Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Theory of Relativity

UNIT I

Relativistic Mechanics

Lecture-7

${ }^{\text {" }}$ Life is like riding a bicycle. To keep your balance, you must keep moving."

-Albert Einstein

MASS-ENERGY EQUIVALENCE

Solution

From the expression of the relativistic mass of the particle, we know that

$$
\begin{aligned}
m & =\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& =\frac{m_{0}}{\sqrt{1-\frac{c^{2}}{2 c^{2}}}}=\sqrt{2 m_{0}}=1.41 m_{0}
\end{aligned}
$$

The momentum P of the particle is given by

$$
P=m v=m_{0} \sqrt{2} \times \frac{c}{\sqrt{2}}=m_{0} c
$$

The total energy E of the particle is given by

$$
E=m c^{2}=\left(1.41 m_{0}\right) c^{2}=1.41 m_{0} c^{2}
$$

The kinetic energy K of the particle is given by

$$
\begin{aligned}
& K=E-m_{0} c^{2}=1.41 m_{0} c^{2}-m_{0} c^{2} \\
& =0.41 m_{0} c^{2}
\end{aligned}
$$

Solution

- I The kinetic energy of the particle is given by

1

$$
v=c \sqrt{1-\left(\frac{m_{0}}{m_{0}}\right)^{2}}
$$

$$
=3 \times 10^{8} \sqrt{1-\left(\frac{m_{0}}{11 m_{0}}\right)^{2}}
$$

$$
=3 \times 10^{8} \times 0.996
$$

$$
=2.99 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Hence,

$$
\begin{aligned}
P= & 11 m_{0} \times 2.99 \times 10^{8}=11 \times 9.11 \times 10^{-31} \times 2.99 \times 10^{8} \\
= & 2.99 \times 10^{-21} \mathrm{~kg} \mathrm{~m} / \mathrm{s} \\
& m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \text { or } \quad 1-\frac{v}{c^{2}}=\left(\frac{m_{0}}{m}\right)
\end{aligned}
$$

- Example-3
- How much does a proton gain in mass when accelerated to a kinetic energy of 500 MeV ?

Solution

Kinetic energy $K=\left(m-m_{0}\right) c^{2}$
or

$$
m c^{2}=K+m_{0} c^{2}
$$

Gain in mass $m-m_{0}=\frac{K}{c^{2}}=\Delta m$
Here, it is given that

$$
\begin{aligned}
K & =500 \mathrm{MeV} \\
& =500 \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J} \\
m_{0} & =1.6 \times 10^{-27} \mathrm{~kg} \text { and } c=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
\Delta m & =\frac{500 \times 10^{6} \times 1.6 \times 10^{-19}}{\left(3 \times 10^{8}\right)^{2}}=8.89 \times 10^{-28} \mathrm{~kg}
\end{aligned}
$$

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

- Example-4: Find the speed of 0.1 MeV electrons according to the classical and relativistic mechanics.

Solution

According to the classical mechanics, the kinetic energy is expressed as
or

$$
\begin{aligned}
K & =\frac{1}{2} m v^{2} \\
v & =\sqrt{2 K / m}
\end{aligned}
$$

$$
\text { Given that } K=0.1 \mathrm{MeV}=0.1 \times 10^{6} \mathrm{eV}=0.1 \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J} \text { and } m=9.1 \times 10^{-31} \mathrm{~kg}
$$

$$
\text { Now, } \quad v=\sqrt{\frac{2 \times 0.1 \times 10^{6} \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}}}
$$

$$
=1.87 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

According to the relativistic mechanics, the KE of an electron is expressed as

$$
\begin{aligned}
& K=m c^{2}-m_{0} c^{2} \\
& m c^{2}=K+m_{0} c^{2}
\end{aligned}
$$

or
or

$$
\frac{m_{0} c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=K+m_{0} c^{2}
$$

or

$$
\left(1-\frac{v^{2}}{c^{2}}\right)=\left[\frac{m_{0} c^{2}}{K+m_{0} c^{2}}\right]^{2}
$$

or

$$
v=c \sqrt{1-\left(\frac{m_{0} c^{2}}{K+m_{0} c^{2}}\right)^{2}}
$$

The rest-mass energy of electron is $m_{0} c^{2}$, i.e., 0.512 MeV .
and

$$
K+m_{0} c^{2}=0.1 \mathrm{MeV}+0.512 \mathrm{MeV}=0.612 \mathrm{MeV}
$$

Hence, $\quad v=3.0 \times 10^{8} \sqrt{1-\left(\frac{0.512}{0.612}\right)^{2}}=3 \times 10^{8} \times 0.548$
$=1.64 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Show that the momentum of a particle of rest mass m_{0} and kinetic energy KE is given by the expression $p=\sqrt{\frac{\mathrm{KE}^{2}}{c^{2}}+2 m_{0} \times \mathrm{KE}}$.

