Diffraction

UNIT III Optics Lecture-5

Content of Lecture

- FRAUNHOFER DIFFRACTION DUE TO DOUBLE SLIT
- PLANE DIFFRACTION GRATING
- MISSING ORDERS OR ABSENT SPECTRA
- DETERMINATION OF WAVELENGTH OF LIGHT BY GRATING

DIFFRACTION DUE TO DOUBLE SLIT

$>$ Let a parallel beam of monochromatic light be incident normally upon two parallel slits $A B$ and $C D$, each of width e, separated by opaque space of width d.
$>$ The distance between the corresponding points of the two slits is $(\mathrm{e}+\mathrm{d})$ as is shown in Fig.
$>$ The pattern obtained on the screen is the diffraction pattern due to a single slit on which a system of interference fringes is superposed.

DIFFRACTION DUE TO DOUBLE SLIT CONTINUD.

From the theory of diffraction at a single slit, the resultant amplitude due to wavelets diffracted from each slit in a direction θ is

$$
R=\frac{A \sin \alpha}{\alpha}
$$

where A is a constant and $\alpha=(\pi e \sin \theta) / \lambda$.

Let the two slits S1 and S2 be the two coherent sources, each sending wavelets of amplitude $\frac{A \sin \alpha}{\alpha}$ in a direction θ.

Consequently, the resultant amplitude at point P on the screen will be the result of interference between two waves of same amplitude having a phase difference d.

DIFFRACTION DUE TO DOUBLE SLIT CONTINUD.

- The path difference between the wavelets from S1 and S2 in the direction θ is

$$
\mathrm{S}_{2} \mathrm{~K}=(\mathrm{e}+\mathrm{d}) \sin \theta
$$

- Hence, the corresponding phase difference

$$
\delta=\frac{2 \pi}{\lambda}(e+d) \sin \theta
$$

The resultant amplitude at P can be determined by

$$
\begin{aligned}
& A^{2}=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} \cos \delta \\
& R^{2}=\left(\frac{A \sin \alpha}{\alpha}\right)^{2}+\left(\frac{A \sin \alpha}{\alpha}\right)^{2}+2\left(\frac{A \sin \alpha}{\alpha}\right)\left(\frac{A \sin \alpha}{\alpha}\right) \cos \delta \\
&=4 A^{2} \frac{\sin ^{2} \alpha}{\alpha^{2}} \cos ^{2} \frac{\delta}{2} \quad \text { where } \beta=\frac{\delta}{2}=\frac{\pi}{\lambda}(e+d) \sin \theta . \\
&=4 A^{2} \frac{\sin ^{2} \alpha}{\alpha^{2}} \cos ^{2} \beta \\
& \text { Therefore, the resultant intensity at } P \text { is } \\
& I=R^{2}=4 A^{2} \frac{\sin ^{2} \alpha}{\alpha^{2}} \cos ^{2} \beta
\end{aligned}
$$

DIFFRACTION DUE TO DOUBLE SLIT CONTINUD.....

Thus, the resultant intensity depends on two factors:

- $\frac{\operatorname{Sin}^{2} \alpha}{\alpha^{2}}$ gives the diffraction pattern due to each individual slit.
- $\operatorname{Cos}^{2} \beta$ gives the interference pattern due to light waves from the two slits.
$>$ The diffraction term $\frac{\sin ^{2} \alpha}{\alpha^{2}}$ gives a central maximum in the direction $\theta=0$, having alternately minima and subsidiary maxima of decreasing intensity on either side
The minima are obtained in the directions given by

$$
\sin \alpha=0
$$

or $\quad \alpha= \pm m \pi$

$$
\begin{aligned}
& \frac{\pi e \sin \theta}{\lambda}= \pm m \pi \\
& e \sin \theta= \pm m \lambda
\end{aligned}
$$

where $m=1,2,3, \ldots$ (but not zero).

Depiction of diffraction pattern of double slit

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Maxima due to interference

$>$ The interference term $\operatorname{Cos}^{2} \beta$ gives a set of equidistant dark and bright fringes.
$>$ The bright fringes (maxima) are obtained in the directions given by
or

$$
\begin{aligned}
& \cos ^{2} \beta=1 \\
& \beta= \pm n \pi \\
& \frac{\pi}{\lambda}(e+d) \sin \theta= \pm n \pi \\
& (e+d) \sin \theta= \pm n \lambda
\end{aligned}
$$

- where $\mathrm{n}=0,1,2, \ldots$. The various maxima corresponding to $\mathrm{n}=0,1$, $2, \ldots$ are zero-order, first-order, second-order, ... maxima, respectively

PLANE DIFFRACTION GRATING

- Let AB be the section of a grating having width of each slit as e , and d the width of each opaque space between the slits.
- The quantity $(\mathrm{e}+\mathrm{d})$ is called grating element, and two consecutive slits separated by the distance $(\mathrm{e}+\mathrm{d})$ are called corresponding points.

