
08-11-2020 Side 1

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Digital Circuits and Logic Design

(BCS-11)

By

Manish Kumar Srivastava

Assistant Professor

Department of Computer Science & Engineering

Madan Mohan Malaviya University of Technology Gorakhpur

(UP State Govt. University)

Email: mkscs@mmmut.ac.in

mailto:kscs@mmmut.ac.in

08-11-2020 Side 2

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Syllabus

UNIT-I

Binary Codes - Weighted and Non-Weighted - Binary Arithmetic
Conversion Algorithms - Error Detecting and Error Correcting
Codes - Canonical and Standard Boolean Expressions - Truth
Tables.

A digital circuit is a circuit where the signal must be one of two

discrete levels. Each level is interpreted as one of two different

states (for example, on/off, 0/1, true/false). Digital circuits use

transistors to create logic gates in order to perform Boolean logic.

08-11-2020 Digital Circuits and Logic Design (BCS-11)

All digital computers are based on a two-valued logic system—1/0, on/off,
yes/no . Computers perform calculations using components called logic
gates, which are made up of integrated circuits that receive an input
signal, process it, and change it into an output signal. There are three basic
kinds of logic gates, called “and,” “or,” and “not.” By connecting logic
gates together, a device can be constructed that can perform basic
arithmetic functions.

08-11-2020 Digital Circuits and Logic Design (BCS-11) 4

Logic Design

08-11-2020 Digital Circuits and Logic Design (BCS-11)

• Digital Signal : Decimal values are difficult to represent in
electrical systems. It is easier to use two voltage values than ten.

• Digital Signals have two basic states:
1 (logic “high”, or H, or “on”)
0 (logic “low”, or L, or “off”)

• Digital values are in a binary format. Binary means 2 states.

• A good example of binary is a light (only on or off)

on off

Power switches have labels “1” for on and “0” for off.

5

08-11-2020 Digital Circuits and Logic Design (BCS-11)

• Bits and Pieces of DLD History

George Boole
• Mathematical Analysis of Logic (1847)

• An Investigation of Laws of Thoughts; Mathematical Theories of Logic
and Probabilities (1854)

Claude Shannon
• Rediscovered the Boole

• “ A Symbolic Analysis of Relay and Switching Circuits “

• Boolean Logic and Boolean Algebra were Applied to Digital Circuitry

---------- Beginning of the Digital Age and/or Computer Age

World War II

Computers as Calculating Machines

Arlington (State Machines) “ Control “
6

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Motivation
• Microprocessors/Microelectronics have revolutionized

our world
• Cell phones, internet, rapid advances in medicine, etc.

• The semiconductor industry has grown
tremendously

7

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Digital Systems and Binary Numbers

Digital age and information age

Digital computers
• General purposes
• Many scientific, industrial and commercial applications

• Digital systems
• Telephone switching exchanges
• Digital camera
• Electronic calculators, PDA's
• Digital TV

• Discrete information-processing systems
• Manipulate discrete elements of information
• For example, {1, 2, 3, …} and {A, B, C, …}…

8

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Analog and Digital Signal

• Analog system
• The physical quantities or signals may vary continuously over a

specified range.

• Digital system
• The physical quantities or signals can assume only discrete values.

• Greater accuracy

t

X(t)

t

X(t)

Analog signal Digital signal 9

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary Digital Signal

• An information variable represented by physical quantity.

• For digital systems, the variable takes on discrete values.
• Two level, or binary values are the most prevalent values.

• Binary values are represented abstractly by:
• Digits 0 and 1

• Words (symbols) False (F) and True (T)

• Words (symbols) Low (L) and High (H)

• And words On and Off

• Binary values are represented by values
or ranges of values of physical quantities.

t

V(t)

Binary digital signal

Logic 1

Logic 0

undefine

10

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Decimal Number System

• Base (also called radix) = 10
• 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

• Digit Position
• Integer & fraction

• Digit Weight
• Weight = (Base)

Position

• Magnitude
• Sum of “Digit x Weight”

• Formal Notation

1 0 -12 -2

5 1 2 7 4

10 1 0.1100 0.01

500 10 2 0.7 0.04

d2*B
2
+d1*B

1
+d0*B

0
+d-1*B

-1
+d-2*B

-2

(512.74)10

11

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Octal Number System

• Base = 8
• 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }

• Weights
• Weight = (Base) Position

• Magnitude
• Sum of “Digit x Weight”

• Formal Notation

1 0 -12 -2

8 1 1/864 1/64

5 1 2 7 4

5 *8
2
+1 *8

1
+2 *8

0
+7 *8

-1
+4 *8

-2

=(330.9375)10

(512.74)8

12

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Hexadecimal Number System

• Base = 16
• 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }

• Weights
• Weight = (Base) Position

• Magnitude
• Sum of “Digit x Weight”

