{n} P_{i} \Delta_{i}}{\Delta}
$$

- $\Delta=1$ - (sum of all individual loop gains) + (sum of the products of the gains of all possible two loops that do not touch each other) - (sum of the products of the gains of all possible three loops that do not touch each other) $+\ldots$ and so forth with sums of higher number of non-touching loop gains.
- $\Delta_{i}=$ value of Δ for the part of the block diagram that does not touch the i-th forward path ($\Delta_{\mathrm{i}}=1$ if there are no non-touching loops to the i-th path.)

Systematic approach for problems:

1. Calculate forward path gain P_{i} for each forward path i.
2. Calculate all loop transfer functions
3. Consider non-touching loops 2 at a time
4. Consider non-touching loops 3 at a time
5. etc
6. Calculate Δ from steps $2,3,4$ and 5
7. Calculate Δ_{i} as portion of Δ not touching forward path i

Example\#1: Apply Mason's Rule to calculate the transfer function of the system represented by following Signal Flow Graph

Solution:

There are two forward paths,

$$
P_{1}=G_{1} G_{2} G_{4} \quad P_{2}=G_{1} G_{3} G_{4}
$$

Therefore, $\quad \frac{C}{R}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta}$
There are three feedback loops

$$
L_{1}=G_{1} G_{4} H_{1}, \quad L_{2}=-G_{1} G_{2} G_{4} H_{2}, \quad L_{3}=-G_{1} G_{3} G_{4} H_{2}
$$

There are no non-touching loops, therefore

$$
\begin{aligned}
& \Delta=1-(\text { sum of all individual loop gains }) \\
& \Delta=1-\left(L_{1}+L_{2}+L_{3}\right) \\
& \Delta=1-\left(G_{1} G_{4} H_{1}-G_{1} G_{2} G_{4} H_{2}-G_{1} G_{3} G_{4} H_{2}\right)
\end{aligned}
$$

Eliminate forward path-1

$$
\begin{array}{ll}
\Delta_{1}=1-(\text { sum of all individual loop gains })+\ldots \\
\Delta_{1}=1 & \Delta_{2}=1-(\text { sum of all individual loop gains })+\ldots \\
\Delta_{2}=1
\end{array}
$$

$$
\begin{aligned}
\frac{C}{R}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta} & =\frac{G_{1} G_{2} G_{4}+G_{1} G_{3} G_{4}}{1-G_{1} G_{4} H_{1}+G_{1} G_{2} G_{4} H_{2}+G_{1} G_{3} G_{4} H_{2}} \\
& =\frac{G_{1} G_{4}\left(G_{2}+G_{3}\right)}{1-G_{1} G_{4} H_{1}+G_{1} G_{2} G_{4} H_{2}+G_{1} G_{3} G_{4} H_{2}}
\end{aligned}
$$

Example\#2: Apply Mason's Rule to calculate the transfer function of the system represented by following Signal Flow Graph

Solution:

1. Calculate forward path gains for each forward path.

$$
P_{1}=G_{1} G_{2} G_{3} G_{4}(\text { path } 1) \text { and } P_{2}=G_{5} G_{6} G_{7} G_{8}(\text { path } 2)
$$

2. Calculate all loop gains. $L_{1}=G_{2} H_{2}, \quad L_{2}=H_{3} G_{3}, \quad L_{3}=G_{6} H_{6}, \quad L_{4}=G_{7} H_{7}$

Example\#2: Continue

3. Consider two non-touching loops.

$$
\begin{array}{ll}
\mathrm{L}_{1} \mathrm{~L}_{3} & \mathrm{~L}_{1} \mathrm{~L}_{4} \\
\mathrm{~L}_{2} \mathrm{~L}_{4} & \mathrm{~L}_{2} \mathrm{~L}_{3}
\end{array}
$$

