MPM: 203 NUCLEAR AND PARTICLE PHYSICS

UNIT -I: Nuclei And Its Properties Lecture-5

By Prof. B. K. Pandey, Dept. of Physics and Material Science

Nuclear Magnetic Moment

- The Magnetic dipole moment produced by a current loop is given as

$$
\boldsymbol{\mu}=\mathrm{iA}
$$

Where I is the current and A is the area of the loop

- A spinless particle having charge e revolving in a loop will set a magnetic dipole moment. If particle revolves with velocity v in a circular orbit of radius r, then equivalent current
- $\mathrm{i}=\frac{\text { Charge }}{\text { time period }}=\frac{e}{T}=\frac{e}{2 \pi r / v}=\frac{e v}{2 \pi r}$
- Magnetic dipole moment $=\boldsymbol{\mu}_{l}=\mathrm{i} \mathrm{A}=\frac{e v}{2 \pi r} \pi r^{2}$, i.e. $\boldsymbol{\mu}_{l}=\frac{e v r}{2}$
- The orbital angular momentum of the particle $L=m v r$
- The ratio of magnetic dipole moment to the orbital angular momentum is called the gyro-magnetic ratio i.e.
- $\gamma=\frac{\mu_{l}}{L}=\frac{e v r / 2}{m v r}=\frac{e}{2 m}$

Nuclear Magnetic Moment Contd..

- The relation will also hold for the components of two vectors $\vec{\mu}_{l}$ and \vec{l} along any direction (in the direction of magnetic field)
- Z- component of dipole magnetic moment
- $\left(\mu_{L}\right)_{Z}=\frac{e}{2 m} L_{Z}=\frac{e}{2 m} m_{l} \hbar$
- $\left(\mu_{L}\right)_{Z}=\frac{e \hbar}{2 m} m_{l}$
- This is the relation for the magnetic dipole moment along the direction of magnetic field due to the orbital motion of electron in an atom.
- By analogy same orbital motion may hold for proton inside the nucleus.
- For the proton, the mass m is replaced by proton mass m_{p} i. e. dipole moment of proton in the nucleus along Z - direction is
- $\left(\mu_{L}\right)_{Z}=\frac{e \hbar}{2 m_{p}} m_{l}$

Nuclear Magnetic Moment Contd..

- The quantity $\frac{e \hbar}{2 m_{p}}$ forms the natural unit of nuclear magnetic magnetic moment; it is called nuclear magneton.
- i. e. 1 nuclear magneton (nm), $\mu_{n}=\frac{e \hbar}{2 m_{p}}=5.0505 \times 10^{-27}$ Joule/tesla.
- Clearly the Z- component of the magnetic dipole moment resulting from orbital motion of a proton is just m_{l} times nuclear magnetons.
- Maximum value of m_{l} is l ; therefore magnitude of maximum value of $\left(\mu_{L}\right)_{Z}$ is given as
- $\left(\mu_{L}\right)_{\text {Zmaximun }}=\frac{e \hbar}{2 m_{p}} l$

Nuclear Magnetic Moment Contd..

- Like electron, proton also spins about its axis; therefore it also possesses magnetic dipole moment due to spin motion
- The magnetic dipole moment due to spin motion of proton is
- $\left(\mu_{S}\right)_{Z}=\frac{e \hbar}{2 m_{p}} m_{S}$
- Where m_{s} can take only two values $\pm \frac{1}{2}$
- Neutron also possesses magnetic dipole moment due to the spin motion.
- Total angular momentum of nucleus is the contribution due to orbital and spin motions, therefore the total magnetic dipole moment of a nucleus is the vector sum of magnetic dipole moments due to orbital and spin motions of protons and due to spin motion of neutron.

Nuclear Magnetic Moment Contd..

- The Magnetic dipole moment is conveniently written as

$$
\vec{\mu}=g_{l} \mu_{N} \vec{I}
$$

- Where $\boldsymbol{g}_{\boldsymbol{l}}$ is nuclear g - factor and $\overrightarrow{\boldsymbol{I}}$ is the total angular momentum .
- In the vector form $\overrightarrow{\boldsymbol{I}}=\overrightarrow{\boldsymbol{L}}+\overrightarrow{\boldsymbol{S}}$.
- The maximum observable component of $\vec{\mu}$ is known as the magnetic moment of the nucleus and is expressed as $\mu=\boldsymbol{g}_{l} \boldsymbol{\mu}_{N}$ l.
- It may be noted that it is the value of nucleon magnetic moment which is measured experimentally is about $\frac{1}{1000}$ of the electromagnetic moment.
- It implies that the electrons can not be the part of nuclear constituents.

Electric Quadrupole Moment

- The electric dipole moment measures the departure of the a nucleus from spherical symmetry.
- Usually the nucleus is assumed spherically symmetrical.
- But it is not always necessary to make this assumption.
- Any nucleus in a stationary state does not possess a dipole moment because the centre of charge and centre of mass can be assumed to coincide with one another.
- The electric quadrupole moment of a nucleus is calculated as follows from the classical consideration.
- Let us consider that the charge is not situated at the centre of the nucleus (departure from spherical symmetry) but is located at P^{\prime} having rectangular co-ordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).

