Digital Circuits and Logic Design (BCS-11)

By
Manish Kumar Srivastava Assistant Professor

Department of Computer Science \& Engineering Madan Mohan Malaviya University of Technology Gorakhpur (UP State Govt. University)

Email: mkscs@mmmut.ac.in

Syllabus

UNIT-I

Binary Codes - Weighted and Non-Weighted - Binary Arithmetic Conversion Algorithms - Error Detecting and Error Correcting Codes - Canonical and Standard Boolean Expressions - Truth Tables.

A digital circuit is a circuit where the signal must be one of two discrete levels. Each level is interpreted as one of two different states (for example, on/off, 0/1, true/false). Digital circuits use transistors to create logic gates in order to perform Boolean logic.

Logic Design

> All digital computers are based on a two-valued logic system-1/0, on/off, yes/no . Computers perform calculations using components called logic gates, which are made up of integrated circuits that receive an input signal, process it, and change it into an output signal. There are three basic kinds of logic gates, called "and," "or," and "not." By connecting logic gates together, a device can be constructed that can perform basic arithmetic functions.

- Digital Signal : Decimal values are difficult to represent in electrical systems. It is easier to use two voltage values than ten.
- Digital Signals have two basic states:

$$
\begin{aligned}
& 1 \text { (logic "high", or H, or "on") } \\
& 0 \text { (logic "low", or L, or "off") }
\end{aligned}
$$

- Digital values are in a binary format. Binary means 2 states.
- A good example of binary is a light (only on or off)

[^0]- Bits and Pieces of DLD History

George Boole

- Mathematical Analysis of Logic (1847)
- An Investigation of Laws of Thoughts; Mathematical Theories of Logic and Probabilities (1854)

Claude Shannon

- Rediscovered the Boole
- "A Symbolic Analysis of Relay and Switching Circuits "
- Boolean Logic and Boolean Algebra were Applied to Digital Circuitry
---------- Beginning of the Digital Age and/or Computer Age
World War II
Computers as Calculating Machines
Arlington (State Machines) " Control "

Motivation

- Microprocessors/Microelectronics have revolutionized our world
- Cell phones, internet, rapid advances in medicine, etc.
- The semiconductor industry has grown tremendously

Digital Systems and Binary Numbers

DDigital age and information age
■Digital computers

- General purposes
- Many scientific, industrial and commercial applications
- Digital systems
- Telephone switching exchanges
- Digital camera
- Electronic calculators, PDA's
- Digital TV
- Discrete information-processing systems
- Manipulate discrete elements of information
- For example, $\{1,2,3, \ldots\}$ and $\{A, B, C, \ldots\}$...

Analog and Digital Signal

- Analog system
- The physical quantities or signals may vary continuously over a specified range.
- Digital system
- The physical quantities or signals can assume only discrete values.
- Greater accuracy

Binary Digital Signal

- An information variable represented by physical quantity.
- For digital systems, the variable takes on discrete values.
- Two level, or binary values are the most prevalent values.
- Binary values are represented abstractly by:
- Digits 0 and 1
- Words (symbols) False (F) and True (T)
- Words (symbols) Low (L) and High (H)
- And words On and Off
- Binary values are represented by values or ranges of values of physical quantities.

Binary digital signal

Decimal Number System

- Base (also called radix) $=10$
- 10 digits $\{0,1,2,3,4,5,6,7,8,9\}$
- Digit Position
- Integer \& fraction
- Digit Weight
- Weight $=(\text { Base })^{\text {Position }}$
- Magnitude
- Sum of "Digit x Weight"
- Formal Notation

$$
\begin{array}{cccc}
500 & 10 & 2 & 0.7 \\
d_{2}{ }^{*} \mathbf{B}^{2}+d_{1} * \mathbf{B}^{1}+\mathrm{d}_{0}{ }^{*} \mathbf{B}^{0}+\mathrm{d}_{-1} * \mathbf{B}^{-1}+\mathrm{d}_{-2}{ }^{*} \mathbf{B}^{-2}
\end{array}
$$

$(512.74)_{10}$

Octal Number System

- Base = 8
- 8 digits $\{0,1,2,3,4,5,6,7\}$
- Weights
- Weight $=(\text { Base })^{\text {Position }}$
- Magnitude
- Sum of "Digit x Weight"
- Formal Notation

$$
\begin{array}{ccccc}
64 & 8 & 1 & 1 / 8 & 1 / 64 \\
\square & 1 & 2 & 7 & 4 \\
2 & 1 & 0 & -1 & -2 \\
5 * 8^{2}+1 & * 8^{1}+2 * 8^{0}+7 * 8^{-1}+4 * 8^{-2} \\
= & (330.9375)_{10} \\
& (512.74)_{8}
\end{array}
$$

Hexadecimal Number System

- Base = 16
- 16 digits $\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$
- Weights
- Weight $=(\text { Base })^{\text {Position }}$
- Magnitude
- Sum of "Digit x Weight"
- Formal Notation

(1E5.7A) ${ }_{16}$

The Power of 2

n	2^{n}
0	$2^{0}=1$
1	$2^{1}=2$
2	$2^{2}=4$
3	$2^{3}=8$
4	$2^{4}=16$
5	$2^{5}=32$
6	$2^{6}=64$
7	$2^{7}=128$

Addition

- Decimal Addition

Binary Addition

- Column Addition

Binary Subtraction

- Borrow a "Base" when needed

Binary Multiplication

- Bit by bit

				$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
\mathbf{x}								
				$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
			$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	
	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$			
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$				
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	

Number Base Conversions

Decimal (Integer) to Binary Conversion

- Divide the number by the 'Base' (=2)
- Take the remainder (either 0 or 1) as a coefficient
- Take the quotient and repeat the division

Example: (13)		Quotient	Remainder	Coefficient
	13/2 =	6	1	$\mathrm{a}_{0}=1$
	$6 / 2=$	3	0	$\mathrm{a}_{1}=0$
	$3 / 2=$	1	1	$\mathrm{a}_{2}=1$
	1/2 =	0	1	$\mathbf{a}_{3}=1$
	Answ	: (13)		$\begin{aligned} & \left.{ }_{0}\right)_{2}=(1101)_{2} \\ & \text { LSB } \end{aligned}$

Decimal (Fraction) to Binary Conversion

- Multiply the number by the 'Base’ (=2)
- Take the integer (either 0 or 1) as a coefficient
- Take the resultant fraction and repeat the division

Decimal to Octal Conversion

Example: (175) ${ }_{10}$

	Quotient	Remainder	Coefficient
$175 / \mathbf{8}=$	21	7	$\mathbf{a}_{0}=7$
$21 / \mathbf{8}=$	2	5	$\mathbf{a}_{\mathbf{1}}=5$
$2 / \mathbf{8}=$	0	2	$\mathbf{a}_{2}=2$
Answer:	$(175)_{10}=\left(a_{2} a_{1} a_{0}\right)_{8}=(257)_{8}$		