4. Consider three non-touching loops: None.
5. Calculate Δ from steps 2,3,4

$$
\begin{aligned}
& \Delta=1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right)+\left(L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4}\right) \\
& \Delta=1-\left(G_{2} H_{2}+H_{3} G_{3}+G_{6} H_{6}+G_{7} H_{7}\right)+ \\
& \quad\left(G_{2} H_{2} G_{6} H_{6}+G_{2} H_{2} G_{7} H_{7}+H_{3} G_{3} G_{6} H_{6}+H_{3} G_{3} G_{7} H_{7}\right)
\end{aligned}
$$

Eliminate forward path-1

$$
\Delta_{1}=1-\left(L_{3}+L_{4}\right)
$$

$$
\Delta_{1}=1-\left(G_{6} H_{6}+G_{7} H_{7}\right)
$$

Eliminate forward path-2

$$
\begin{aligned}
& \Delta_{2}=1-\left(L_{1}+L_{2}\right) \\
& \Delta_{2}=1-\left(G_{2} H_{2}+G_{3} H_{3}\right)
\end{aligned}
$$

Example\#2: Continue

$$
\begin{gathered}
\frac{Y(s)}{R(s)}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta} \\
\frac{Y(s)}{R(s)}=\frac{G_{1} G_{2} G_{3} G_{4}\left[1-\left(G_{6} H_{6}+G_{7} H_{7}\right)\right]+G_{5} G_{6} G_{7} G_{8}\left[1-\left(G_{2} H_{2}+G_{3} H_{3}\right)\right]}{1-\left(G_{2} H_{2}+H_{3} G_{3}+G_{6} H_{6}+G_{7} H_{7}\right)+\left(G_{2} H_{2} G_{6} H_{6}+G_{2} H_{2} G_{7} H_{7}+H_{3} G_{3} G_{6} H_{6}+H_{3} G_{3} G_{7} H_{7}\right)}
\end{gathered}
$$

Example\#3: Find the transfer function, $C(s) / R(s)$, for the signal-flow graph in figure below.

Solution:

- There is only one forward Path

$$
P_{1}=G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s)
$$

- There are four feedback loops.

$$
\begin{array}{lll}
\text { L1. } & G_{2}(s) H_{1}(s) & \text { L3. } G_{7}(s) H_{4}(s) \\
\text { L2. } & G_{4}(s) H_{2}(s) & \text { L4. } G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s) G_{6}(s) G_{7}(s) G_{8}(s)
\end{array}
$$

- Non-touching loops taken two at a time.

L 1 and $\mathrm{L} 2: G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s) \mathrm{L} 2$ and $\mathrm{L} 3: G_{4}(s) H_{2}(s) G_{7}(s) H_{4}(s)$
L 1 and $\mathrm{L} 3: G_{2}(s) H_{1}(s) G_{7}(s) H_{4}(s)$

- Non-touching loops taken three at a time.

L1, L2, L3: $G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s) G_{7}(s) H_{4}(s)$

Example\#3: Continue

$$
\begin{aligned}
\Delta= & 1-\left[G_{2}(s) H_{1}(s)+G_{4}(s) H_{2}(s)\right. \\
& \left.+G_{7}(s) H_{4}(s)+G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s) G_{6}(s) G_{7}(s) G_{8}(s)\right] \\
& +\left[G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s)+G_{2}(s) H_{1}(s) G_{7}(s) H_{4}(s)\right. \\
& \left.+G_{4}(s) H_{2}(s) G_{7}(s) H_{4}(s)\right] \\
& -\left[G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s) G_{7}(s) H_{4}(s)\right]
\end{aligned}
$$

- Eliminate forward path-1

$$
\Delta_{1}=1-G_{7}(s) H_{4}(s)
$$

Example\#5: From Block Diagram to Signal-Flow Graph Models

$$
\begin{aligned}
& \Delta=1+\left(G_{1} G_{2} G_{3} G_{4} H_{3}+G_{2} G_{3} H_{2}+G_{3} G_{4} H_{1}\right) \\
& P_{1}=G_{1} G_{2} G_{3} G_{4} ; \quad \Delta_{1}=1
\end{aligned} \quad \Longrightarrow \quad G=\frac{C(s)}{R(s)}=\frac{G_{1} G_{2} G_{3} G_{4}}{1+G_{1} G_{2} G_{3} G_{4} H_{3}+G_{2} G_{3} H_{2}+G_{3} G_{4} H_{1}}
$$

Example\#4: Find the control ratio C/R for the system given below.