• Formal Notation

1 0 -12 -2

16 1 1/16256 1/256

1 E 5 7 A

1 *16
2
+14 *16

1
+5 *16

0
+7 *16

-1
+10 *16

-2

=(485.4765625)10

(1E5.7A)16

13

08-11-2020 Digital Circuits and Logic Design (BCS-11)

The Power of 2

n 2n

0 20=1

1 21=2

2 22=4

3 23=8

4 24=16

5 25=32

6 26=64

7 27=128

n 2n

8 28=256

9 29=512

10 210=1024

11 211=2048

12 212=4096

20 220=1M

30 230=1G

40 240=1T

Mega

Giga

Tera

Kilo

14

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Addition

• Decimal Addition

5 5

55+

011

= Ten ≥ Base

➔ Subtract a Base

11 Carry

15

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary Addition

• Column Addition

1 0 1111

1111 0+

0000 1 11

≥ (2)10

111111

= 61

= 23

= 84

16

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary Subtraction

• Borrow a “Base” when needed

0 0 1110

1111 0−

0101 1 10

= (10)2

2

2

2 2

1

000

1

= 77

= 23

= 54

17

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary Multiplication

• Bit by bit

01 1 1 1

01 1 0

00 0 0 0

01 1 1 1

01 1 1 1

0 0 000

0110111 0

x

18

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Number Base Conversions

Decimal

(Base 10)

Octal

(Base 8)

Binary

(Base 2)

Hexadecimal

(Base 16)

Evaluate
Magnitude

Evaluate
Magnitude

Evaluate
Magnitude 19

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Decimal (Integer) to Binary Conversion

• Divide the number by the ‘Base’ (=2)

• Take the remainder (either 0 or 1) as a coefficient

• Take the quotient and repeat the division

Example: (13)10 Quotient Remainder Coefficient

Answer: (13)10 = (a3 a2 a1 a0)2 = (1101)2

MSB LSB

13 / 2 = 6 1 a0 = 1

6 / 2 = 3 0 a1 = 0

3 / 2 = 1 1 a2 = 1
1 / 2 = 0 1 a3 = 1

20

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Decimal (Fraction) to Binary Conversion

• Multiply the number by the ‘Base’ (=2)

• Take the integer (either 0 or 1) as a coefficient

• Take the resultant fraction and repeat the division

Example: (0.625)10 Integer Fraction Coefficient

Answer: (0.625)10 = (0.a-1 a-2 a-3)2 = (0.101)2

MSB LSB

0.625 * 2 = 1 . 25

0.25 * 2 = 0 . 5 a-2 = 0

0.5 * 2 = 1 . 0 a-3 = 1

a-1 = 1

21

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Decimal to Octal Conversion

Example: (175)10

Quotient Remainder Coefficient

Answer: (175)10 = (a2 a1 a0)8 = (257)8

175 / 8 = 21 7 a0 = 7

21 / 8 = 2 5 a1 = 5

2 / 8 = 0 2 a2 = 2

Example: (0.3125)10

Integer Fraction Coefficient

Answer: (0.3125)10 = (0.a-1 a-2 a-3)8 = (0.24)8

0.3125 * 8 = 2 . 5

0.5 * 8 = 4 . 0 a-2 = 4

a-1 = 2

22

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary − Octal Conversion

• 8 = 23

• Each group of 3 bits represents an
octal digit

Octal Binary

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

Example:

(1 0 1 1 0 . 0 1)2

(2 6 . 2)8

Assume Zeros

Works both ways (Binary to Octal & Octal to Binary)

23

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary − Hexadecimal Conversion

• 16 = 24

• Each group of 4 bits represents a
hexadecimal digit

Hex Binary
0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

A 1 0 1 0

B 1 0 1 1

C 1 1 0 0

D 1 1 0 1

E 1 1 1 0

F 1 1 1 1

Example:
(1 0 1 1 0 . 0 1)2

(1 6 . 4)16

Assume Zeros

Works both ways (Binary to Hex & Hex to Binary)

24

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Octal − Hexadecimal Conversion

• Convert to Binary as an intermediate step

Example:

(0 1 0 1 1 0 . 0 1 0)2

(1 6 . 4)16

Assume Zeros

Works both ways (Octal to Hex & Hex to Octal)

(2 6 . 2)8

Assume Zeros

25

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Decimal, Binary, Octal and Hexadecimal

Decimal Binary Octal Hex
00 0000 00 0

01 0001 01 1

02 0010 02 2

03 0011 03 3

04 0100 04 4

05 0101 05 5

06 0110 06 6

07 0111 07 7

08 1000 10 8

09 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

26

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Complements

• There are two types of complements for each base-r system: the radix complement and diminished
radix complement.