Electric Quadrupole Moment

- The potential at a point P on the z-axis due to this charge is
- $\boldsymbol{\phi}=\frac{1}{4 \pi \epsilon_{0}} \frac{e}{a_{1}}$.

Where

$$
\begin{equation*}
a_{1}=\left(a^{2}+r^{2}-2 \operatorname{arcos} \alpha\right)^{1 / 2} \tag{2}
\end{equation*}
$$

- r is the distance of the charge from the origin and is given by
- $a_{1}=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$ and $\cos \alpha=\frac{z}{r}$, defines the angle between a and r .
- Now the equation of the potential can be given as
- $\boldsymbol{\phi}=\frac{1}{4 \pi \epsilon_{0}} \frac{e}{\left(a^{2}+r^{2}-2 \operatorname{arcos} \alpha\right)^{1 / 2}}$

Electric Quadrupole Moment Contd...

- $\boldsymbol{\phi}=\frac{1}{4 \pi \epsilon_{0}} \frac{e}{a}\left(1-2 \frac{r}{a} \cos \alpha-\frac{r^{2}}{a^{2}}\right)^{-1 / 2}$
- We know
- $(1-x)^{-1 / 2}=1+\frac{1}{2} x+\frac{3}{8} x^{2}+\frac{5}{16} x^{3}+$.
- Thus
- $\boldsymbol{\phi}=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{e}{a}+\frac{e}{a^{2}} r \cos \alpha+\frac{e}{a^{3}} r^{2}\left(\frac{3}{2} \cos ^{2} \alpha-\frac{1}{2}\right)+\frac{e}{a^{4}} r^{3}\left(\frac{5}{2} \cos ^{3} \alpha-\frac{3}{2} \cos \alpha\right)\right]-$
- $\boldsymbol{\phi}=\frac{1}{4 \pi \epsilon_{0}} \sum_{n=0}^{\infty} \frac{e r^{n}}{a^{n+1}} P_{n}(\cos \alpha)$
- Where $P_{n}(\cos \alpha)$ are the Legendre polynomials and n is the multiple order.
- In equation (4) the coefficient of $\left(\frac{1}{a}\right)$ is known as monopole strength, the coefficient of $\left(\frac{1}{a^{2}}\right)$ is the z-component of the dipole moment, the coefficient of $\left(\frac{1}{a^{3}}\right)$ is the Z-component of quadrupole moment, the coefficient of $\left(\frac{1}{a^{4}}\right)$

Electric Quadrupole Moment Contd...

- In equation (4) the coefficient of $\left(\frac{1}{a}\right)$ is known as monopole strength, the coefficient of $\left(\frac{1}{a^{2}}\right)$ is the z-component of the dipole moment, the coefficient of $\left(\frac{1}{a^{3}}\right)$ is the Z-component of quadrupole moment, the coefficient of $\left(\frac{1}{a^{4}}\right)$ is the z-component of octupole moment etc.
- The first term in the above expression is the ordinary Coulomb potential.
- Thus the nucleus possesses a net electric quadrupole moment given by
- $\mathrm{Q}=\mathrm{er} r^{2}\left(\frac{3}{2} \cos ^{2} \alpha-\frac{1}{2}\right)=\frac{\mathrm{er}}{} \mathrm{r}^{2}\left(3 \cos ^{2} \alpha-1\right)$
- Putting $\cos \alpha=\frac{z}{r}$ we get
- $\mathrm{Q}=\frac{e}{2}\left(3 z^{2}-r^{2}\right)$

Discussion

- According to the expression $\mathrm{Q}=\frac{e}{2}\left(3 z^{2}-r^{2}\right)$
- The quadrupole moment is zero if the charges are evenly placed about all three axes.
- Thus the quadrupole moment for a spherically symmetric charge distribution is zero.
- Deviation from spherical charge distribution nuclei creates quadrupole effect.
- If Q is positive charge, nuclei are elongated along Z-axis while if Q is negative, the nuclei are contracted along z axis.
- The unit of quadrupole moment is coulomb x barn (1 barn $=$ $10^{-28} \mathrm{~m}^{2}$)
- Quadrupole moment can be estimated by variety of processes which involve interaction between the nucleus and the applied field or the field due to atomic electron.

Discussion

- All the nuclei are not spherical in shape, some are prolate ellipsoids while some are oblate ellipsoids.
- The nuclei having N (number of neutrons) or Z (Number of Protons) values $2,8,20,28,50,82,126$ are spherical in shape.
- Quadrupole moments mostly lie in the range 10^{-26} to $10^{-23} \mathrm{~cm}^{2}$, which is of the order of nuclear area.
- The nuclear size is of the order of $1.2 A^{1 / 3} \times 10^{-15} \mathrm{~m}$.

