ELECTRONIC MEASUREMENT \& INSTRUMENTATION (BEC-29)

Instructor

Dr. B. P. Pandey
Assistant Professor
Department of Electronics and Communication Engineering Madan Mohan Malaviya University of Technology, Gorakhpur August, 2020

UNIT-1 Lecture 3 \& 4

Qualities, Measurements and Digital Display Devices

CONTENTS

Lecture 1:

- Performance Characteristics
- Error in measurement

Lecture 2:

- Types of static error
- Sources of error

Lecture 3 \& 4:

- Arithmetic mean
- Deviation from the Mean
- Average Deviation
- Standard Deviation

Lecture 5 \& 6:

- Limiting Errors
- LED

Lecture 7:

- LCD
- Incandescent Display

Lecture 8:

- LVD
- Printers

Lecture 9:

- Digital voltmeters
- Spectrum analyzer

Statistical Analysis of Error

Arithmetic Mean:

$>$ The most probable value of a measured value is the arithmetic mean of readings taken.
$>$ The arithmetic mean of n measurements at a specific count a variable x is given by the expression:

$$
\begin{aligned}
& \bar{x}=\frac{x 1+x 2+x 3-----x n}{n} \\
& \bar{x}=\text { arithmetic mean } \\
& \mathrm{n}=\text { no of readings } \\
& x_{n}=\text { nth reading taken }
\end{aligned}
$$

Deviation from the Mean Value: This is the departure of the given reading from the arithmetic mean of readings. If the deviation of the first reading, x 1 , called deviation d 1 and second reading x 2 called d 2 and so on.
The deviation from the mean is expressed as:

- $\mathrm{d} 1=\mathrm{x} 1-\bar{x}, \mathrm{~d} 2=\mathrm{x} 2-\bar{x}$ and so on.
- The deviation may be positive or negative.
- The algebraic sum of all the deviations must be zero.

Average Deviation: is an indication of the precision of instrument used in the measurement.

- It is defined as the sum of the absolute values of the deviation divided by the no. of the readings. The absolute value is the independent of the sign.
- $\mathrm{Dav}=\frac{d 1+d 2+d 3-----d n}{n}$
- Dav = average deviation
- $d 1, d 2, d 3-----d n=$ absolute value of deviation
- $\mathrm{N}=$ no of readings

Standard Deviation: is the square root of sum of all individual deviations squared, divided by the number of readings.

- $\sigma=\sqrt{\frac{d 1^{2}+d 2^{2}+\ldots \ldots . . d n^{2}}{n}}$ where $\sigma=$ standard deviation
- It is also known as root mean square deviation and is the most important parameter in statistical analysis of measured data.

Limiting Errors: Most manufacturers of measuring measurement specify accuracy within \% of full-scale reading. This specification is called the limiting error. For ex- manufacturer of a certain voltmeter may specify the instrument to be accurate within $\pm 2 \%$ of the fullscale reading.

Assignment Questions

- What are limiting errors? What is the significance of limiting errors?
- Define the following terms:

1. Average value
2. Arithmetic mean
3. Deviation
4. Standard deviation

- What is the difference between average deviation and standard deviation?

Practice Problems

- The accuracies of five precision resistances are checked by comparing them with 1.000Ω resistor. The measured resistances are as follows: $\mathrm{R} 1=1.001 \Omega, \mathrm{R} 2=1.002 \Omega, \mathrm{R} 3=$ $0.999 \Omega, \mathrm{R} 4=0.998 \Omega$ and $\mathrm{R} 5=1.000 \Omega$. Calculate the average resistance and measured deviation.
- Determine the standard deviation and probable measurement error for the group of resistors defined above.
- The output voltage from a precision 12 V power supply, monitored at intervals over a period of time, produced the following readings: $\mathrm{V} 1=12.001 \mathrm{~V}, \mathrm{~V} 2=11.999 \mathrm{~V}, \mathrm{~V} 3=11.998 \mathrm{~V}$, $\mathrm{V} 4=12.003 \mathrm{~V}, \mathrm{~V} 5=12.002 \mathrm{~V}$ and $\mathrm{V} 6=11.997 \mathrm{~V}, \mathrm{~V} 7=12.002 \mathrm{~V}$, $\mathrm{V} 8=12.003 \mathrm{~V}, \mathrm{~V} 9=11.998 \mathrm{~V}$ and $\mathrm{V} 10=11.997 \mathrm{~V}$. Calculate:
- Average voltage level
- The mean deviation
- Standard deviation
- Probable error in the measured voltage at any time.

Contd..

- A sample group taken from a batch of resistors give the following results: $\mathrm{R} 1=100.06 \Omega, \mathrm{R} 2=100.03 \Omega, \mathrm{R} 3=100.04 \Omega$, $\mathrm{R} 4=100.08 \Omega, \mathrm{R} 5=100.06 \Omega, \mathrm{R} 6=100.07 \Omega, \mathrm{R} 7=99.05 \Omega$, $\mathrm{R} 8=99.04 \Omega, \mathrm{R} 9=99.02 \Omega, \mathrm{R} 10=100.04 \Omega, \mathrm{R} 11=100.03 \Omega$, $\mathrm{R} 12=99.04 \Omega, \mathrm{R} 13=99.07 \Omega, \mathrm{R} 14=99.06 \Omega$ and $\mathrm{R} 15=99.03 \Omega$. The errors are assumed to be random. Specify the mean value of the resistors and the tolerance if approximately 95% of the components are to be within the tolerance limits.

THANK YOU

