
Object Oriented Programming

Unit -2

Object oriented programming

• Object-oriented programming (OOP) is a
computer programming model that organizes
software design around data, or objects, rather
than functions and logic. An object can be defined
as a data field that has unique attributes and
behaviour.

• OOP focuses on the objects that developers want
to manipulate rather than the logic required to
manipulate them. This approach to programming
is well-suited for programs that are large,
complex and actively updated or maintained.

Object oriented programming

C++ What are Classes and Objects?
Classes and objects are the two main aspects of

object-oriented programming.
Look at the following illustration to see the

difference between class and objects:
class objects
Fruit Apple

Banana
Mango

•So, a class is a template for objects, and an object is an
instance of a class.
•When the individual objects are created, they inherit all the
variables and functions from the class.

Classes/Objects

Example
Create a class called "MyClass":

class MyClass { // The class
public: // Access specifier
int myNum; // Attribute (int variable)
string myString; // Attribute (string
variable)

};

Inheritance

• Inheritance is an important pillar of OOP(Object
Oriented Programming). It is the mechanism in
java by which one class is allow to inherit the
features(fields and methods) of another class.

• Reusability: Inheritance supports the concept of
“reusability”, i.e. when we want to create a new
class and there is already a class that includes
some of the code that we want, we can derive our
new class from the existing class. By doing this,
we are reusing the fields and methods of the
existing class.

Polymorphism

• The word polymorphism means having many
forms. In simple words, we can define
polymorphism as the ability of a message to
be displayed in more than one form.

• Polymorphism allows you to define one
interface and have multiple implementations.

Dynamic Binding

• C++ provides facility to specify that the compiler
should match function calls with the correct
definition at the run time; this is called dynamic
binding or late binding or run-time binding.

• Dynamic binding is achieved using virtual
functions. Base class pointer points to derived
class object. And a function is declared virtual in
base class, then the matching function is
identified at run-time using virtual table entry.

Message Passing

• Objects communicate with one another by
sending and receiving information to each
other. A message for an object is a request for
execution of a procedure and therefore will
invoke a function in the receiving object that
generates the desired results.

• Message passing involves specifying the name
of the object, the name of the function and
the information to be sent.

Encapsulation
• Encapsulation is defined as the wrapping up of

data under a single unit. It is the mechanism
that binds together code and the data it
manipulates.

• Other way to think about encapsulation is, it is
a protective shield that prevents the data from
being accessed by the code outside this shield.

Abstraction

• Data Abstraction is the property by virtue of
which only the essential details are displayed
to the user.The trivial or the non-essentials
units are not displayed to the user

Advantage

Object-oriented programming has several advantages
over procedural programming:
•OOP is faster and easier to execute
•OOP provides a clear structure for the programs
•OOP helps to keep the C++ code DRY "Don't Repeat
Yourself", and makes the code easier to maintain,
modify and debug
•OOP makes it possible to create full reusable
applications with less code and shorter development
time

Scope resolution operator in C++

• The :: (scope resolution) operator is used to get hidden
names due to variable scopes so that you can still use
them.

• The scope resolution operator can be used as both unary
and binary. You can use the unary scope operator if a
namespace scope or global scope name is hidden by a
particular declaration of an equivalent name during a block
or class.

• For example, if you have a global variable of name my_var
and a local variable of name my_var, to access global
my_var, you'll need to use the scope resolution operator.

Example
#include <iostream>
using namespace std;
int my_var = 0;

int main(void)
{
int my_var = 0;

::my_var = 1;
// set global my_var to 1
my_var = 2;

// set local my_var to 2
cout << ::my_var << ", " << my_var;
return 0;

}

Output:-
1, 2

Example
#include <iostream>
using namespace std;
class X
{
public:

static int count;
};
int X::count = 10; // define static data member
int main ()
{
int X = 0; // hides class type X
cout << X::count << endl; // use static member of

class X
}

Output:-
10

Scope of Variables in C++

• A scope is a region of the program and broadly
speaking there are three places, where variables
can be declared −

• Inside a function or a block which is called local variables,
• In the definition of function parameters which is called

formal parameters.
• Outside of all functions which are called global variables.

• Local variables can be used only by statements
that are inside that function or block of code.
Local variables are not known to functions on
their own.

Example
#include <iostream>
using namespace std;
int main ()
{ // Local variable declaration:

int a, b;
int c; // actual initialization
a = 10;
b = 20;

c = a + b;
cout << c;
return 0;
}

Output:-
30

Scope of Variables in C++

• Global variables are defined outside of all the
functions, usually on top of the program.

