
UNIT-III 

In most of the situation, free space path loss model does not exist. When the height of Tx and 

Rx is small, two-ray model is more applicable. This is discussed next. 

2-Ray Model: 

Some realistic example 

 

Fig. Omnidirectional Tx and GPS receiver mounted on a Car [1] 

 

 

Figure 2: Two-ray model 

A practical scenario of two-ray model is shown in Figure 2. Our objective is to compute total 

field and power at the receiver. Two different path length from Tx to Rx are computed as 

𝑟1 = √(ℎ𝑏 − ℎ𝑚)2 + 𝑟2                                            (1) 

𝑟2 = √(ℎ𝑏 + ℎ𝑚)2 + 𝑟2                                    (2) 



Equation (2) is obtain by extending Transmitter below the ground and finding the image 

source.  

(𝑟1 − 𝑟2) = [√{𝑟2 + (ℎ𝑏 + ℎ𝑚)2} − √{𝑟2 + (ℎ𝑏 − ℎ𝑚)2} ] 

  = 𝑟[√{1 + (
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Assuming ℎ𝑏,ℎ𝑚<< 𝑟, then term  (
ℎ𝑏+ℎ𝑚

𝑟
)
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≪ 1 

We know that 

(1 + 𝑥)
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              if x<<1 

so, (𝑟1 − 𝑟2) =
𝑟

2𝑟2
[(ℎ𝑏 + ℎ𝑚)2 − (ℎ𝑏 − ℎ𝑚)2] 

 

(𝑟1 − 𝑟2) ≅
2ℎ𝑏ℎ𝑚

𝑟
 

Thus, we note that with r → , the path difference (𝑟1 − 𝑟2) tends towards zero. That is why, 

at very large separation, both the paths, that is, direct and reflected path have almost same 

distance and both the signals at Rx are going through phase reversal only due to reflection from 

the ground. 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑑𝑖𝑟𝑒𝑐𝑡 + 𝐸𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑                                              (3) 

Assuming the initial phase of thetransmitted signal at the Tx is zero, let the phase of LOS 

component signal at the Rx be 
1 and that of reflected component at the Rx be  

1 +  where 

  is the phase difference between LOS and reflected components. Then we can easily write 
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Thus, reflectedE  can be written in term of 
directE  as  

𝐸𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 = 𝐸𝑑𝑖𝑟𝑒𝑐𝑡 × 𝑅 × exp (𝑗𝑘
2ℎ𝑏ℎ𝑚

𝑟
)                            (4) 

Here, it is assumed that the receiver is far away from transmitter and the amplitude of direct 

ray and reflected ray (except the reflection loss R) is almost same. 

Putting (4) in (3), 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑑𝑖𝑟𝑒𝑐𝑡+ 𝐸𝑑𝑖𝑟𝑒𝑐𝑡 × 𝑅 × exp (𝑗𝑘
2ℎ𝑏ℎ𝑚

𝑟
) 



 =𝐸𝑑𝑖𝑟𝑒𝑐𝑡[1+ 𝑅 × exp (𝑗𝑘
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Assuming𝐺𝑡 = 1, 𝐺𝑟 = 1, (omnidirectional antenna) 

𝑃𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑃𝑇(𝜆/4𝜋𝑟)2
 

𝑃𝑟

𝑃𝑇
= (𝜆/4𝜋𝑟)2 × |1 +  𝑅 × exp (𝑗𝑘

2ℎ𝑏ℎ𝑚

𝑟
) |2 

Let us consider the mod term 

𝐼 = |1 +  𝑅 × exp(𝑗𝜃) |2   where 
2 b mh h

k
r

 =  

Since ℎ𝑏,ℎ𝑚<< 𝑟 , 𝜃 is very small.  

Since the angle of incident with the ground θi is very small (almost grazing), the magnitude 

of the reflection coefficient will be close to one whatever its conductivity (or roughness) may 

be (this can easily be shown. Please see the next example).  

 

Example 3: Show that if medium-1 is free space and medium-2 is a dielectric, both | Rpar | 

and | Rper | approach ‘1’ as 𝜃i approaches 0˚ regardless of Єr. 

Solution:    Rpar=
−Єr Sin 𝜃+√(Єr−cos2 𝜃)

Єr Sin 𝜃+√(Єr−cos2 𝜃)
 

  𝜃 = 0 →| Rpar | = 
√(Єr−1)

√(Єr−1)
 =1 

We Know  

  Rper=
Sin 𝜃−√(Єr−cos2 𝜃)

Sin 𝜃+√(Єr−cos2 𝜃)
 

  𝜃 = 0 → Rper =-1   &| Rper |=1 

This result indicates that the ground may be modeled as a perfect conductor with magnitude 

of reflection coefficient as 1 when the grazing incidence case is considered. 

