BCS-29
Advanced Computer Architecture

Memory Hierarchy Design

Memory Subsystem

Hierarchy List
* Registers
* L1 Cache
e L2 Cache
* Main memory
* Disk cache
* Disk
* Optical
* Tape

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-2

Cache and Main Memory

Block Transfer

Word Transfer (‘\A-f'\
r*_f\

CPU Cache Main Memory

Fast Slow

(a) Single cache

P a—
CPU Level 1 Level 2 Level 3 —» Main
(L1) cache (L2) cache (L3) cache |lg—] Memory
Fastest Fast
Less Slow

fast

(b) Three-level cache organization
Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-3

Cache/Main Memory Structure

Line Memory
Number Tag Block address
0 0
1 1
2 2 Block
. 3 (K words)
L]
e
c-1
I Block Length
(K Words) o
(a) Cache .
L]
Block
2"
Word
Length
(b) Main memory

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-4

Cache operation — overview

* CPU requests contents of memory location
* Check cache for this data
* If present, get from cache (fast)

* If not present, read required block from main
memory to cache

* Then deliver from cache to CPU

e Cache includes tags to identify which block of main
memory is in each cache slot

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-5

Dr P K Singh

Receive address
RA from CPU

Is block

in cache?

containing RA

Cache Read Operation - Flowchart

No Access main

containing RA

Fetch RA word
and deliver
to CPU

memory for block

Allocate cache
line for main
memory block

Load main
memory block
into cache line

Deliver RA word
to CPU

N
(DONE .

BCS-29 Advanced Computer Architecture

BCS-29(!)-6

How does cache memory work?

* Main memory consists of up to 2" addressable words, with
each word having a unique n-bit address. For mapping
purposes, this memory is considered to consist of a number of
fixed-length blocks of K words each. Thus, there are M = 2"/K
blocks.

* The cache is split into C lines of K words each, Figure with
number of lines considerably smaller than the number of
main memory blocks (C << M).

At any time, only a subset of the blocks of main memory
resides in the lines in the cache.

* If a word in a block of memory is read, that block is
transferred to one of the lines of the cache.

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-7

Cache Design

* Addressing

* Size

* Mapping Function

* Replacement Algorithm
* Write Policy

* Block Size

* Number of Caches

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-8

Mapping Function

* how does cache contents map to main memory

contents?
cache main memory
tag data block address contents
_ 000
line —., -
\h-locki
— \
Block:
use tag (and maybe :
line address) to
Identify block address XX

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-9

Cache Basics

* cache line vs. main memory location

* same concept — avoid confusion (?)

* line has address and contents

e contents of cache line divided into tag and data fields
* fixed width
* fields used differently !
 data field holds contents of a block of main memory

 tag field helps identify the start address of the block of memory
that is in the data field

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-10

Mapping Function Example

holds up to 64 Kbytes
* cache of 64 KByte - of main memory contents

* 16 K (24) lines — each line is 5 bytes wide = 40 bits
tag field: 1 byte

data field: 4 bytes ~

4 byte blocks
of main memory

* 16 MBytes main memory
* 24 bit address
¢« 224 = 16 M
* will consider DIRECT and ASSOCIATIVE mappings

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-11

Direct Mapping

 j.e.if a block is in cache, it must be in one specific place — based
on address! address

S W

* split address into two parts

* |east significant w bits identify unique word in block

* most significant s bits specify one memory block

* split s bits into:

e cache line address field r bits /\

* tag field of s-r most significant bits [|ine\
linefield [S—r| r
identifies line
containing
block !

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-12

Direct Mapping: Address Structure Example

24 bit address
/\
—
tag line address
S-r r
8 14 2
"]
Y 2 bit word 1dentifier
s = 22 bitblock (4 byte block)
iIdentifier

* two blocks may have the same r value, but then
always have different tag value |

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-13

cache line

0
1

m-1

T

main memory blocks held

O,m, 2m, 3m, ... 25-m

[T

“m-1, 2mi-1,3m-1, ... e

1, m+1, 2m+1, ... 2°-m+1

s=22

T

Dr P K Singh

But...a line can contain only
one of these at a time!