Example: (0.3125) ${ }_{10}$

		Integer	Fraction	Coefficient
0.3125	* $8=$	2	5	$\mathrm{a}_{-1}=2$
0.5	* $8=$	4	0	$\mathrm{a}_{-2}=4$

Answer: $\quad(0.3125)_{10}=\left(0 . a_{-1} a_{-2} a_{-3}\right)_{8}=(0.24)_{8}$

Binary - Octal Conversion

- $8=2^{3}$
- Each group of 3 bits represents an octal digit

Example:

0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Works lboth ways (Binary to Octal \& Octal to Binary)

Binary - Hexadecimal Conversion

- $16=2^{4}$
- Each group of 4 bits represents a hexadecimal digit

Example:

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	1111

Works looth ways (Binary to Hex \& Hex to Binary)

Octal - Hexadecimal Conversion

- Convert to Binary as an intermediate step

Example:

Works looth ways (Octal to Hex \& Hex to Octal)

Decimal, Binary, Octal and Hexadecimal

Decimal	Binary	Octal	Hex
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Complements

- There are two types of complements for each base-r system: the radix complement and diminished radix complement.
- Diminished Radix Complement - (r-1)'s Complement
- Given a number N in base r having n digits, the ($r-1$)'s complement of N is defined as:

$$
\left(r^{n}-1\right)-N
$$

- Example for 6-digit decimal numbers:
- 9 's complement is $\left(r^{n}-1\right)-N=\left(10^{6}-1\right)-N=999999-N$
- 9's complement of 546700 is $999999-546700=453299$
- Example for 7-digit binary numbers:
- 1 's complement is $\left(r^{n}-1\right)-N=\left(2^{7}-1\right)-N=1111111-N$
- 1 's complement of 1011000 is $1111111-1011000=0100111$
- Observation:
- Subtraction from ($r^{n}-1$) will never require a borrow
- Diminished radix complement can be computed digit-by-digit
- For binary: $1-0=1$ and $1-1=0$

Complements

- 1's Complement (Diminished Radix Complement)
- All '0's become ' 1 's
- All '1’s become ‘0's

Example (10110000) ${ }_{2}$ $\Rightarrow(01001111)_{2}$
If you add a number and its 1's complement ...

$$
\begin{array}{r}
10110000 \\
+01001111 \\
\hline 11111111
\end{array}
$$

Complements

- Radix Complement

The r's complement of an n-digit number N in base r is defined as
$\mathrm{r}^{\mathrm{n}}-\mathrm{N}$ for $\mathrm{N} \neq 0$ and as 0 for $\mathrm{N}=0$. Comparing with the (r -1) 's complement, we note that the r's complement is obtained by adding 1 to the $(\mathrm{r}-1)$'s complement, since $\mathrm{r}^{\mathrm{n}}-\mathrm{N}=\left[\left(\mathrm{r}^{\mathrm{n}}-1\right)-\mathrm{N}\right]+1$.

- Example: Base-10

> | The 10 's complement of 012398 is 987602 |
| :--- |
| The 10 's complement of 246700 is 753300 |

- Example: Base-2

Complements

- 2's Complement (Radix Complement)
- Take 1's complement then add 1

OR • Toggle all bits to the left of the first ' 1 ' from the right Example:
Number:
1's Comp.:

01010000
01010000

Complements

- Subtraction with Complements

- The subtraction of two n-digit unsigned numbers $M-N$ in base r can be done as follows:

1. Add the minuend M to the r 's complement of the subtrahend N. Mathematically, M $+\left(r^{n}-N\right)=M-N+r^{n}$.
2. If $M \geqq N$, the sum will produce and end carry r^{n}, which can be discarded; what is left is the result $M-N$.
3. If $M<N$, the sum does not produce an end carry and is equal to $r^{n}-(N-M)$, which is the r 's complement of $(N-M)$. To obtain the answer in a familiar form, take the r 's complement of the sum and place a negative sign in front.

Complements

- Example 1.5

- Using 10's complement, subtract 72532-3250.

M	$=72532$
10's complement of N	$=\frac{+96750}{169282}$
Sum	$=$
Discard end carry 10^{5}	$=\frac{-100000}{}$
Answer	$=69282$

- Example 1.6
- Using 10's complement, subtract 3250-72532.

10's complement of$\mathrm{M}=$ 03250 $\mathrm{~N}=$ +27468 $\mathrm{Sum}=$ 30718
$08-11-2020 \rightarrow$ There is no end carry.

Complements

- Example 1.7
- Given the two binary numbers $X=1010100$ and $Y=1000011$, perform the subtraction (a) $X-Y$; and (b) $Y-X$, by using 2's complement.

(a) \begin{tabular}{rl}
X \& $=1010100$

2's complement of Y \& $=$| +0111101 |
| ---: |
| Sum |

\& 10010001

Discard end carry 2^{7} \& $=$

Answer. $\mathrm{X}-\mathrm{Y}$ \& $=0000000$

\hline 0010001

\hline
\end{tabular}

(b) \begin{tabular}{rr}
$\mathrm{Y}=$ \& 1000011

\& 2's complement of $\mathrm{X}=$

\& +| 0101100 |
| :--- |
| Sum $=$ |

\hline
\end{tabular}

Complements

- Subtraction of unsigned numbers can also be done by means of the ($r-1$)'s complement. Remember that the $(r-1)$'s complement is one less then the r 's complement.
- Example 1.8
- Repeat Example 1.7, but this time using 1's complement.
(a) $X-Y=1010100-1000011$

$$
X=1010100
$$

1's complement of $Y= \pm 0111100$
Sum $=10010000$
End-around carry $=+\quad 1$

$$
\text { Answer. } X-Y=0010001
$$

Signed Binary Numbers

- To represent negative integers, we need a notation for negative values.
- It is customary to represent the sign with a bit placed in the leftmost position of the number since binary digits.
- The convention is to make the sign bit 0 for positive and 1 for negative.
- Example:

Signed-magnitude representation:	10001001
Signed-1's-complement representation:	11110110
Signed-2's-complement representation:	11110111

- Table 1.3 lists all possible four-bit signed binary numbers in the three representations.