 

I=|1- exp(𝑗𝜃)|2=|(1-cos 𝜃)- j sin 𝜃 |2 



  =(√[(1 − 𝑐𝑜𝑠𝜃)2 + sin2 𝜃])
2
 

I = (1 − cos𝜃)2   as sin𝜃 ≅ 0;𝜃 → 0 

    = (1+ cos2 𝜃 − 2𝑐𝑜𝑠 𝜃) 

    = (1 + 1−sin2 𝜃 − 2𝑐𝑜𝑠𝜃)    again sin2 𝜃 ≅ 0 

    = (2−2𝑐𝑜𝑠𝜃) 

   = 2[1−𝑐𝑜𝑠𝜃] 

= 2 2 24 sin ( / 2) 4( / 2)    = =    Here we assume ( )
22sin ( / 2) / 2  since  is very low. 

Hence  
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2

𝑟4                                                (5) 

Hence, path loss in dB is expressed as 

(𝐿)𝑃𝐸𝐿 = 40 log 𝑟 − 20 log  ℎ𝑚 − 20 log ℎ𝑏                               (6) 

Example 4: Consider a two-ray model with the height of the transmitter as 10 m and that of receiver 
as 3 m. The distance between Tx and Rx is 2km. Compute the distance of a reflecting point on the 
ground from the transmitter. Also compute the phase difference between two signals reaching the 
receiver and the pathloss (Assume transmitted signal having perpendicular polarization). 

Solution: 
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 Assuming perpendicular polarization, ( )1  as  0R = − →  

( ) ( ) ( ) ( )pathloss 40log 20log 20log
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So, we note that 0 1R  = −;  is justified. 

 

 

 

Critical Distance: 

The plot result can be divided into three sections 

(i) d<ℎ𝑏 

(ii) ℎ𝑏<d<dc     where dc is critical distance 

(iii) dc<d 

For d<hb only constructive interference takes place. For ℎ𝑡<d<dc constructive and destructive 

both interference take place, thus power decrease follows the rule Pr 𝛼
1

𝑑2. For d>dc only 

destructive interference takes place and power fall follows the rule Pr 𝛼
1

𝑑4
 . 

dc is called critical distance given as 

    𝑑𝑐 = 
4ℎ𝑏ℎ𝑚

𝜆
 



Case 1 : Assuming perfect reflecting surface  ( log(dcritical) = 3.08 ) 

 

Figure 3 

Case II: Taking Reflection coefficient as a function of angle of incidence( log(dcritical) = 3.08 ) 

Figure 4 

 

MATLAB Code: 

 

lambda=1/3;                               % wavelength in metres => f =900MHz 

beta=2*pi/lambda;                         % wavenumber 

dcritical=4*Tx*Rx/lambda;                 % critical distance for far field 

 

E0=500; 

k=1; 

D=1:0.5:dcritical*50; 

 

for d=D 

% To determine thetha ==== 

temp=Tx*d/(Tx+Rx); 

thetai=pi/2-atan(Tx/temp); 

thetat=asin(sin(thetai)/2); 

 

%Case 1: Reflection coefficient: perfect reflector 

R(k)=-1; 

 



%Case 2 

R(k)=(2*cos(thetat)-cos(thetai))/(2*cos(thetat)+cos(thetai)); 

 

% Let eta2 = 2.eta1 and n2=1.5* `T,CVBNM,  1n1 

d2=sqrt(Tx^2+temp^2)+sqrt(Rx^2+(d-temp)^2); 

d0=sqrt(abs(Tx-Rx)^2+d^2); 

 

 

Elos(k) = E0/d0*(exp(complex(0,-beta*d0))); 

Eg(k)= E0*R(k)/d2*(exp(complex(0,-beta*d2))); 

Etot(k)=Elos(k)+Eg(k); 

 

E(k)=20*log10(abs(Etot(k))); 

d3(k)=log10(d); 

k=k+1; 

end; 

 

%d=dcritical:10:dcritical*5; 

plot(d3,E,':k.'); 

title('2-ray model with freq=900Mhz'); 

xlabel('log(d)-->'); 

ylabel('Power(dB)'); 

axis 'auto x'; 

 

 

Example 5: As BS transmit power of 10W into a feeder cable with the loss of 10dB. The 

transmit antenna has gain of 12dBd in the direction of mobile receiver. With antenna gain 

0dBd and feeder loss 2dB the mobile has sensitivity of -104dBm. 

(a) Determine the effective isotropic radiated power. 

(b) Determine the maximum acceptable path loss. 

 

Solution:  

  𝑃𝑇 = 10𝑊 

  (𝑃𝑇)𝑑𝐵 = 10𝑑𝐵𝑊 

  (𝑙𝑓)𝑑𝐵 = 10𝑑𝐵 

  (𝐺𝑇)𝑑𝐵 = 12𝑑𝐵𝑑 

Since,  0 dBd=2.15 dBi 

  12dBd=12+2.15 

   =14.15dBi 

(a) EIRP(Effective isotropic radiated power) in dB =(𝑃𝑇)𝑑𝐵 + (𝐺𝑇)𝑑𝐵 − (𝐿𝑓)𝑑𝐵 

          = 10+14.15-10 

 