• Diminished Radix Complement - (r-1)’s Complement

• Given a number N in base r having n digits, the (r–1)’s complement of N is
defined as:

(rn–1) – N

• Example for 6-digit decimal numbers:

• 9’s complement is (rn – 1)–N = (106–1)–N = 999999–N
• 9’s complement of 546700 is 999999–546700 = 453299

• Example for 7-digit binary numbers:

• 1’s complement is (rn – 1) – N = (27–1)–N = 1111111–N
• 1’s complement of 1011000 is 1111111–1011000 = 0100111

• Observation:

• Subtraction from (rn – 1) will never require a borrow
• Diminished radix complement can be computed digit-by-digit
• For binary: 1 – 0 = 1 and 1 – 1 = 0

27

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Complements

• 1’s Complement (Diminished Radix Complement)
• All ‘0’s become ‘1’s

• All ‘1’s become ‘0’s

Example (10110000)2

 (01001111)2

If you add a number and its 1’s complement …

1 0 1 1 0 0 0 0

+ 0 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

28

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Complements

• Radix Complement

• Example: Base-10

• Example: Base-2

The r's complement of an n-digit number N in base r is

defined as

rn – N for N ≠ 0 and as 0 for N = 0. Comparing with the (r

− 1) 's complement, we note that the r's complement is

obtained by adding 1 to the (r − 1) 's complement, since

rn – N = [(rn − 1) – N] + 1.

The 10's complement of 012398 is 987602

The 10's complement of 246700 is 753300

The 2's complement of 1101100 is 0010100

The 2's complement of 0110111 is 1001001

29

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Complements

• 2’s Complement (Radix Complement)
• Take 1’s complement then add 1

• Toggle all bits to the left of the first ‘1’ from the right

Example:

Number:

1’s Comp.:

0 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 0 0 1 1 1 1

+ 1

OR

1 0 1 1 0 0 0 0

00001010

30

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Complements

• Subtraction with Complements
• The subtraction of two n-digit unsigned numbers M – N in base r

can be done as follows:

31

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Complements

• Example 1.5
• Using 10's complement, subtract 72532 – 3250.

• Example 1.6
• Using 10's complement, subtract 3250 – 72532.

There is no end carry.

Therefore, the answer is – (10's complement of 30718) = − 69282.
32

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Complements

• Example 1.7
• Given the two binary numbers X = 1010100 and Y = 1000011,

perform the subtraction (a) X – Y ; and (b) Y − X, by using 2's
complement.

There is no end carry.

Therefore, the answer is Y –

X = − (2's complement of

1101111) = − 0010001.

33

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Complements

• Subtraction of unsigned numbers can also be done by means of the (r − 1)'s
complement. Remember that the (r − 1) 's complement is one less then the r's
complement.

• Example 1.8
• Repeat Example 1.7, but this time using 1's complement.

There is no end carry, Therefore,

the answer is Y – X = − (1's

complement of 1101110) = −

0010001.
34

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Signed Binary Numbers

• To represent negative integers, we need a notation for negative
values.

• It is customary to represent the sign with a bit placed in the
leftmost position of the number since binary digits.

• The convention is to make the sign bit 0 for positive and 1 for
negative.

• Example:

• Table 1.3 lists all possible four-bit signed binary numbers in the
three representations.

35

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Signed Binary Numbers

36

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Signed Binary Numbers

• Arithmetic addition
• The addition of two numbers in the signed-magnitude system follows the rules of

ordinary arithmetic. If the signs are the same, we add the two magnitudes and give
the sum the common sign. If the signs are different, we subtract the smaller
magnitude from the larger and give the difference the sign if the larger magnitude.

• The addition of two signed binary numbers with negative numbers represented in
signed-2's-complement form is obtained from the addition of the two numbers,
including their sign bits.

• A carry out of the sign-bit position is discarded.

• Example:

37

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Signed Binary Numbers

Arithmetic Subtraction
In 2’s-complement form:

• Example:

1. Take the 2’s complement of the subtrahend (including the

sign bit) and add it to the minuend (including sign bit).

2. A carry out of sign-bit position is discarded.

() () () ()

() () () ()

A B A B

A B A B

 − + = + −

 − − = + +

(− 6) − (− 13)
(11111010 − 11110011)

(11111010 + 00001101)

00000111 (+ 7)
38

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary Codes

39

Digital data is represented, stored and transmitted as groups of binary

digits also known as binary code.

http://ecomputernotes.com/images/BINARY-CODE.jpg

08-11-2020 Digital Circuits and Logic Design (BCS-11)

BCD Code
• A number with k decimal digits will

require 4k bits in BCD.
• Decimal 396 is represented in BCD with

12bits as 0011 1001 0110, with each
group of 4 bits representing one decimal
digit.

• A decimal number in BCD is the same
as its equivalent binary number only
when the number is between 0 and 9.

• The binary combinations 1010 through
1111 are not used and have no meaning
in BCD.

40

Example: Consider decimal 185 and its corresponding value in BCD and binary:

BCD addition

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary Codes

• Other Decimal Codes

41

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary Codes

• Gray Code
• The advantage is that only bit in the

code group changes in going from
one number to the next.
• Error detection.