Signed Binary Numbers

Table 1.3
Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	-	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-7	1010	1001	1110
-8	1001	1000	1111

Signed Binary Numbers

- Arithmetic addition
- The addition of two numbers in the signed-magnitude system follows the rules of ordinary arithmetic. If the signs are the same, we add the two magnitudes and give the sum the common sign. If the signs are different, we subtract the smaller magnitude from the larger and give the difference the sign if the larger magnitude.
- The addition of two signed binary numbers with negative numbers represented in signed-2's-complement form is obtained from the addition of the two numbers, including their sign bits.
- A carry out of the sign-bit position is discarded.
- Example:

+6	00000110		-6	11111010
+13	$\underline{00001101}$		$\underline{+13}$	$\underline{00001101}$
+19	00010011		+7	00000111
+6	00000110		-6	11111010
$\underline{-13}$	$\underline{1110011}$		$\underline{-13}$	$\underline{11110011}$
-7	11111001		-19	11101101

Signed Binary Numbers

Arithmetic Subtraction

In 2's-complement form:

1. Take the 2 's complement of the subtrahend (including the sign bit) and add it to the minuend (including sign bit).
2. A carry out of sign-bit position is discarded.

$$
\begin{aligned}
& (\pm A)-(+B)=(\pm A)+(-B) \\
& (\pm A)-(-B)=(\pm A)+(+B)
\end{aligned}
$$

- Example:
$(-6)-(-13)$
(11111010-11110011)
$(11111010+00001101)$
$00000111(+7)$

Binary Codes

Digital data is represented, stored and transmitted as groups of binary digits also known as binary code.

BCD Code

- A number with k decimal digits will require 4 k bits in BCD.
- Decimal 396 is represented in BCD with 12 bits as 001110010110 , with each group of 4 bits representing one decimal digit.
- A decimal number in BCD is the same as its equivalent binary number only when the number is between 0 and 9 .
- The binary combinations 1010 through 1111 are not used and have no meaning in BCD.

Table 1.4
Binary-Coded Decimal (BCD)

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Example: Consider decimal 185 and its corresponding value in BCD and binary:

$$
(185)_{10}=(000110000101)_{\mathrm{BCD}}=(10111001)_{2}
$$

4	0100	4	0100	8	1000
+5	$\underline{+0101}$	$\underline{+8}$	$\underline{+1000}$	$\frac{+9}{1001}$	$\underline{+1001}$
9	12	100	17	10001	
		+0110		+0110	
			10010		10111

Binary Codes

- Other Decimal Codes

Table 1.5
Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD $\mathbf{8 4 2 1}$	$\mathbf{2 4 2 1}$	Excess-3	$\mathbf{8 , 4 ,} \mathbf{- 2 , - \mathbf { 1 }}$
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

Binary Codes

- Gray Code
- The advantage is that only bit in the code group changes in going from one number to the next.
- Error detection.
- Representation of analog data.
- Low power design.

Table 1.6
Gray Code

Gray Code	Decimal Equivalent

0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

American Standard Code for Information Interchange (ASCII) Character Code

Table 1.7
American Standard Code for Information Interchange (ASCII)

$b_{4} b_{3} b_{2} b_{1}$	$b_{7} \boldsymbol{b}_{6} \boldsymbol{b}_{5}$							
	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	(a)	P	-	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	*	2	B	R	b	r
0011	ETX	DC3	\#	3	C	S	c	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	\%	5	E	U	e	u
0110	ACK	SYN	\&	6	F	V	f	v
0111	BEL	ETB	.	7	G	W	g	w
1000	BS	CAN	(8	H	X	h	x
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	z
1011	VT	ESC	+	;	K	[k	\{
1100	FF	FS	,	$<$	L	1	1	\|
1101	CR	GS	-	$=$	M	1	m	\}
1110	SO	RS	.	>	N	\wedge	n	\sim
1111	SI	US	1	?	O	-	o	DEL

ASCII Character Code

Control characters

NUL	Null	DLE	Data-link escape
SOH	Start of heading	DC1	Device control 1
STX	Start of text	DC2	Device control 2
ETX	End of text	DC3	Device control 3
EOT	End of transmission	DC4	Device control 4
ENQ	Enquiry	NAK	Negative acknowledge
ACK	Acknowledge	SYN	Synchronous idle
BEL	Bell	ETB	End-of-transmission block
BS	Backspace	CAN	Cancel
HT	Horizontal tab	EM	End of medium
LF	Line feed	SUB	Substitute
VT	Vertical tab	ESC	Escape
FF	Form feed	FS	File separator
CR	Carriage return	GS	Group separator
SO	Shift out	RS	Record separator
SI	Shift in	US	Unit separator
SP	Space	DEL	Delete

ASCII Character Codes and Properties

- American Standard Code for Information Interchange (Refer to Table 1.7)
- A popular code used to represent information sent as character-based data.
- It uses 7-bits to represent:
- 94 Graphic printing characters.
- 34 Non-printing characters.
- Some non-printing characters are used for text format (e.g. BS = Backspace, CR = carriage return).
- Other non-printing characters are used for record marking and flow control (e.g. STX and ETX start and end text areas).
- ASCII has some interesting properties:
- Digits 0 to 9 span Hexadecimal values 3016 to 3916
- Upper case A-Z span 4116 to 5A16
- Lower case a-z span 6116 to 7A16
- Lower to upper case translation (and vice versa) occurs by flipping bit 6.

Error-Detecting Code

- To detect errors in data communication and processing, an eighth bit is sometimes added to the ASCII character to indicate its parity.
- A parity bit is an extra bit included with a message to make the total number of 1 's either even or odd.

Example:

Consider the following two characters and their even and odd parity:

	With even parity	With odd parity
ASCII $\mathrm{A}=1000001$	01000001	11000001
ASCII $\mathrm{T}=1010100$	11010100	01010100

Error-Detecting Code

- Redundancy (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors.
- A simple form of redundancy is parity, an extra bit appended onto the code word to make the number of 1's odd or even. Parity can detect all single-bit errors and some multiple-bit errors.
- A code word has even parity if the number of 1 's in the code word is even.
- A code word has odd parity if the number of 1's in the code word is odd.
- Example:

$$
\begin{array}{lll}
\text { Message A: } & 100010011 & \text { (even parity) } \\
\text { Message B: } & 10001001 & 0
\end{array} \text { (odd parity) }
$$

Hamming Codes

- Invented W.B Hamming and Simple 1parity bit can tell us an error occurred
- Multiple parity bits can also tell us where it occurred
- $\mathbf{O}(\lg (\mathbf{n}))$ bits needed to detect and correct one bit errors.
- In generally we use 7 bits hamming code
- 4 data bits/message bit (m) and $\quad 3$ parity bits $\left(2^{\mathrm{P}}>=\mathrm{P}+\mathrm{m}+1\right)$

Example: Byte 10110001

Two data blocks, 1011 and 0001.
Expand the first block to 7 bits: \qquad 1 _ 01
Bit 1 is 0 , because $b 3+b 5+b 7$ is even.
Bit 2 is $1, \mathrm{~b} 3+\mathrm{b} 6+\mathrm{b} 7$ is odd.
bit 4 is 0 , because $\mathrm{b} 5+\mathrm{b} 6+\mathrm{b} 7$ is even.
Our 7 bit block is: 0110011
Repeat for right block giving 1101001
Error detectings: 0110111
Re-Check each parity bit
Bits 1 and 4 are incorrect

$1+4=5$, so the error occurred in bit 5

Binary Storage and Registers

- Registers
- A binary cell is a device that possesses two stable states and is capable of storing one of the two states.
- A register is a group of binary cells. A register with n cells can store any discrete quantity of information that contains n bits.
- A binary cell
n cells

2^{n} possible states
- Two stable state
- Store one bit of information
- Examples: flip-flop circuits, ferrite cores, capacitor
- A register
- A group of binary cells
- AX in x86 CPU
- Register Transfer
- A transfer of the information stored in one register to another.
- One of the major operations in digital system.
- An example in next slides.