BCS-29 Advanced Computer Architecture

BCS-29(1)-14

Direct Mapping Cache Organization

S+W,
&
Cache Main Memaory
Memory Address Tag Drata Wil
| Tag] Line | word | [W1
I E B
10
§I |- r W W3
Iy Iy Iy
I I
R | I . I
11 '
§-T, | |
g * »
I | I I
H o
W | +’ L
. = L L . Widi+1}
Lo W, wl Wit 51_1
I Widj+3)
(hit im cache) I - I
| .
L]
| | Lo
* I
o |
I I - s wl
['Ill-l
(miss in cache)

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-15

Direct Mapping Summary

e Address length = (s + w) bits
* Number of addressable units = 25*W% words or bytes
* Block size = line size — tag size = 2% words or bytes
* Number of blocks in main memory = 25t W/2W = 23

* Number of lines in cache =m =2’

* Size of tag = (s —r) bits

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-16

Direct Mapping pros & cons

e Simple
* [nexpensive

* Fixed location for given block

* If a program accesses 2 blocks that map to the
same line repeatedly, cache misses are very high

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-17

Associative Mapping

o
3 University & b

* main memory block can load into any line of cache

* memory address is interpreted as tag and word
selectin block |s=tag > does not use line address !
* tag uniquely identifies block of memory !

e every line’s tag is examined for a match

e cache searching gets expensive

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-18

Fully Associative Cache Organization

. S+,
field ! 7
Cache Main Memory
Memaory Address Tag Iala Wi
| Tae | Waord | | W1
W2 By
Ny Lo K
y
W
1 * 1 | I
L
I | I
: 1oL
W L
Ly
(é }—ﬁLp-“ Wi
C — I . I ” Widj+1) B
CTIHRATE I . I ﬁL.- Widj+2) 1
Widj+3)
(hit in cache) * I
| | *
5 | [. |
o ‘im-1 I
« |
I - s wl
(miss in cache)

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-19

Associative Mapping Example

Typo-
leading F
missing!

Dr P K Singh

& MBvie Muain Maemory

Address Iana
QOGDOO | T3ETI246
QOnnnda
1 =
Ll W i
16339
1633%9C | FERCRAGE |
163340
1 [ENY
FFFFd | 3333133533 o=
FFFFS | 11223344
FFEFC | 24682468
o
A2 biis

= —— - g

e ———————

tag = most signif.
22 bits of address

I .i1'||._'

T I -

F—=—=———=====1 =f====

Tag Ixata Mumber
r=—=[3FFFFE| 11223344 | 0000
-+ =d058CE7| FERDCBASE | 0001
1 . -
- = = = SFFEFDO] 333335333 | 3FFD
—d = = O00000) 13579246 | 3FFE
- = A 3FFFFE] 24682468 | IFFF
-4 -
22 hiis 32 hits

16 Kword Cache

BCS-29 Advanced Computer Architecture

BCS-29(1)-20

Associative Mapping (Address Structure)

Tag 22 bit 2 bit

22 bit tag stored with each 32 bit block of data
* Compare tag field with tag entry in cache to check for hit

* Least significant 2 bits of address identify which 8 bit word is required
from 32 bit data block

* e.g.
e Address Tag Data Cache line
* FFFFFC 3FFFFF 24682468 any, e.g. 3FFF

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-21

Associative Mapping Summary

e Address length = (s + w) bits
* Number of addressable units = 25*W words or bytes
* Block size = line size — tag size = 2% words or bytes
* Number of blocks in main memory = 25t W/2W = 23

* Number of lines in cache = undetermined

e Size of tag = s bits

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-22

Set Associative Mapping

e Cache is divided into a number of sets

* Each set contains k lines = k — way associative
* A given block maps to any line in a given set
e e.g. Block B can be in any line of set i

* e.g. 2 lines per set
* 2 —way associative mapping

* A given block can be in one of 2 lines in only one set

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-23

Set Associative Mapping Address Structure

Tag 9 bit Set 13 bit

E.g. Given our 64Kb cache, with a line size of 4 bytes, we have 16384 lines. Say
that we decide to create 8192 sets, where each set contains 2 lines. Then we
need 13 bits to identify a set (213=8192)
Use set field to determine cache set to look in
Compare tag field of all slots in the set to see if we have a hit, e.g.:
Address = 16339C=0001 01100011 0011 1001 1100
Tag =00010 1100 =02C
Set=0110011100111 =0CE7
Word=00 =0
Address = 008004 = 0000 0000 1000 0000 0000 0100
Tag = 00000 0001 =001
Set = 0 0000 0000 0001 = 0001
Word=00=0

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-24

Set Associative Mapping

* To compute cache set number:

* SetNum =jmodyv
* j=main memory block number
e v =number of sets in cache

Set0 | LineO
Linel
Setl | Line?2

Line 3

Dr P K Singh

BCS-29 Advanced Computer Architecture

Main Memory

Block O

Block 1

Block 2

Block 3

Block 4

Block 5

BCS-29(1)-25

K-Way Set Associative Cache Organization
set select Direct + Associative Mapping

(direct) f
Cache Main Memory
Mermory Address Tag [t B
. ih
i Se Word
| Taz] € Sl | word | | Fy
B
Sedl | i w |- | -
<1 Py Fy
* Sat 0 | . |
I = 1 I I
1 1 *
| 1, 1
s Fi1 | |
Fa |
(— I_ Iy S
| S B;
- F\ -
Compare . — s Set 1 .