Solution

From the energy-momentum relation, we know that

$$
E^{2}=m_{0}^{2} c^{4}+p^{2} c^{2}
$$

or

$$
E=\left(m_{0}^{2} c^{4}+p^{2} c^{2}\right)^{1 / 2}
$$

The total energy $E=$ rest-mass energy + kinetic energy

$$
E=m_{0} c^{2}+\mathrm{KE}
$$

From Eqs. (1) and (2),

$$
\left(m_{0}^{2} c^{4}+p^{2} c^{2}\right)^{1 / 2}=m_{0} c^{2}+\mathrm{KE}
$$

Squaring both sides of this equation, we get

$$
m_{0}{ }^{2} c^{4}+p^{2} c^{2}=m_{0}^{2} c^{4}+2 m_{0} c^{2} \times \mathrm{KE}+\mathrm{KE}^{2}
$$

or

$$
p^{2} c^{2}=\mathrm{KE}^{2}+2 m_{0} c^{2} \times \mathrm{KE}
$$

or

$$
p^{2}=\frac{\mathrm{KE}^{2}}{c^{2}}+2 m_{0} \times \mathrm{KE}
$$

or

$$
p=\sqrt{\frac{\mathrm{KE}^{2}}{c^{2}}+2 m_{0} \times \mathrm{KE}}
$$

Example-5

Show that the massless particles can exist only if they move with the speed of light and their energy E and momentum P must have the relation $\mathrm{E}=\mathrm{Pc}$.

Solution

A particle which has zero rest mass $\left(m_{0}\right)$ is called a massless particle. In classical physics, such particles do not exist, while in relativistic mechanics, such particles may exist.

From the relation of relativistic energy and momentum, we know that

$$
E=\sqrt{m_{0}^{2} c^{4}+P^{2} c^{2}}
$$

For massless particles, $m_{0}=0$
Thus, $\quad E=P C$
or

$$
\begin{aligned}
& P=\frac{E}{c} \\
& P=m v
\end{aligned}
$$

so for massles particles,

$$
\begin{aligned}
P & =\frac{E}{c} \\
& =\frac{m c^{2}}{c} \\
& =m c
\end{aligned}
$$

It shows that the massless particles have the same velocity as light in free space.

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Example-6: Show that for small velocities, the relativistic kinetic energy of a body reduces to the classical kinetic energy, which is less than the restmass energy.

Solution

From the expression of relativistic kinetic energy, we know that

$$
\begin{aligned}
\mathrm{KE}_{\text {relativistic }} & =\left(m-m_{0}\right) c^{2} \\
& =\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}-m_{0} c^{2} \\
& =m_{0} c^{2}\left[\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}-1\right] \\
& =m_{0} c^{2}\left[1+\frac{v^{2}}{2 c^{2}}+\cdots-1\right]
\end{aligned}
$$

Now, neglecting higher-order terms because $v \ll c$, we get

$$
\begin{aligned}
\mathrm{KE}_{\text {relativistic }} & =m_{0} c^{2} \times \frac{v^{2}}{2 c^{2}} \\
& =\frac{1}{2} m_{0} v^{2} \\
& =\mathrm{KE}_{\text {classical }}
\end{aligned}
$$

which is less than $m_{0} c^{2}$.

Show that the velocity at which the mass of a particle is increased to n times its rest mass is $\left(\sqrt{n^{2}-1} / n\right) c$.

For what value of $v / c(=\beta)$ will the relativistic mass of a particle exceed its rest mass by a given ratio R.
[Hint: $R=\left(m-m_{0}\right) / m_{0}$]

Assignment

- How fast must an electron move in order that its mass equals the rest mass of the proton.
- If the kinetic energy of a body is thrice of its rest-mass energy, then find its velocity.
- If the total energy of a particle is exactly thrice of its rest-mass of energy, what is the velocity of the particle?
- If the kinetic energy of a body is thrice of its rest-mass energy, then find its velocity.
- Calculate the amount of work done to increase the speed of an electron from 0.6 c to 0.8 c . Given that the rest-mass energy of electron $=0.511 \mathrm{MeV}$.

Show that if the variation of mass with velocity is taken into account, the kinetic energy of a particle of rest mass m_{0} and moving with velocity v is given by

$$
\mathrm{KE}=m_{0} c^{2}\left\lceil\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}-1\right\rceil
$$