A Digital Computer Example

Transfer of information

Transfer of information

- The other major component of a digital system
- Circuit elements to manipulate individual bits of information
- Load-store machine

LD	R1;
LD	R2;
ADD	R3, R2, R1;
SD	R3;

Binary Logic

- Definition of Binary Logic

- Binary logic consists of binary variables and a set of logical operations.
- The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc, with each variable having two and only two distinct possible values: 1 and 0 ,
- Three basic logical operations: AND, OR, and NOT.

1. AND: This operation is represented by a dot or by the absence of an operator. For example, $x \cdot y=z$ or $x y=z$ is read " x AND y is equal to z," The logical operation AND is interpreted to mean that $z=1$ if only $x=1$ and $y=1$; otherwise $z=0$. (Remember that x, y, and z are binary variables and can be equal either to 1 or 0 , and nothing else.)
2. OR: This operation is represented by a plus sign. For example, $x+y=z$ is read " x OR y is equal to z," meaning that $z=1$ if $x=1$ or $y=1$ or if both $x=1$ and $y=1$. If both $x=0$ and $y=0$, then $z=0$.
3. NOT: This operation is represented by a prime (sometimes by an overbar). For example, $\mathrm{x}^{\prime}=\mathrm{z}$ (or $\bar{x}=z$) is read "not x is equal to z," meaning that z is what z is not. In other words, if $x=1$, then $z=0$, but if $x=0$, then $z=1$, The NOT operation is also referred to as the complement operation, since it changes a 1 to 0 and a 0 to 1.

Binary Logic gates

- Truth Tables, Boolean Expressions, and Logic Gates
AND

0	0	0
0	1	0
1	0	0
1	1	1

$\mathbf{z}=\mathbf{x} \cdot \mathbf{y}=\mathbf{x} \mathbf{y}$

OR

0	0	0
0	1	1
1	0	1
1	1	1

$\mathbf{z}=\mathbf{x}+\mathbf{y}$
$\mathbf{z}=\overline{\mathbf{x}}=\mathbf{x}^{\prime}$

A	B	X
0	0	0
0	1	0
1	0	$\overline{0}$
1	1	1

A	B	X
0	0	0
0	1	1
1	0	1
1	1	1

Logic Function	Boolean Notation
AND	A.B
OR	$A+B$
NOT	A
NAND	$\overline{A, B}$
NOR	$\overline{A+B}$
EX-OR	$(\bar{A}, \bar{B})+(\bar{A}, B)$ or $A \oplus B$
EX-NOR	$(\bar{A} \cdot \bar{B})+\operatorname{or} \bar{A} \overline{(1) B}$

Universal Gate

- NAND and NOR Gates are called Universal Gates because AND, OR and NOT gates can be implemented \&created by using these gates.

NAND Gate Implementations

NOR Gate Implementations

Binary Logic

- Logic gates

- Example of binary signals

Binary Logic

- Logic gates
- Graphic Symbols and Input-Output Signals for Logic gates:

Binary Logic

- Logic gates
- Graphic Symbols and Input-Output Signals for Logic gates:

(a) Three-input AND gate

(b) Four-input OR gate

Fig. 1.6 Gates with multiple inputs

Boolean Algebra : George Boole(English mathematician), 1854

- Invented by George Boole in 1854
- An algebraic structure defined by a set $B=\{0,1\}$, together with two binary operators (+ and •) and a unary operator ()
"An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities"

Boolean Algebra

\{(1,0), Var, (NOT, AND, OR), Thms\}
\square Mathematical tool to expression and analyze digital (logic) circuits
םClaude Shannon, the first to apply Boole's work, 1938

- "A Symbolic Analysis of Relay and Switching Circuits" at MIT
-This chapter covers Boolean algebra, Boolean expression and its evaluation and simplification, and VHDL program

Basic Functions and Basic Functions

Boolean functions : NOT, AND, OR,
Exclusive OR(XOR) : Odd function
Exclusive NOR(XNOR) : Even function(equivalence)
Boolean functions for (a) AND, (b) OR, (c) XOR, and (d) NOT

x	y	$x \wedge y$
0	0	0
0	1	0
1	0	0
1	1	1

(a)

x	y	$x \vee y$
0	0	0
0	1	1
1	0	1
1	1	1

(b)

x	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

(c)

x	x^{\prime}
0	1
1	0

(d)

Basic functions

- AND $\mathrm{Z}=\mathrm{X} \cdot \mathrm{Y}$ or $\mathrm{Z}=\mathrm{XY}$
$\mathrm{Z}=1$ if and only if $\mathrm{X}=1$ and $\mathrm{Y}=1$, otherwise $\mathrm{Z}=0$
- OR
$\mathrm{Z}=\mathrm{X}+\mathrm{Y}$
$\mathrm{Z}=1$ if $\mathrm{X}=1$ or if $\mathrm{Y}=1$, or both $\mathrm{X}=1$ and $\mathrm{Y}=1 . \mathrm{Z}=0$ if and only if $\mathrm{X}=0$ and $\mathrm{Y}=0$
- NOT $Z=X^{\prime}$ or
$\mathrm{Z}=1$ if $\mathrm{X}=0, \mathrm{Z}=0$ if $\mathrm{X}=1$

Boolean functions for (a) NAND, (b) NOR, and (c) XNOR

x	y	NAND
0	0	1
0	1	1
1	0	1
1	1	0

(a)

x	y	NOR
0	0	1
0	1	0
1	0	0
1	1	0

(b)

x	y	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

(c)

All possible binary boolean functions

x	y	0	\wedge	$x y^{\prime}$	x	x^{\prime}	y	y	Θ	\vee	NOR	XNOR	y^{\prime}	$x+y^{\prime}$	x^{\prime}	$x^{\prime}+y$	NAND
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Boolean Operations and Expressions

- Boolean Addition
- Logical OR operation

Ex 4-1) Determine the values of A, B, C, an
 Sol) all literals must be ' 0 ' for the sum term to be ' 0 '
$A+B^{\prime}+C+D^{\prime}=0+1^{\prime}+0+1^{\prime}=0 \rightarrow A=0, B=1, C=0$, and $D=1$