• The global variables will hold their value
throughout the lifetime of your program.

• A global variable can be accessed by any
function.

Example
#include <iostream>
using namespace std;
// Global variable declaration:
int g;
int main ()
{ // Local variable declaration:
int a, b;
// actual initialization
a = 10;
b = 20;
g = a + b;

cout << g;
return 0;
}

Output:-
30

Scope of Variables in C++

• A program can have the same name for local
and global variables but the value of a local
variable inside a function will take preference.

• For accessing the global variable with same
rame, you'll have to use the scope resolution
operator.

Example
#include <iostream>
using namespace std;
// Global variable declaration:
int g = 20;

int main ()
{ // Local variable declaration:
int g = 10;
cout << g;

// Local
cout << ::g;
// Global
return 0;
}

Output:-
10
20

Access Specifier

• In C++, there are three access specifiers:
– public - members are accessible from outside the

class
– private - members cannot be accessed (or viewed)

from outside the class
– protected - members cannot be accessed from

outside the class, however, they can be accessed
in inherited classes. You will learn more
about Inheritance later.

we demonstrate the differences
between public and private members:

Example:-
class MyClass {

public: // Public access specifier
int x; // Public attribute

private: // Private access specifier
int y; // Private attribute

};

int main() {
MyClass myObj;
myObj.x = 25; // Allowed (public)
myObj.y = 50; // Not allowed (private)
return 0;

}

Access Specifier

• By default, all members of a class are private if
you don't specify an access specifier:
class MyClass {

int x; // Private attribute
int y; // Private attribute

};

Data Hiding

• Data hiding is an object-oriented
programming technique of hiding internal
object details i.e. data members. Data hiding
guarantees restricted data access to class
members & maintain object integrity.

• How data hiding works in C++. Following
topics are covered in this:

» Encapsulation
» Abstraction
» Data Hiding

Encapsulation

• Encapsulation binds the data & functions
together which keeps both safe from outside
interference. Data encapsulation led to data
hiding.

#include<iostream>
using namespace std;

class Encapsulation
{

private:
int num;

public:
void set(int a)

{
num =a;

}

int get()
{

return num;
}

};

int main()
{

Encapsulation obj;

obj.set(5);

cout<<obj.get();
return 0;

}

Output:-

Data Abstraction

• Data Abstraction is a mechanism of hiding the
implementation from the user & exposing the
interface.

#include <iostream>
using namespace std;

class Abstraction
{

private:
int num1, num2;

public:

void set(int a, int b)
{

num1 = a;
num2 = b;

}

void display()
{

cout<<"num1 = " <<num1 << endl;
cout<<"num2 = " << num2 << endl;

}
};

int main()
{

Abstraction obj;
obj.set(50, 100);
obj.display();
return 0;

}

Data hiding

• Data hiding is a process of combining data and
functions into a single unit. The ideology
behind data hiding is to conceal data within a
class, to prevent its direct access from outside
the class.

• It helps programmers to create classes with
unique data sets and functions, avoiding
unnecessary penetration from other program
classes.

#include<iostream>
using namespace std;
class Base{

int num; //by default private
public:

void read();
void print();

};

void Base :: read(){
cout<<"Enter any Integer value"<<endl; cin>>num;

}

void Base :: print(){
cout<<"The value is "<<num<<endl;

}

int main(){
Base obj;

obj.read();
obj.print();

return 0;
}

Data members and Member functions
in C++

• "Data Member" and "Member Functions" are
the new names/terms for the members of a class,
which are introduced in C++ programming
language.

• The variables which are declared in any class by
using any fundamental data types (like int, char,
float etc) or derived data type (like class,
structure, pointer etc.) are known as Data
Members. And the functions which are declared
either in private section of public section are
known as Member.

Data members and Member functions
in C++

• There are two types of data members/member functions in C++:
• Private members
• Public members

• 1) Private members
The members which are declared in private section of the class (using
private access modifier) are known as private members. Private members
can also be accessible within the same class in which they are declared.

• 2) Public members
The members which are declared in public section of the class (using public
access modifier) are known as public members. Public members can access
within the class and outside of the class by using the object name of the
class in which they are declared.