Analysis

Path difference between the rays from the slits S_{1} and S_{2} is

$$
S_{2} K=S_{1} S_{2} \sin \theta=(e+d) \sin \theta
$$

The corresponding phase difference $=\frac{2 \pi}{\lambda}(e+d) \sin \theta=2 \beta$ (say)
Hence, the resultant amplitude in the direction θ is obtained from

$$
R=\frac{A^{\prime} \sin (n d / 2)}{\sin (d / 2)}
$$

where $\mathrm{A}^{\prime}=$ resultant amplitude from each slit

$$
R=\frac{A \sin \alpha}{\alpha} \frac{\sin N \beta}{\sin \beta}: \quad I=R^{2}=\frac{A^{2} \sin ^{2} \alpha}{\alpha^{2}} \frac{\sin ^{2} N \beta}{\sin ^{2} \beta}
$$

For $\mathrm{n}=0$, we get the zero-order maximum. For $\mathrm{n}= \pm 1, \pm 2, \pm 3, \ldots$, we obtain the first-order, second-order, third-order, ... principal maxima, respectively. The \pm sign shows that there are two principal maxima for each order lying on either side of the zero-order maximum.

Principal Maxima

When $\sin \beta=0$, i.e., $\beta= \pm n \pi$, where $n=0,1,2,3, \ldots$, we have $\sin N \beta=0$ and hence $\sin (N \beta) / \sin \beta$ $=(0 / 0)$ which is an indeterminate quantity.

Therefore, taking limits and applying L'Hospital's rule of mathematics

$$
\lim _{\beta \rightarrow \pm n \pi} \frac{\sin N \beta}{\sin \beta}=\lim _{\beta \rightarrow \pm n \pi} \frac{N \cos N \beta}{\cos \beta}= \pm N
$$

The intensity is then

$$
I=R^{2}=\frac{A^{2} \sin ^{2} \alpha}{\alpha^{2}} N^{2}
$$

which is maximum. These maxima are most intense and are called principal maxima. They are obtained in the directions given by

$$
\begin{aligned}
& \beta= \pm n \pi \\
& \frac{\pi}{\lambda}(e+d) \sin \theta= \pm n \pi \\
& (e+d) \sin \theta= \pm n \lambda^{*}
\end{aligned}
$$

Minima

When $\sin N \beta=0$ but $\sin \beta \neq 0$, then

$$
\frac{\sin N \beta}{\sin \beta}=0
$$

which gives $I=0$ is a minimum. These minima are obtained in the directions given by

$$
\sin N \beta=0
$$

$$
\begin{aligned}
& N \beta= \pm m \pi \\
& N \frac{\pi}{\lambda}(e+d) \sin \theta= \pm m \pi \\
& N(e+d) \sin \theta= \pm m \lambda
\end{aligned}
$$

- where m takes all integral values except $\mathrm{O}, \mathrm{N}, 2 \mathrm{~N}, \ldots \ldots \ldots . . \mathrm{nN}$, because these values of m give $\sin \beta=0$, which gives the principal maxima.
- It is also clear from above that there are $(\mathrm{N}-1)$ minima between two successive principal maxima.

MISSING ORDERS OR ABSENT SPECTRA

The principal maxima in the grating spectrum are obtained in the directions given by

$$
(\mathrm{e}+\mathrm{d}) \sin \theta=\mathrm{n} \lambda \quad(\mathrm{n}=0,1,2,3, \ldots)
$$

where $(e+d)$ is the grating element and n is the order of the maximum.
The minima in a single slit pattern are obtained in the directions given by

$$
e \sin \theta=m \lambda \quad(m=0,1,2,3, \ldots)
$$

- If both above conditions are simultaneously satisfied, a particular maximum of order n will be missing in the grating spectrum.
- The condition of missing order is
- $\frac{e+d}{e}=\frac{n}{m}$
- This is the condition for the spectrum of the order n to be absent.
- If $\mathrm{d}=\mathrm{e}$, then $\mathrm{n}=2 \mathrm{~m}=2,4,6, \ldots \quad$ (for $\mathrm{m}=1,2,3, \ldots$)

DETERMINATION OF WAVELENGTH OF LIGHT BY GRATING

- For grating, the condition of maximum intensity is
- $\quad(\mathrm{e}+\mathrm{d}) \sin \theta=\mathrm{n} \lambda \quad(\mathrm{n}=0,1,2,3, \ldots)$
- Thus, if the grating element $(\mathrm{e}+\mathrm{d})$ and the angle of diffraction θ for a particular order n are determined, the wavelength can be obtained.
- Determination of $(e+d)$: The grating element $(e+d)$ is determined from the number of rulings per inch on the grating (written on the grating as LPI).
$>$ If this number is N , then

$$
\begin{aligned}
& \mathrm{N}(\mathrm{e}+\mathrm{d})=1 \mathrm{in} .=2.54 \mathrm{~cm} \\
& (e+d)=\frac{2.54}{N} \mathrm{~cm}
\end{aligned}
$$

Determination of $\boldsymbol{\theta}$

This is done with the help of a spectrometer whose slit is illuminated by the given light and the following adjustment are made:
$>$ (a) The eyepiece of the telescope is focused on the cross-wires.
$>$ (b) The collimator and telescope are adjusted for parallel rays.
$>$ (c) The grating is adjusted on the prism table such that light from collimator falls normally on it with the help of levelling screws A and B.
$>$ (d) The rulings of the grating are adjusted parallel to the axis of the spectrometer.
$>$ (e) The rulings are adjusted parallel to the slit.

Assignment Based on this Lecture

- Discuss the Fraunhofer Diffraction at a Double Slit. Also obtain the expression of Principle Maxima and Minima.
- Discuss principle and working of plane diffraction grating.
- Obtain the expression of Principle Maxima and Minima.
- What do you mean by missing orders or absent spectra, Also obtain the condition for the same.
- Discuss the experimental arrangement for the determination of wavelength of light by grating.