- Boolean Multiplication
- Logical AND operation
$E x 4-2$) Determine the values of A, B, C, and D for $A B^{\prime} C D^{\prime}=1$
Sol) all literals must be ' 1 ' for the produc
$A B^{\prime} C D^{\prime}=10^{\prime} 10^{\prime}=1 \rightarrow A=1, B=0, C=1$, aııu ט-

Basic Identities of Boolean Algebra

Basic Identities of Boolean Algebra

Laws of Boolean Algebra

Commutative Law: the order of literals does not matter

Associative Law: the grouping of literals does not matter

$$
A+(B+C)=(A+B)+C(=A+B+C) \quad A(B C)=(A B) C(=A B C)
$$

$\checkmark A+0=A \quad$ In math if you add 0 you have changed nothing in Boolean Algebra ORing with 0 changes nothing
$\checkmark A \cdot 0=0 \quad$ In math if 0 is multiplied with anything you get 0 . If you AND anything with 0 you get 0
$\checkmark A \cdot 1=A \quad$ ANDing anything with 1 will yield the anything
$\checkmark A+A=A \quad$ ORing with itself will give the same result
$\checkmark A+A^{\prime}=1 \quad$ Either A or A^{\prime} must be 1 so $A+A^{\prime}=1$
$\checkmark A \cdot A=A$ ANDing with itself will give the same result
$\checkmark A \cdot A^{\prime}=0 \ln$ digital Logic $1^{\prime}=0$ and $0^{\prime}=1$, so $A A^{\prime}=0$ since one of the inputs must be 0 .
$A=\left(A^{\prime}\right)^{\prime}$ If you not something twice you are back to the beginning

$$
\checkmark A+A^{\prime} B=A+B
$$

If A is 1 the output is 1 If A is 0 the output is B
$\checkmark A+A B=A$
$\checkmark(A+B)(A+C)=A+B C$

- DeMorgan's Theorem
$-F^{\prime}\left(A, A^{\prime}, \cdot \cdot+, 1,0\right)=F\left(A^{\prime}, A,+, \cdot, 0,1\right)$
$-(A \bullet B)^{\prime}=A^{\prime}+B^{\prime}$ and $(A+B)^{\prime}=A^{\prime} \bullet B^{\prime}$
- DeMorgan's theorem will help to simplify digital circuits using NORs and NANDs his theorem states

Boolean Analysis of Logic Circuits

Constructing a Truth Table for a Logic Circuit

- Convert the expression into the min-terms containing all the input literals
- Get the numbers from the min-terms
- Putting ' 1 's in the rows corresponding to the min-terms and ' 0 's in the remains

Ex) $A(B+C D)=A B\left(C+C^{\prime}\right)\left(D+D^{\prime}\right)+A\left(B+B^{\prime}\right) C D=A B C\left(D+D^{\prime}\right)+A B C^{\prime}\left(D+D^{\prime}\right)$ $+A B C D+A B^{\prime} C D=A B C D+A B C D^{\prime}+A B C^{\prime} D+A B C^{\prime} D^{\prime}+A B C D+A B^{\prime} C D$ $=A B C D+A B C D^{\prime}+A B C^{\prime} D+A B C^{\prime} D^{\prime}+A B^{\prime} C D$ $=\mathrm{m} 11+\mathrm{m} 12+\mathrm{m} 13+\mathrm{m} 14+\mathrm{m} 15=\Sigma(11,12,13,14,15)$
$\mathrm{A}(\mathrm{B}+\mathrm{CD})=\mathrm{m} 11+\mathrm{m} 12+\mathrm{m} 13+\mathrm{m} 14+\mathrm{m} 15=\Sigma(11,12,13,14,15)$

Input				
A	B	C	D	$\mathrm{A}(\mathrm{B}+\mathrm{C}+\mathrm{D})$
O	O	O	O	O
O	O	O	1	O
O	O	1	O	O
O	O	1	1	O
O	1	O	O	O
O	1	O	1	O
O	1	1	O	O
O	1	1	1	O
1	O	O	O	O
1	O	O	1	O
1	O	1	O	O
1	O	1	1	1
1	1	O	O	1
1	1	O	1	1
1	1	1	O	1
1	1	1	1	1

Standard Forms of Boolean Expressions

\square The Sum-of-Products(SOP) Form Ex) $A B+A B C, A B C+C D E+B^{\prime} C D^{\prime}$
\square The Product-of-Sums(POS) Form Ex) $(A+B)(A+B+C),(A+B+C)(C+D+E)\left(B^{\prime}+C+D^{\prime}\right)$
DPrinciple of Duality : SOP \Leftrightarrow POS
\square Domain of a Boolean Expression : The set of variables contained in the expression Ex) $A^{\prime} B+A B^{\prime} C$: the domain is $\{A, B, C\}$
\checkmark Standard SOP Form (Canonical SOP Form)

- For all the missing variables, apply $\left(x+x^{\prime}\right)=1$ to the AND terms of the expression
- List all the min-terms in forms of the complete set of variables in ascending order

Ex : Convert the following expression into standard SOP form: $A B^{\prime} C+A^{\prime} B^{\prime}+A B C^{\prime} D$
Sol) domain $=\{A, B, C, D\}, A B^{\prime} C\left(D^{\prime}+D\right)+A^{\prime} B^{\prime}\left(C^{\prime}+C\right)\left(D^{\prime}+D\right)+A B C^{\prime} D$
$=A B^{\prime} C D^{\prime}+A B^{\prime} C D+A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B^{\prime} C^{\prime} D+A^{\prime} B^{\prime} C D^{\prime}+A^{\prime} B^{\prime} C D+A B C^{\prime} D$
$=1010+1011+0000+0001+0010+0011+1101=0+1+2+3+10+11+13=\Sigma(0,1,2,3,10,11,13)$

Standard POS Form (Canonical POS Form)

- For all the missing variables, apply ($\mathrm{x}^{\prime} \mathrm{x}$) $=0$ to the OR terms of the expression
- List all the max-terms in forms of the complete set of variables in ascending order

Ex : Convert the following expression into standard POS form:
$\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)\left(\mathrm{B}^{\prime}+\mathrm{C}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}+\mathrm{D}\right)$
Sol) domain $=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}, \quad\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)\left(\mathrm{B}^{\prime}+\mathrm{C}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}+\mathrm{D}\right)$
$=\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}+\mathrm{D}^{\prime} \mathrm{D}\right)\left(\mathrm{A}^{\prime} \mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}+\mathrm{D}\right)$
$=\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}+\mathrm{D}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right.$
$+\mathrm{D})=(0100))(0101)(0110)(1101)=\Pi(4,5,6,13)$

Converting Standard SOP to Standard POS

Step 1. Evaluate each product term in the SOP expression. Determine the binary numbers that represent the product terms
Step 2. Determine all of the binary numbers not included in the evaluation in Step 1
Step 3. Write in equivalent sum term for each binary number Step 2 and expression in POS form

Ex : Convert the following SOP to POS
Sol) SOP $=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A^{\prime} B C+A B^{\prime} C+A B C=0+2+3+5+7=\Sigma(0,2,3,5,7)$
POS=(1)(4)(6) $=\Pi(1,4,6)\left(=\left(A+B+C^{\prime}\right)\left(A^{\prime}+B+C\right)\left(A^{\prime}+B^{\prime}+C\right)\right)$
$\square \quad$ SOP and POS Observations

- Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity
- Boolean algebra can be used to manipulate equations into simpler forms
- Simpler equations lead to simpler implementations

Summary of Minterms and Maxterms

here are 2^{n} minterms and maxterms for Boolean functions with n variables.