• Representation of analog data.

• Low power design.

000 001

010

100

110 111

101

011

1-1 and onto!! 42

08-11-2020 Digital Circuits and Logic Design (BCS-11)

American Standard Code for Information Interchange (ASCII) Character Code

43

08-11-2020 Digital Circuits and Logic Design (BCS-11)

ASCII Character Code

44

08-11-2020 Digital Circuits and Logic Design (BCS-11)

ASCII Character Codes and Properties

• American Standard Code for Information Interchange (Refer to Table 1.7)

• A popular code used to represent information sent as character-based data.

• It uses 7-bits to represent:

• 94 Graphic printing characters.

• 34 Non-printing characters.

• Some non-printing characters are used for text format (e.g. BS = Backspace, CR
= carriage return).

• Other non-printing characters are used for record marking and flow control (e.g.
STX and ETX start and end text areas).

• ASCII has some interesting properties:

• Digits 0 to 9 span Hexadecimal values 3016 to 3916

• Upper case A-Z span 4116 to 5A16

• Lower case a-z span 6116 to 7A16

• Lower to upper case translation (and vice versa) occurs by flipping bit 6.

45

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Error-Detecting Code

• To detect errors in data communication and processing, an eighth bit
is sometimes added to the ASCII character to indicate its parity.

• A parity bit is an extra bit included with a message to make the total
number of 1's either even or odd.

Example:

Consider the following two characters and their even and odd parity:

46

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Error-Detecting Code

• Redundancy (e.g. extra information), in the form of extra bits, can
be incorporated into binary code words to detect and correct errors.

• A simple form of redundancy is parity, an extra bit appended onto
the code word to make the number of 1’s odd or even. Parity can
detect all single-bit errors and some multiple-bit errors.

• A code word has even parity if the number of 1’s in the code word
is even.

• A code word has odd parity if the number of 1’s in the code word is
odd.

• Example:

10001001

10001001

1

0 (odd parity)Message B:

Message A: (even parity)

47

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Hamming Codes

• Invented W.B Hamming and Simple 1parity bit can tell us an error occurred
• Multiple parity bits can also tell us where it occurred
• O(lg(n)) bits needed to detect and correct one bit errors.
• In generally we use 7 bits hamming code

• 4 data bits/message bit (m) and 3 parity bits (2P>= P+m+1)

Example: Byte 1011 0001
Two data blocks, 1011 and 0001.

Expand the first block to 7 bits: _ _ 1 _ 0 1 1.
Bit 1 is 0, because b3+b5+b7 is even.
Bit 2 is 1, b3+b6+b7 is odd.
bit 4 is 0, because b5+b6+b7 is even.

Our 7 bit block is: 0 1 1 0 0 1 1

Repeat for right block giving 1 1 0 1 0 0 1
Error detectings: 0 1 1 0 1 1 1
Re-Check each parity bit
Bits 1 and 4 are incorrect
1 + 4 = 5, so the error occurred in bit 5

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary Storage and Registers

• Registers
• A binary cell is a device that possesses two stable states and is capable of storing one of the

two states.
• A register is a group of binary cells. A register with n cells can store any discrete quantity of

information that contains n bits.

• A binary cell
• Two stable state
• Store one bit of information
• Examples: flip-flop circuits, ferrite cores, capacitor

• A register
• A group of binary cells
• AX in x86 CPU

• Register Transfer
• A transfer of the information stored in one register to another.
• One of the major operations in digital system.
• An example in next slides.

n cells 2n possible states

49

08-11-2020 Digital Circuits and Logic Design (BCS-11)

A Digital Computer Example

Synchronous or

Asynchronous?

Inputs: Keyboard,

mouse, modem,

microphone

Outputs: CRT,

LCD, modem,

speakers

Memory

Control
unit

Datapath

Input/Output

CPU

50

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Transfer of information

51

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Transfer of information

• The other major
component of a digital
system
• Circuit elements to

manipulate individual bits
of information

• Load-store machine
LD R1;

LD R2;

ADD R3, R2, R1;

SD R3;

52

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary Logic

• Definition of Binary Logic
• Binary logic consists of binary variables and a set of logical operations.

• The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc,
with each variable having two and only two distinct possible values: 1 and 0,

• Three basic logical operations: AND, OR, and NOT.

53

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary Logic gates

• Truth Tables, Boolean Expressions, and Logic Gates

x
y z

x y z

0 0 0

0 1 0

1 0 0

1 1 1

x y z

0 0 0

0 1 1

1 0 1

1 1 1

x z

0 1

1 0

AND OR NOT

x
y z

z = x • y = x y z = x + y z = x = x’

x z

08-11-2020 Digital Circuits and Logic Design (BCS-11)

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Universal Gate

• NAND and NOR Gates are called Universal Gates because AND, OR
and NOT gates can be implemented &created by using these gates.