Solution:

- The signal flow graph is shown in the figure.
- The two forward path gains are $P_{1}=G_{1} G_{2} G_{3}$ and $P_{2}=G_{1} G_{4}$

- The five feedback loop gains
are $P_{11}=G_{1} G_{2} H_{1}, P_{21}=G_{2} G_{3} H_{2}, P_{31}=-G_{1} G_{2} G_{3}$,

$$
P_{41}=G_{4} H_{2} \text {, and } P_{51}=-G_{1} G_{4} .
$$

- All feedback loops touches the two forward paths, hence $\Delta_{1}=\Delta_{2}=1$
- Hence the control ratio

$$
\mathrm{T}=\frac{C}{R}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta}=\frac{G_{1} G_{2} G_{3}+G_{1} G_{4}}{1+G_{1} G_{2} G_{3}-G_{1} G_{2} H_{1}-G_{2} G_{3} H_{2}-G_{4} H_{2}+G_{1} G_{4}}
$$

$$
\begin{aligned}
\Delta & =1-\left(P_{11}+P_{21}+P_{31}+P_{41}+P_{51}\right) \\
& =1+G_{1} G_{2} G_{3}-G_{1} G_{2} H_{1}-G_{2} G_{3} H_{2}-G_{4} H_{2}+G_{1} G_{4}
\end{aligned}
$$

- There are no non-touching loops, hence

Example\#6: Find the control ratio C/R for the system given below.

Example\#6: Continue

7 loops:

$$
\begin{array}{llll}
{\left[G_{1} \cdot(-1)\right] ;} & {\left[G_{2} \cdot(-1)\right] ;} & {\left[G_{1} \cdot(-1) \cdot G_{2} \cdot 1\right] ;} & {\left[(-1) \cdot G_{1} \cdot \boldsymbol{1} \cdot(-1)\right] ;} \\
{\left[(-1) \cdot G_{1} \cdot(-1) \cdot \boldsymbol{G}_{2} \cdot \boldsymbol{1} \cdot(-1)\right] ;} & & {\left[\mathbf{1} \cdot \boldsymbol{G}_{2} \cdot \boldsymbol{1} \cdot(-1)\right] ;} & {\left[\boldsymbol{1} \cdot \boldsymbol{G}_{2} \cdot \boldsymbol{1} \cdot \boldsymbol{G}_{1} \cdot \mathbf{1} \cdot(-1)\right] .}
\end{array}
$$

3 '2 non-touching loops':

$$
\left[G_{1} \cdot(-1)\right] \cdot\left[G_{2} \cdot(-1)\right] ; \quad\left[(-1) \cdot G_{1} \cdot 1 \cdot(-1)\right] \cdot\left[G_{2} \cdot(-1)\right]
$$

$\left[1 \cdot G_{2} \cdot 1 \cdot(-1)\right] \cdot\left[G_{1} \cdot(-1)\right]$.
Then:

$$
\Delta=1+2 G_{2}+4 G_{1} G_{2}
$$

4 forward paths:

$$
p_{1}=(-1) \cdot G_{1} \cdot 1 \quad \Delta_{1}=1+G_{2}
$$

$$
\begin{array}{rlr}
p_{2}=(-1) \cdot G_{1} \cdot(-1) \cdot G_{2} \cdot 1 & \Delta_{2}=1 \\
& p_{3}=1 \cdot G_{2} \cdot 1 & \\
p_{4}=1 \cdot G_{2} \cdot 1 \cdot G_{1} \cdot 1 & & \Delta_{4}=1
\end{array}
$$

We have

$$
\begin{aligned}
\frac{C(s)}{R(s)}= & \frac{\sum p_{k} \Delta_{k}}{\Delta} \\
& =\frac{G_{2}-G_{1}+2 G_{1} G_{2}}{1+2 G_{2}+4 G_{1} G_{2}}
\end{aligned}
$$