- Minterms and maxterms are indexed from 0 to $2^{n}-1$
- Any Boolean function can be expressed as a logical sum of minterms and as a logical product of maxterms
- The complement of a function contains those minterms not included in the original function
- The complement of a sum-of-minterms is a product-of-maxterms with the same indices

Dual of a Boolean Expression

- To changing 0 to 1 and + operator to - vise versa for a given boolean function
\square Example: $\mathbf{F}=(\mathbf{A}+\mathbf{C}) \cdot \mathbf{B}+\mathbf{0}$
dual $\mathbf{F}=(\mathbf{A} \cdot \mathbf{C}+\mathbf{B}) \cdot \mathbf{1}=\mathbf{A} \cdot \mathbf{C}+\mathbf{B}$
\square Example: $\mathbf{G}=\mathbf{X} \cdot \mathbf{Y}+(\mathbf{W}+\mathbf{Z})$
dual $G=$
\checkmark Unless it happens to be self-dual, the dual of an expression does not equal the expression itself
\checkmark Are any of these functions self-dual? $(A+B)(A+C)(B+C)=(A+B C)(B+C)=A B+A C+B C$

Karnaugh Map

- Simplification methods
- Boolean algebra(algebraic method)
- Karnaugh map(map method))
- Quine-McCluskey(tabular method)

(a) $X Y+X Y^{\prime}=X\left(Y+Y^{(b)}\right)=X$ Two-Variable Map

(a) $X Y$

sentation of Functions in the Map

(a)

(b)

(a)

(b)

Syllabus

UNIT-II

K-Map Reduction - Don't Care Conditions - Adders /
Subtractors- Carry Look-Ahead Adder - Code Conversion
Algorithms - Design of Code Converters - Equivalence Functions. Binary/Decimal Parallel Adder/Subtractor for Signed Numbers Magnitude Comparator - Decoders / Encoders - Multiplexers / Demultiplexers- Boolean Function Implementation using Multiplexers

Karnaugh Map (K- Map) Steps

1. Sketch a Karnaugh map grid for the given problem.in power of 2^{N} Squares
2. Fill in the 1's and 0's from the truth table of sop or pos Boolean function
3. Circle groups of 1's.

- Circle the largest groups of 2, 4, 8, etc. first.
- Minimize the number of circles but make sure that every 1 is in a circle. 4. Write an equation using these circles.

Example) $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(2,3,4,5)=\mathrm{X}^{\prime} \mathrm{Y}+\mathrm{XY}^{\prime}$

Example) $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(0,2,4,6)=\mathrm{X}^{\prime} \mathrm{Z}^{\prime}+\mathrm{XZ}^{\prime}=\mathrm{Z}^{\prime}\left(\mathrm{X}^{\prime}+\mathrm{X}\right)=\mathrm{Z}^{\prime}$

Three-Variable Map: Flat and on a Cylinder to Show Adjacent Squares

Four-Variable K-Map : 16 minterms : $\mathrm{m}_{0}{ }^{\sim} \mathrm{m}_{15}$ Rectangle group

- 2-squares(minterms) : 3-literals product term
- 4-squares : 2-literals product term
- 8-squares : 1-literals product term
- 16 -squares : logic 1

m_{0}	m_{1}	m_{3}	m_{2}
m_{4}	m_{5}	m_{7}	m_{6}
m_{12}	m_{13}	m_{15}	m_{14}
m_{8}	m_{9}	m_{11}	m_{10}

(a)

(b)

Fig. 2-17 Four-Variable Map
$\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(0,2,7,8,9,10,11)=\mathrm{WX} \mathrm{X}^{\prime}+\mathrm{X}^{\prime} \mathrm{Z}^{\prime}+\mathrm{W}^{\prime} \mathrm{XYZ}$

$\begin{array}{\|c\|} y z \\ w x \end{array}$	$\begin{array}{lllll}00 & 01 & 11 & 10\end{array}$			
00	1	0	0	1
01	0	0	1	0
11	0	0	0	0
10	(1)	1	1	(1)
(b)				

Ex 4-28) Minimize the following expression $A B^{\prime} C+A^{\prime} B C+A^{\prime} B^{\prime} C+A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C^{\prime}$

Sol) $B^{\prime}+A^{\prime} C$

Ex Minimize the following expression
$B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B C^{\prime} D^{\prime}+A B C^{\prime} D^{\prime}+A^{\prime} B^{\prime} C D+A B^{\prime} C D+A^{\prime} B^{\prime} C D^{\prime}+A^{\prime} B C D^{\prime}+A B C D^{\prime}+A B^{\prime} C D^{\prime}$
Sol) $D^{\prime}+B^{\prime} C$

DDon't Care Conditions

- it really does not matter since they will never occur(its output is either ' 0 ' or ' 1 ')
- The don't care terms can used to advantage on the Karnaugh map

$\begin{aligned} & \text { Inputs } \\ & A B C D \end{aligned}$	Output \boldsymbol{Y}
0000	0
0001	0
0010	0
0011	0
0100	0
0101	0
0110	0
0111	1
1000	1
1001	1
1010	X
1011	X
1100	X
1101	X
1110	X
1111	X

Don't cares

Ex K- Map for POS $(B+C+D)\left(A+B+C^{\prime}+D\right)\left(A^{\prime}+B+C+D^{\prime}\right)\left(A+B^{\prime}+C+D\right)\left(A^{\prime}+B^{\prime}+C+D\right)$
Sol) $(\mathrm{B}+\mathrm{C}+\mathrm{D})=\left(\mathrm{A}^{\prime} \mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}\right)=\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C} \quad C D \quad A+B+D\right.$ $(1+0+0+0)(0+0+0+0)(0+0+1+0)$ $(1+0+0+1)(0+1+0+0)(1+1+0+0)$

$$
F=(C+D)\left(A^{\prime}+B+C\right)(A+B+D)
$$

\square Converting Between POS and SOP Using the K-map
Ex 4-33) $\left(A^{\prime}+B^{\prime}+C+D\right)\left(A+B^{\prime}+C+D\right)$