NAND Gate Implementations NOR Gate Implementations

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary Logic

• Logic gates
• Example of binary signals

0

1

2

3

Logic 1

Logic 0

Un-define

57

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary Logic

• Logic gates
• Graphic Symbols and Input-Output Signals for Logic gates:

58

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Binary Logic

• Logic gates
• Graphic Symbols and Input-Output Signals for Logic gates:

Fig. 1.6 Gates with multiple inputs

59

08-11-2020 Digital Circuits and Logic Design (BCS-11)60

Boolean Algebra

Boolean Algebra : George Boole(English mathematician), 1854
▪ Invented by George Boole in 1854
▪ An algebraic structure defined by a set B = {0, 1}, together with two binary

operators (+ and ·) and a unary operator ()
“An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic

and Probabilities”

Boolean Algebra

{(1,0), Var, (NOT, AND, OR), Thms}

❑Mathematical tool to expression and analyze digital (logic) circuits

❑Claude Shannon, the first to apply Boole’s work, 1938
– “A Symbolic Analysis of Relay and Switching Circuits” at MIT

❑This chapter covers Boolean algebra, Boolean expression and its
evaluation and simplification, and VHDL program

08-11-2020 Digital Circuits and Logic Design (BCS-11)61

Boolean functions : NOT, AND, OR,

Exclusive OR(XOR) : Odd function Exclusive NOR(XNOR) : Even function(equivalence)

Basic Functions and Basic Functions

Basic functions
• AND Z=X Y or Z=XY

Z=1 if and only if X=1 and Y=1, otherwise Z=0

• OR Z=X + Y

Z=1 if X=1 or if Y=1, or both X=1and Y=1. Z=0 if and only if X=0 and Y=0

• NOT Z=X or

Z=1 if X=0, Z=0 if X=1

08-11-2020 Digital Circuits and Logic Design (BCS-11)62

08-11-2020 Digital Circuits and Logic Design (BCS-11)63

Boolean Operations and Expressions

• Boolean Addition

• Logical OR operation
Ex 4-1) Determine the values of A, B, C, and D that make the sum term A+B’+C+D’

Sol) all literals must be ‘0’ for the sum term to be ‘0’

A+B’+C+D’=0+1’+0+1’=0→ A=0, B=1, C=0, and D=1

• Boolean Multiplication

• Logical AND operation
Ex 4-2) Determine the values of A, B, C, and D for AB’CD’=1

Sol) all literals must be ‘1’ for the product term to be ‘1’

AB’CD’=10’10’=1→ A=1, B=0, C=1, and D=0

08-11-2020 Digital Circuits and Logic Design (BCS-11)64

Basic Identities of Boolean Algebra

The relationship between a

single variable X, its

complement X, and the binary

constants 0 and 1

08-11-2020 Digital Circuits and Logic Design (BCS-11)65

Laws of Boolean Algebra

Commutative Law: the order of literals does not matter
A + B = B + A A B = B A

Associative Law: the grouping of literals does not matter
A + (B + C) = (A + B) + C (=A+B+C) A(BC) = (AB)C (=ABC)

▪ Distributive Law : A(B + C) = AB + AC (A+B)(C+D) = AC + AD + BC + BD

08-11-2020 Digital Circuits and Logic Design (BCS-11)66

✓ A+0=A In math if you add 0 you have changed nothing in Boolean
Algebra ORing with 0 changes nothing

✓ A•0=0 In math if 0 is multiplied with anything you get 0.
If you AND anything with 0 you get 0

✓ A•1 =A ANDing anything with 1 will yield the anything

✓ A+A = A ORing with itself will give the same result

✓A+A’=1 Either A or A’ must be 1 so A + A’ =1

✓A•A = A ANDing with itself will give the same result

✓ A•A’ =0 In digital Logic 1’ =0 and 0’ =1, so AA’=0 since one of the
inputs must be 0.

✓ A = (A’)’ If you not something twice you are back to the beginning

Rules of Boolean Algebra

08-11-2020 Digital Circuits and Logic Design (BCS-11)67

✓ A + A’B = A + B

If A is 1 the output is 1 If A is 0 the output is B

✓A + AB = A

✓(A + B)(A + C) = A + BC

• DeMorgan’s Theorem
– F(A,A, , + , 1,0) = F(A, A, + , ,0,1)

– (A • B)’ = A’ + B’ and (A + B)’ = A’ • B’

– DeMorgan’s theorem will help to simplify digital circuits using
NORs and NANDs his theorem states

08-11-2020 Digital Circuits and Logic Design (BCS-11)68

Boolean Analysis of Logic Circuits

• Constructing a Truth Table for a Logic Circuit

• Convert the expression into the min-terms containing all the input literals

• Get the numbers from the min-terms

• Putting ‘1’s in the rows corresponding to the min-terms and ‘0’s in the
remains