For example

class Cube
{
public:
int side;
/* Declaring function getVolume with no

argument and return type int.
*/
int getVolume(); };

If we define the function inside class then we don't not need
to declare it first, we can directly define the function.

class Cube
{

public:
int side;
int getVolume()
{

return side*side*side;
//returns volume of cube
}
};

The main function for both the function definition will be same. Inside main()
we will create object of class, and will call the member function using

dot . operator.

class Cube
{ public:
int side;
int getVolume();

}
// member function defined outside class definition
int Cube :: getVolume()
{
return side*side*side;
}

Consider the example:
class Test
{
private: int a;
float b;
char *name;

void getA()
{
a=10;
} ...;
public: int count;
void getB()
{
b=20;
}
...;

};

Here, a, b, and name are the private data members and count is a
public data member. While, getA() is a private member function
and getB() is public member functions.

#include <iostream>

#include <string.h>

using namespace std;

#define MAX_CHAR 30

class person

{

private:

char name [MAX_CHAR];

int age;

public:

void get(char n[], int a)

{

strcpy(name , n);

age = a;

}

void put() { cout<< "Name: " << name <<endl;

cout<< "Age: " <<age <<endl;

}

};

int main() {

person PER;

PER.get("Manju Tomar", 23);

PER.put();

return 0;

}

Acessing Data Member

• Accessing a data member depends solely on the access
control of that data member. If its public, then the data
member can be easily accessed using the direct
member access (.) operator with the object of that
class.

• If, the data member is defined as private or protected,
then we cannot access the data variables directly. Then
we will have to create special public member functions
to access, use or initialize the private and protected
data members. These member functions are also
called Accessors and Mutator methods
or getter and setter functions.

Accessing Public Data Members

• Following is an example to show you how to
initialize and use the public data members
using the dot (.) operator and the respective
object of class.

class Student
{
public:
int rollno;
string name;
};
int main()
{
Student A;
Student B;
A.rollno=1;
A.name="Adam";
B.rollno=2;
B.name="Bella";
cout <<"Name and Roll no of A is: "<< A.name << "-

" << A.rollno;
cout <<"Name and Roll no of B is: "<< B.name << "-"

<< B.rollno;
}

Output:-
Name and Roll no of A is: Adam-1
Name and Roll no of B is: Bella-2

Calling Class Member Function in C++

• Similar to accessing a data member in the
class, we can also access the public member
functions through the class object using the
dot operator (.).

• Below we have a simple code example, where
we are creating an object of the
class Cube and calling the member
function getVolume():

Calling Class Member Function in C++

int main()
{
Cube C1;
C1.side = 4;
// setting side value
cout<< "Volume of cube C1 =

"<< C1.getVolume();
}

Output:-
Volume of cube C1 = 16

Accessing Private Data Members

• To access, use and initialize the private data
member you need to create getter and setter
functions, to get and set the value of the data
member.

• The setter function will set the value passed as
argument to the private data member, and the
getter function will return the value of the
private data member to be used. Both getter
and setter function must be defined public.

class Student
{
private:
int rollno;
public:
int getRollno()
{
return rollno;
}
void setRollno(int i)
{
rollno=i;
}
};
int main()
{
Student A;
A.rollono=1;
cout<< A.rollno;
A.setRollno(1);
cout<< A.getRollno();
}

Types of Class Member Functions in
C++

• We already know what member functions are,
what they do, how to define member function
and how to call them using class objects. Now
lets learn about some special member functions
which can be defined in C++ classes. Following
are the different types of Member functions:

» Simple functions
» Static functions
» Const functions
» Inline functions
» Friend functions

Simple Member functions in C++

• These are the basic member function, which
don’t have any special keyword like static etc as
prefix. All the general member functions, which
are of below given form, are termed as simple
and basic member functions.

return_type
functionName(parameter_list)
{
function body;
}

Static Member functions in C++

• Static is something that holds its position.
• Static is a keyword which can be used with

data members as well as the member
functions.

• A function is made static by
using static keyword with function name.
These functions work for the class as whole
rather than for a particular object of a class.

Example
class X
{
public:
static void f()
{
// statement
}

};
int main()
{
X::f(); // calling member function directly with class name
}

Const Member functions in C++

• Const keyword in detail later(Const Keyword), but as an
introduction, Const keyword makes variables constant, that
means once defined, there values can't be changed.

• When used with member function, such member functions
can never modify the object or its related data members.

// basic syntax of const Member Function
void fun()
const
{

// statement
}

Inline functions in C++

• Inline functions are actual functions, which are copied
everywhere during compilation, like preprocessor macro,
so the overhead of function calling is reduced.