$\bar{A}+B+C$
$\left(A+B+C+D^{\prime}\right)\left(A+B+C^{\prime}+D^{\prime}\right)\left(A^{\prime}+B+C+D^{\prime}\right)$
$\left(A+B+C^{\prime}+D\right)$

(a) Minimum POS: $(A+B+\bar{C})(\bar{B}+C+D)(B+C+\bar{D})$

(b) Standard SOP:
(b) Standard SOP:
$A B C D+A B \bar{C} D+\bar{A} B C D+\bar{A} B C \bar{D}+A B C \bar{D}+A \bar{B} C \bar{D}+$ $A \bar{B} \bar{C} \bar{D}+A B \bar{C} D+A \bar{B} C D+A B C D$

(c) Minimum SOP: $A C+B C+B D+\bar{B} \bar{C} \bar{D}$

- Five Variable K-Map : $\{A, B, C, D, E\}$

BCOO	01	11	10
$11>12$			

$A=A=0$

- Six Variable K-Map : $\{A, B, C, D, E, F\}$

- Step 1 - Arrange the given min terms in an ascending order and make the groups based on the number of ones present in their binary representations. - ' $\mathbf{n}+\mathbf{1}$ ' groups
- Step 2 - Compare the min terms present in successive groups. If there is a change in only onebit position, then take the pair of those two min terms. Place this symbol ' ${ }^{\prime}$ ' in the differed bit position and keep the remaining bits as it is.
- Step 3 - Repeat step2 with newly formed terms till we get all prime implicants.
- Step 4 - Formulate the prime implicant table. It consists of set of rows and columns. Place ' 1 ' in the cells corresponding to the min terms that are covered in each prime implicant.
- Step 5 - Find the essential prime implicates by observing each column. Those essential prime implicants will be part of the simplified Boolean function.
- Step 6 - Reduce the prime implicant table by removing the row of each essential prime implicant and the columns corresponding to the min terms that are covered in that essential prime implicant. Repeat step 5 for Reduced prime implicant table. Stop this process when all min terms of given Boolean function are over.

1. Simplify the following expression to sum of product using Tabulation Method

$$
F(a, b, c, d)=\sum(0,1,2,3,4,6,7,11,12,15)
$$

Solution:
a. Determination of Prime Implicants

Group 0	mO: 0000	v	$\begin{aligned} & (0,1) \\ & (0,2) \\ & (0,4) \end{aligned}$	000-00-0 0-00	$\begin{aligned} & v^{\prime} \\ & v^{\prime} \\ & v^{\prime} \end{aligned}$	$\begin{aligned} & (0,1,2,3) 00- \\ & (0,2,4,6) 0-0 \\ & (0,2,1,3) 00-\text { redundant } \\ & (0,4,2,6) 0 \text {--0 redundant } \end{aligned}$
Group 1	m1: 0001	v	(11,3)	00-1	v	$[2,3,6,7] 0$-1-
	m2: 0010	v	$(2,3)$	001-	v	$(2,6,3,7)$ 0-1-
	m4: 0100	v	$(2,6)$	0-10	v	
			(4,6)	01-0	v	
			$(4,12)$	-100		
Group 2	m3: 0011	v	$(3,7)$	0-11	v	(3,7,11,15) --11
	m6: 0110	v	(3,11)	-011	v	$(3,11,7,15)-11$ redundant
	m12:1100	v	$(6,7)$	011-	v	
Group 3	m7: 0111	v	(7,15)	-111	v	
	m11: 1011	v	$(11,15)$	1-11	v	
Group 4	m15: 1111	v				

b. Prime Implicant Chart:

$$
f(a, b, c, d)=b c^{\prime} d^{r}+a^{\prime} b^{r}+c d+a^{\prime} d^{\prime}
$$

3. Simplify the following expression to product of sum using Tabulation Method

$$
F(a, b, c, d)=\prod(1,3,5,7,13,15)
$$

Solution:
a. Determination of Prime Implicants

b. Prime Implicant Chart:

Digital Circuits

- Digital circuits are two types

1. Combinational circuit consists of logic gates whose outputs at any time are determined directly from the present combination of inputs without regard to previous inputs.
2. Sequential Circuit employ memory elements in addition to logic gates. Their outputs are a function of the inputs and the state of the memory elements.

$\mathrm{X} y$	C	S
00	0	0
0	0	1
10	0	1
11	1	0

(a) $\begin{aligned} S & =x y^{\prime}+x^{\prime} y \\ C & =x y\end{aligned}$

(b) $S=x \oplus y$

$x \mathrm{yz}$	C S
000	00
001	01
010	01
011	01
100	10
101	10
110	11
101	1

$$
\begin{aligned}
S & =x y+x z+y z \\
& =x y+x y^{\prime} z+x^{\prime} y z
\end{aligned}
$$

Carry generation: output carry is produced internally by the FA.carry is generated only when both input bits are 1 s.the generated carry C is expressed as the $A N D$ function of two input bits A and B so $C=A B$.

Carry propagation: occurs when the i / p carry is rippled to become the o / p carry.an i / p carrymay be propagated by the full adder when either or both of the i / p bits are 1 s.the propagated carry Cp is expressed as the OR function of the i / p bits ie $\mathrm{Cp}=\mathrm{A}+\mathrm{B}$

2- Bit Parallel Adder

hree sum bits are \square, \square

- LSB of two binary numbers are represented by A_{1} and B_{1}. The next higher bit are A_{2} and B_{2}. The resulting 12 and C_{0}, in which the C_{0} becomes MSB.
The carry output C_{O} of each adder is connected as the carry input of the next higher order.

Fig : bit adder using two full adder

Four Bit Parallel Adders

- An n-bit adder requires n full adders with each output connected to the input carry of the next higher-order full adder.

Input bit for number A	Input bit for number B	Carry inf input $\mathbb{C}_{1 N}$	Sumt but output S	Carry bit output $\mathrm{C}_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Exactly One of these 3 outputs equals 1 ，while the other 2 outputs are 0 ＇s．
Solution：
Inputs：8－bits $\left(A \Rightarrow 4\right.$－bits，$B \Rightarrow 4$－bits）．$A$ and B are two 4－bit numbers．Let $A=A_{3} A_{2} A_{1} A_{0}$ ，and Let $B=B_{3} B_{2} B_{1} B_{0}$ ．