Ex) A(B+CD)=AB(C+C’) (D+D’) +A(B+B’)CD =ABC(D+D’) +ABC’(D+D’)
+ABCD+AB’CD =ABCD+ABCD’+ABC’D+ABC’D’ +ABCD+AB’CD
=ABCD+ABCD’+ABC’D+ABC’D’ +AB’CD
=m11+m12+m13+m14+m15=(11,12,13,14,15)

A(B+CD) = m11+m12+m13+m14+m15 =(11,12,13,14,15)

08-11-2020 Digital Circuits and Logic Design (BCS-11)69

Standard Forms of Boolean Expressions

❑The Sum-of-Products(SOP) Form Ex) AB+ABC, ABC+CDE+B’CD’
❑The Product-of-Sums(POS) Form Ex) (A+B)(A+B+C), (A+B+C)(C+D+E)(B’+C+D’)

❑Principle of Duality : SOP POS
❑Domain of a Boolean Expression : The set of variables contained in the expression

Ex) A’B+AB’C : the domain is {A, B, C}

✓Standard SOP Form (Canonical SOP Form)
– For all the missing variables, apply (x+x’)=1 to the AND terms of the expression
– List all the min-terms in forms of the complete set of variables in ascending order

Ex : Convert the following expression into standard SOP form: AB’C+A’B’+ABC’D

Sol) domain={A,B,C,D}, AB’C(D’+D)+A’B’(C’+C)(D’+D)+ABC’D
=AB’CD’+AB’CD+A’B’C’D’+A’B’C’D+A’B’CD’+A’B’CD+ABC’D
=1010+1011+0000+0001+0010+0011+1101 =0+1+2+3+10+11+13 = (0,1,2,3,10,11,13)

08-11-2020 Digital Circuits and Logic Design (BCS-11)70

Standard POS Form (Canonical POS Form)

– For all the missing variables, apply (x’x)=0 to the OR terms of the

expression

– List all the max-terms in forms of the complete set of variables in

ascending order

Ex : Convert the following expression into standard POS form:

(A+B’+C)(B’+C+D’)(A+B’+C’+D)

Sol) domain={A,B,C,D}, (A+B’+C)(B’+C+D’)(A+B’+C’+D)

=(A+B’+C+D’D)(A’A+B’+C+D’)(A+B’+C’+D)

=(A+B’+C+D’)(A+B’+C+D)(A’+B’+C+D’)(A+B’+C+D’)(A+B’+C’

+D)=(0100))(0101)(0110)(1101)= (4,5,6,13)

08-11-2020 Digital Circuits and Logic Design (BCS-11)71

Converting Standard SOP to Standard POS

Step 1. Evaluate each product term in the SOP expression. Determine the binary
numbers that represent the product terms

Step 2. Determine all of the binary numbers not included in the evaluation in Step 1

Step 3. Write in equivalent sum term for each binary number Step 2 and expression in
POS form

Ex : Convert the following SOP to POS

Sol) SOP= A’B’C’+A’BC’+A’BC+AB’C+ABC=0+2+3+5+7 =(0,2,3,5,7)

POS=(1)(4)(6) = (1, 4, 6) (=(A+B+C’)(A’+B+C)(A’+B’+C))

❑ SOP and POS Observations

• Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard
forms (SOP, POS) differ in complexity

• Boolean algebra can be used to manipulate equations into simpler forms

• Simpler equations lead to simpler implementations

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Summary of Minterms and Maxterms

• There are 2n minterms and maxterms for Boolean functions with n variables.

• Minterms and maxterms are indexed from 0 to 2n – 1

• Any Boolean function can be expressed as a logical sum of minterms and as a logical product
of maxterms

• The complement of a function contains those minterms not included in the original function

• The complement of a sum-of-minterms is a product-of-maxterms with the same indices

Dual of a Boolean Expression

• To changing 0 to 1 and + operator to – vise versa for a given boolean function

❑Example: F = (A + C) · B + 0

dual F = (A · C + B) · 1 = A · C + B

❑Example: G = X · Y + (W + Z)

dual G =

✓Unless it happens to be self-dual, the dual of an expression does not equal the expression
itself

✓Are any of these functions self-dual? (A+B)(A+C)(B+C)=(A+BC)(B+C)=AB+AC+BC

72

08-11-2020 Digital Circuits and Logic Design (BCS-11)73

Karnaugh Map

• Simplification methods
• Boolean algebra(algebraic method)

• Karnaugh map(map method))

• Quine-McCluskey(tabular method)
XY+XY=X(Y+Y)=X

08-11-2020 Side 74

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Syllabus

UNIT-II
K-Map Reduction - Don't Care Conditions - Adders /
Subtractors- Carry Look-Ahead Adder - Code Conversion
Algorithms - Design of Code Converters - Equivalence Functions.
Binary/Decimal Parallel Adder/Subtractor for Signed Numbers -
Magnitude Comparator - Decoders / Encoders - Multiplexers /
Demultiplexers- Boolean Function Implementation using
Multiplexers

08-11-2020 Digital Circuits and Logic Design (BCS-11)75

Example) F(X,Y,Z)=m(2,3,4,5) =XY+XY Example) F(X,Y,Z)=m(0,2,4,6) = XZ+XZ =Z(X+X)=Z

Karnaugh Map (K- Map) Steps

1. Sketch a Karnaugh map grid for the given problem.in power of 2N Squares

2. Fill in the 1’s and 0’s from the truth table of sop or pos Boolean function

3. Circle groups of 1’s.

 Circle the largest groups of 2, 4, 8, etc. first.