"

L 2
- s . -

] =
- - - e -

| 4 -
{hit in cache) — b

tag
miss| (@ssociative)

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-26

Breaking into Tag, Set, Word

* Given Tag=9 bits, Set=13 bits, Word=2 bits
Given address FFFFFD
What are values of Tag, Set, Word?

* First 9 bits are Tag, next 13 are Set, next 2 are Word

e Rewrite addressinbase2: 111111111111 11111111
1101

* Group each field in groups of 4 bits starting at right

* Add zero bits as necessary to leftmost group of bits
0001 11111111 000111111111 1111 0001
> 1FF 1FFF 1 (Tag, Set, Word)

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-27

in cache?

* must replace (overwrite) a line — which one?
* direct = no choice

e each block only maps to one line

* replace that line

Dr P K Singh BCS-29 Advanced Computer Architecture

BCS-29(1)-28

Replacement Algorithms (Associative & Set Associativelf/f= ‘ &

* hardware implemented algorithm (speed)
 Least Recently Used (LRU)

* e.g.In 2-way set associative
e which of the 2 blocks is LRU?

* First In first Out (FIFO)

* replace block that has been in cache longest

* Least Frequently Used (LFU)

* replace block which has had fewest hits

e Random

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-29

Write Policy

* must not overwrite a cache block unless main
memory is up to date

* Complication: Multiple CPUs may have individual
caches!!

* Complication: I/O may address main memory too
(read and write)!!

* N.B. 15% of memory references are writes

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-30

Write Through Method

* all writes go to main memory as well as cache

* Each of multiple CPUs can monitor main memory
traffic to keep its own local cache up to date

* lots of traffic = slows down writes

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-31

Write Back Method

e updates initially made in cache only

e update (dirty) bit for cache slot is set when update
OCCUrs

* if block is to be replaced, write to main memory only
if update bit is set

e Other caches get out of sync

* |/O must access main memory through cache

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-32

Example-1

e M1 : 16K word 50 ns access time
e M2: 1M words 400 ns Access time

e If 8 word cache line and set size is 256 words with set
associative mapping

* Give Mapping between M2 and M1

 Calculate Effective memory access time (Cache hit
ratio =0.95)

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-33

Cache Performance

 Two measures that characterize the performance of a cache are
the hit ratio and the effective access time

(Num times referenced words are in cache)
Hit Ratio = -------------m e
(Total number of memory accesses)

(# hits)(TimePerHit)+(# misses) (TimePerMiss)
Eff. Access Time = —--—--mmrm oo
(Total number of memory accesses)

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-34

Cache Performance Example

* Direct-Mapped Cache

Slot 0

Slot 1

Slot 2

Slot 3

Cache Memory

Cache access time = 80ns
Main Memory time = 2500 ns

Dr P K Singh BCS-29 Advanced Computer Architecture

Block O

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

BCS-29(!)-35

Cache Performance Example

* Sample program executes from memory location 48-95
once. Then it executes from 15-31 in a loop ten times
before exiting.

Event | Location Time Comment
1 miss |48 2500ns Memory block 3 to cache slot 3
15 hits | 49-63 80nsx15=1200ns
1 miss | 64 2500ns Memory block 4 to cache slot 0
15 hits | 65-79 80nsx15=1200ns
1 miss | 80 2500ns Memory block 5 to cache slot 1
15 hits | 81-95 80nsx15=1200ns
1 miss |15 2500ns Memory block 0 to cache slot 0
1 miss |16 2500ns Memory block 1 to cache slot 1
15 hits | 17-31 80nsx15=1200ns
9hits |15 80nsx9=720ns Last nine iterations of loop
144 hits| 16-31 80nsx144-12,240ns| Last nine iterations of loop
Total hits =213 Total misses = 5

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-36

Cache Performance Example

* Hit Ratio: 213 /218 =97.7%

* Effective Access Time: ((213)*(80ns)+(5)(2500ns)) /
218 =136 ns

e Although the hit ratio is high, the effective access
time in this example is 75% longer than the cache
access time due to the large amount of time spent
during a cache miss

* What sequence of main memory block accesses
would result in much worse performance?

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-37

Cache Performance Example

* Consider Cache and Main Memory hierarchy

e Cache targeted to maintain a hit ratio of 0.9.

A cache access on read-hit takes 20 ns; that on a write-hit
takes 60 ns with a write-back scheme, and with a write-
through scheme it needs 400 ns.

* The probability of a cache block is to be replaced i.e. dirty is
estimated as 0.1.

* An average block transfer time between the cache and shared
memory via the bus is 400 ns.

* Consider the read and write accesses are assumed equally
probable.

* Derive the effective memory-access times per instruction for
the write-through and write-back caches separately.

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-38