Design of the EQ

\bullet Define $X_{i}=A_{i}$ xnor $B_{i}=A_{i} B_{i}+A_{i}^{\prime} \quad B_{i}^{\prime}$
$\mathrm{Xi}=1 \operatorname{IFF} \mathrm{~A}_{\mathrm{i}}=\underset{\square}{\mathrm{B}_{\mathrm{i}}} \underset{\mathrm{X}}{\forall \mathrm{i}}=0,1,2$ and 3
$\mathrm{Xi}_{\mathrm{i}}=0 \operatorname{IFF} \mathrm{~A}_{\mathrm{i}} \neq \mathrm{B}_{\mathrm{i}} \times$
－Therefore the condition for $\mathrm{A}=\mathrm{B}$ or $\mathrm{EQ}=1 \mathrm{IFF}$
$\mathrm{A}_{3}=\mathrm{B}_{3} \rightarrow\left(\mathrm{X}_{3}=1\right)$ ，and $\mathrm{A}_{2}=\mathrm{B}_{2} \rightarrow\left(\mathrm{X}_{2}=1\right)$ ，and $\mathrm{A}_{1}=\mathrm{B}_{1} \rightarrow\left(\mathrm{X}_{1}=1\right)$ ，and $\mathrm{A}_{0}=\mathrm{B}_{0} \rightarrow\left(\mathrm{X}_{0}=1\right)$ ．
－Thus， $\mathrm{EQ}=1 \mathrm{IFF} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}=1$ ．In other words， $\mathrm{EQ}=\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$

Designing GT and LT：

－ $\mathrm{GT}=1$ if $\mathrm{A}>\mathrm{B}$ ：
\checkmark If $A_{3}>B_{3}=1$ and $B_{3}=0$ If $A_{3}=B_{3}$ and $A_{2}>B_{2}$
$\underset{\checkmark}{ }$ If $A_{3}=B_{3}$ and $A_{2}=B_{2}$ and $A_{1}>A_{1}$
If $\mathrm{A}_{3}=\mathrm{B}_{3}$ and $\mathrm{A}_{2}=\mathrm{B}_{2}$ and $\mathrm{A}_{1}=\mathrm{B}_{1}$ and $\mathrm{A}_{0}>\mathrm{B}_{0}$
－Therefore，
$G T=A_{3} B_{3}{ }^{〔}+X_{3} A_{2} B_{2}{ }^{〔}+X_{3} X_{2} A_{1} B_{1}{ }^{〔}+X_{3} X_{2} \quad X_{1} A_{0} B_{0}{ }^{6}$
Similarly，$L T=A_{3}{ }^{\prime} \mathrm{B}_{3}+\mathrm{X}_{3} \mathrm{~A}_{2}{ }^{‘} \mathrm{~B}_{2}+\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{~A}_{1}{ }^{\prime} \mathrm{B}_{1}+\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{~A}_{0}{ }^{\prime} \mathrm{B}_{0}$

Outputs: 3 output signals (GT, EQ, LT), where: GT $=1 \mathrm{IFF} \mathrm{A}>\mathrm{B} \quad \mathrm{EQ}=1 \mathrm{IFF} \mathrm{A}=\mathrm{B} \quad \mathrm{LT}=1 \mathrm{IFF} \mathrm{A}<\mathrm{B}$
Exactly One of these 3 outputs equals 1 , while the other 2 outputs are 0 ©s.

Solution:

Inputs: 8 -bits $\left(A \Rightarrow 4\right.$-bits, $B \Rightarrow 4$-bits). A and B are two 4-bit numbers. Let $A=A_{3} A_{2} A_{1} A_{0}$, and Let $B=B_{3} B_{2} B_{1} B_{0}$.

Design of the EQ

-Define $X_{i}={ }^{\prime} \mathrm{A}_{\mathrm{i}}$ XITor $\mathrm{B}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}+\mathrm{A}_{\mathrm{i}}{ }^{\prime} \mathrm{B}_{\mathrm{i}}{ }^{\prime}$
$\mathrm{xi}_{\mathrm{i}}=1 \mathrm{IFF} \mathrm{A}_{\mathrm{i}}=\mathrm{B}_{\mathrm{i}} \forall \mathrm{i}=0,1,2$ and 3
$\mathrm{xi}_{\mathrm{i}}=0 \operatorname{IFF} \mathrm{~A}_{\mathrm{i}} \neq \mathrm{B}_{\mathrm{i}}$
-Therefore the condition for $\mathrm{A}=\mathrm{B}$ or $\mathrm{EQ}=1 \mathrm{IFF}$
$\mathrm{A}_{3}=\mathrm{B}_{3} \rightarrow\left(\mathrm{X}_{3}=1\right)$, and $\mathrm{A}_{2}=\mathrm{B}_{2} \rightarrow\left(\mathrm{X}_{2}=1\right)$, and $\mathrm{A}_{1}=\mathrm{B}_{1} \rightarrow\left(\mathrm{X}_{1}=1\right)$, and $\mathrm{A}_{0}=\mathrm{B}_{0} \rightarrow\left(\mathrm{X}_{0}=1\right)$.
-Thus, $\mathrm{EQ}=1 \operatorname{IFF} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}=1$. In other words, $\mathrm{EQ}=\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \quad \mathrm{X}_{0}$

Designing GT and LT:

$\cdot \mathrm{GT}=1$ if $\mathrm{A}>\mathrm{B}$:
\checkmark If $A_{3}>B_{3} \quad=1$ and $B_{3}=0$ If $A_{3}=B_{3}$ and $A_{2}>B_{2}$
$\operatorname{If} \mathrm{A}_{3}=\mathrm{B}_{3}$ and $\mathrm{A}_{2}=\mathrm{B}_{2}$ and $\mathrm{A}_{1}>\mathrm{A}_{1}$
If $A_{3}=B_{3}$ and $A_{2}=B_{2}$ and $A_{1}=B_{1}$ and $A_{0}>B_{0}$
-Therefore,
$\mathrm{GT}=\mathrm{A}_{3} \mathrm{~B}_{3}{ }^{6}+\mathrm{X}_{3} \mathrm{~A}_{2} \mathrm{~B}_{2}{ }^{6}+\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{~A}_{1} \mathrm{~B}_{1}{ }^{6}+\mathrm{X}_{3} \mathrm{X}_{2} \quad \mathrm{X}_{1} \mathrm{~A}_{0} \mathrm{~B}_{0}{ }^{6}$

Encoder

-Encoders typically have 2 N inputs and N outputs.
-These are called $2 \mathrm{~N}-$ to- N encoders.
-Encoders can also be devised to encode various symbols and alphabetic characters.
-The process of converting from familiar symbols or numbers to a coded format is called encoding.

Fig : Logical diagram of Encode

8 to-3 encoder Implementation

- Octal-to-Binary
- An octal to binary encoder has $2^{3}=8$ input lines D_{0} to D_{7} and 3 output lines Y_{0} to Y_{2}. Below is the truth table for an octal to binary encoder.

Fig : Truth table for 8-3 encoder

From the truth table, the outputs can be expressed by following Boolean Function. $Y_{0}=D_{1}+D_{3}+D_{5}+D_{7}$

Select
Lines

B	A	Y
0	0	D0
0	1	D1
1	0	D2
1	1	D3

[^0]: Power switches have labels " 1 " for on and " 0 " for off.