 Minimize the number of circles but make sure that every 1 is in a circle.

4. Write an equation using these circles.

08-11-2020 Digital Circuits and Logic Design (BCS-11)76

Four-Variable K-Map : 16 minterms : m0 ~ m15

Rectangle group

• 2-squares(minterms) : 3-literals product term

• 4-squares : 2-literals product term

• 8-squares : 1-literals product term

• 16-squares : logic 1

08-11-2020 Digital Circuits and Logic Design77

F(W, X,Y,Z)=m(0,2,7,8,9,10,11) = WX’ + X’Z’ + W’XYZ

Ex 4-28) Minimize the following expression

AB’C+A’BC+A’B’C+A’B’C’+AB’C’

Sol) B’+A’C

08-11-2020 Digital Circuits and Logic Design (BCS-11)78

Ex Minimize the following expression

B’C’D’+A’BC’D’+ABC’D’+A’B’CD+AB’CD+A’B’CD’+A’BCD’ +ABCD’+AB’CD’

Sol) D’+B’C

❑Don’t Care Conditions
• it really does not matter since they will never occur(its output is

either ‘0’ or ‘1’)

• The don’t care terms can be

used to advantage on the

Karnaugh map

08-11-2020 Digital Circuits and Logic Design (BCS-11)79

Ex K- Map for POS (B+C+D)(A+B+C’+D)(A’+B+C+D’)(A+B’+C+D)(A’+B’+C+D)

Sol) (B+C+D)=(A’A+B+C+D)=(A’+B+C+D)(A+B+C+D)

(1+0+0+0)(0+0+0+0)(0+0+1+0)

(1+0+0+1)(0+1+0+0)(1+1+0+0)

F=(C+D)(A’+B+C)(A+B+D)

❑Converting Between POS and

SOP Using the K-map

Ex 4-33) (A’+B’+C+D)(A+B’+C+D)

(A+B+C+D’)(A+B+C’+D’) (A’+B+C+D’)

(A+B+C’+D)

08-11-2020 Digital Circuits and Logic Design (BCS-11)80

08-11-2020 Digital Circuits and Logic Design (BCS-11)

• Step 1 − Arrange the given min terms in an ascending order and make the groups based on the
number of ones present in their binary representations. - ‘n+1’ groups

• Step 2 − Compare the min terms present in successive groups. If there is a change in only one-
bit position, then take the pair of those two min terms. Place this symbol ‘_’ in the differed bit
position and keep the remaining bits as it is.

• Step 3 − Repeat step2 with newly formed terms till we get all prime implicants.

• Step 4 − Formulate the prime implicant table. It consists of set of rows and columns. Place ‘1’
in the cells corresponding to the min terms that are covered in each prime implicant.

• Step 5 − Find the essential prime implicates by observing each column. Those essential prime
implicants will be part of the simplified Boolean function.

• Step 6 − Reduce the prime implicant table by removing the row of each essential prime
implicant and the columns corresponding to the min terms that are covered in that essential
prime implicant. Repeat step 5 for Reduced prime implicant table. Stop this process when all
min terms of given Boolean function are over.

81

08-11-2020 Digital Circuits and Logic Design (BCS-11) 82

08-11-2020 Digital Circuits and Logic Design (BCS-11) 83

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Digital Circuits

• Digital circuits are two types

1. Combinational circuit consists of logic gates whose outputs at any

time are determined directly from the present combination of inputs

without regard to previous inputs.

2. Sequential Circuit employ memory elements in addition to logic

gates. Their outputs are a function of the inputs and the state of the

memory elements.

84

08-11-2020 Digital Circuits and Logic Design (BCS-11) 85

08-11-2020 Digital Circuits and Logic Design (BCS-11)

x y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

86

08-11-2020 Digital Circuits and Logic Design (BCS-11)

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

87

08-11-2020 Digital Circuits and Logic Design (BCS-11) 88

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Carry generation: output carry is produced internally by the FA.carry is generated only when both input bits are 1s.the

generated carry C is expressed as the AND function of two input bits A and B so C=AB.