• All the functions defined inside class definition are by
default inline, but you can also make any non-class function
inline by using keyword inline with them.

inline void fun(int a)
{
return a++;
}

Some Important points about Inline
Functions

• We must keep inline functions small, small inline functions
have better efficiency.

• Inline functions do increase efficiency, but we should not
make all the functions inline. Because if we make large
functions inline, it may lead to code bloat, and might affect
the speed too.

• Hence, it is adviced to define large functions outside the
class definition using scope resolution :: operator, because if
we define such functions inside class definition, then they
become inline automatically.

• Inline functions are kept in the Symbol Table by the
compiler, and all the call for such functions is taken care at
compile time.

Getter and Setter Functions in C++
• Accessing private data variables inside a class. we use access functions, which are inline

to do so.
class Auto
{
// by default private
int price;
public:
// getter function for variable price

int getPrice()
{ return price; }

// setter function for variable price
void setPrice(int x)
{ i=x; }
};

Here getPrice() and setPrice() are inline functions, and are made to access the private data
members of the class Auto. The function getPrice(), in this case is called Getter or
Accessor function and the function setPrice() is a Setter or Mutator function.

Limitations of Inline Functions

• Large Inline functions cause Cache misses and affect
performance negatively.

• Compilation overhead of copying the function body
everywhere in the code on compilation, which is
negligible for small programs, but it makes a difference
in large code bases.

• Also, if we require address of the function in program,
compiler cannot perform inlining on such functions.
Because for providing address to a function, compiler
will have to allocate storage to it. But inline functions
doesn't get storage, they are kept in Symbol table.

Forward References in C++
class ForwardReference
{
int i;
public:
// call to undeclared function
int f() {
return g()+10;
}
int g()
{
return i;
}
};
int main()
{
ForwardReference fr;
fr.f();
}

Friend functions in C++

• Friend functions are actually not class
member function.

• Friend functions are made to
give private access to non-class functions. You
can declare a global function as friend, or a
member function of other class as friend.

Example
class WithFriend
{
int i;
public:
friend void fun();
// global function as friend
};
void fun()
{
WithFriend wf;
wf.i=10;
// access to private data member
cout << wf.i;
} int main()
{ fun();
//Can be called directly
}

Reason??
why C++ is not called as a pure Object Oriented language

• When we make a class as friend, all its
member functions automatically become
friend functions.

• Friend Functions is a reason, why C++ is not
called as a pure Object Oriented language.
Because it violates the concept
of Encapsulation.

class Other
{
void fun();
};

class WithFriend
{

private:
int i;
public:
void getdata();
friend void Other::fun();
friend class Other;

};

Example

Passing an Object as argument

• To pass an object as an argument we write the
object name as the argument while calling the
function the same way we do it for other
variables.

Syntax:-
function_name(object_name);

Program to show passing of objects to a function
#include <bits/stdc++.h>
using namespace std;
class Example {

public:
int a;
void add(Example E)
{

a = a + E.a;
}

};
int main()
{

Example E1, E2;
E1.a = 50;
E2.a = 100;

cout << "Initial Values \n";
cout << "Value of object 1: " << E1.a

<< "\n& object 2: " << E2.a
<< "\n\n";
E2.add(E1);
cout << "New values \n";

cout << "Value of object 1: " << E1.a
<< "\n& object 2: " << E2.a
<< "\n\n";

return 0;
}

Initial Values Value of object 1: 50
& object 2: 100
New values Value of object 1: 50

& object 2: 150

Returning Object as argument

Syntax:
object = return object_name;

Program to show passing of objects to a function
#include <bits/stdc++.h>
using namespace std;

class Example {
public:

int a;
Example add(Example Ea, Example Eb)

{
Example Ec;
Ec.a = Ec.a + Ea.a + Eb.a;

return Ec;
}

};
int main()
{

Example E1, E2, E3;
E1.a = 50;
E2.a = 100;
E3.a = 0;
cout << "Initial Values \n";

cout << "Value of object 1: " << E1.a
<< ", \nobject 2: " << E2.a
<< ", \nobject 3: " << E3.a
<< "\n";

E3 = E3.add(E1, E2);
cout << "New values \n";

cout << "Value of object 1: " << E1.a
<< ", \nobject 2: " << E2.a
<< ", \nobject 3: " << E3.a
<< "\n"; return 0; }

Output:-
Initial Values
Value of object 1: 50,
object 2: 100,
object 3: 0

New values Value of object 1: 50,
object 2: 100,
object 3: 200