Carry propagation: occurs when the i/p carry is rippled to become the o/p carry.an i/p carrymay be propagated by

the full adder when either or both of the i/p bits are 1s.the propagated carry Cp is expressed as the OR

function of the i/p bits ie Cp=A+B

2- Bit Parallel Adder

• LSB of two binary numbers are represented by A1 and B1.The next higher bit are A2 and B2. The resulting 1 2 and CO, in which

the CO becomes MSB.

• The carry output CO of each adder is connected as the carry input of the next higher order.

A2A1

+ B2B1

C0 ∑ ∑

2 1

Fig : bit adder using two full adder

Four Bit Parallel Adders

• An n-bit adder requires n full adders with each output connected to the input carry of the next higher-order full adder.

• The carry output of each adder is connected to the carry input of next adder called as internal carries.
89

08-11-2020 Digital Circuits and Logic Design (BCS-11) 90

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Outputs: 3 output signals (GT, EQ, LT), where: GT = 1 IFF A > B EQ = 1 IFF A = B LT = 1 IFF A < B

Exactly One of these 3 outputs equals 1, while the other 2 outputs are 0`s.

Solution:

Inputs: 8-bits (A ⇒ 4-bits, B ⇒ 4-bits).A and B are two 4-bit numbers. Let A = A3A2A1A0, and Let B = B3B2B1B0 .

Design of the EQ

•Define Xi = Ai xnor Bi = Ai Bi + Ai’ Bi’

Xi = 1 IFF Ai = Bi ∀ i =0, 1, 2 and 3

Xi = 0 IFF Ai ≠ Bi

•Therefore the condition for A = B or EQ=1 IFF

A3= B3 → (X3 = 1), and A2= B2 → (X2 = 1), and A1= B1 → (X1 = 1), and A0= B0 → (X0 = 1).

•Thus, EQ=1 IFF X3 X2 X1 X0 = 1. In other words, EQ = X3 X2 X1 X0

Designing GT and LT:

•GT = 1 if A > B:

✓ If A3 > B3 3 = 1 and B3 = 0 If A3 = B3 and A2 > B2
✓

If A3 = B3 and A2 = B2 and A1 > A1
✓

If A3 = B3 and A2 = B2 and A1 = B1 and A0 > B0
✓

•Therefore,

GT = A3B3‘+ X3 A2 B2‘+ X3 X2 A1 B1‘+ X3 X2 X1A0 B0‘

Similarly, LT = A3’B3 + X3 A2‘B2 + X3 X2 A1’B1 + X3 X2 X1A0’ B0

91

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Outputs: 3 output signals (GT, EQ, LT), where: GT = 1 IFF A > B EQ = 1 IFF A = B LT = 1 IFF A < B

Exactly One of these 3 outputs equals 1, while the other 2 outputs are 0`s.

Solution:

Inputs: 8-bits (A ⇒ 4-bits, B ⇒ 4-bits).A and B are two 4-bit numbers. Let A = A3A2A1A0, and Let B = B3B2B1B0 .

Design of the EQ

•Define Xi = Ai xnor Bi = Ai Bi + Ai’ Bi’

Xi = 1 IFF Ai = Bi ∀ i =0, 1, 2 and 3

Xi = 0 IFF Ai ≠ Bi

•Therefore the condition for A = B or EQ=1 IFF

A3= B3 → (X3 = 1), and A2= B2 → (X2 = 1), and A1= B1 → (X1 = 1), and A0= B0 → (X0 = 1).

•Thus, EQ=1 IFF X3 X2 X1 X0 = 1. In other words, EQ = X3 X2 X1 X0

Designing GT and LT:

•GT = 1 if A > B:

✓ If A3 > B3 3 = 1 and B3 = 0 If A3 = B3 and A2 > B2
✓

If A3 = B3 and A2 = B2 and A1 > A1
✓

If A3 = B3 and A2 = B2 and A1 = B1 and A0 > B0
✓

•Therefore,

GT = A3B3‘+ X3 A2 B2‘+ X3 X2 A1 B1‘+ X3 X2 X1A0 B0‘

Similarly, LT = A3’B3 + X3 A2‘B2 + X3 X2 A1’B1 + X3 X2 X1A0’ B0

92

08-11-2020 Digital Circuits and Logic Design (BCS-11)

Encoder

•Encoders typically have 2N inputs and N outputs.

•These are called 2N–to–N encoders.

•Encoders can also be devised to encode various symbols and alphabetic characters.

•The process of converting from familiar symbols or numbers to a coded format is called encoding.

Fig : Logical diagram of Encoder

8 to-3 encoder Implementation

• Octal-to-Binary

• An octal to binary encoder has 23 = 8 input lines D0 to D7 and 3 output lines Y0 to Y2. Below is the

truth table for an octal to binary encoder.

Fig : Truth table for 8-3 encoder

From the truth table, the outputs can be expressed by following Boolean Function. Y0 = D1 + D3 + D5 + D7

08-11-2020 Digital Circuits and Logic Design (BCS-11) 94

08-11-2020 Digital Circuits and Logic Design (BCS-11) 95

