
BCS-29
Advanced Computer Architecture

Memory Hierarchy Design

Memory Subsystem

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-2

Hierarchy List
• Registers
• L1 Cache
• L2 Cache
• Main memory
• Disk cache
• Disk
• Optical
• Tape

Cache and Main Memory

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-3

Cache/Main Memory Structure

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-4

Cache operation – overview

• CPU requests contents of memory location

• Check cache for this data

• If present, get from cache (fast)

• If not present, read required block from main
memory to cache

• Then deliver from cache to CPU

• Cache includes tags to identify which block of main
memory is in each cache slot

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-5

Cache Read Operation - Flowchart

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-6

How does cache memory work?

• Main memory consists of up to 2n addressable words, with
each word having a unique n-bit address. For mapping
purposes, this memory is considered to consist of a number of
fixed-length blocks of K words each. Thus, there are M = 2n/ K
blocks.

• The cache is split into C lines of K words each, Figure with
number of lines considerably smaller than the number of
main memory blocks (C << M).

• At any time, only a subset of the blocks of main memory
resides in the lines in the cache.

• If a word in a block of memory is read, that block is
transferred to one of the lines of the cache.

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-7

Cache Design

• Addressing

• Size

• Mapping Function

• Replacement Algorithm

• Write Policy

• Block Size

• Number of Caches

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-8

Mapping Function

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-9

• how does cache contents map to main memory
contents?

cache

tag data block

000

xxx

blocki

blockj

. . .

main memory

address contents

line

use tag (and maybe

line address) to

identify block address

Cache Basics

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-10

• cache line vs. main memory location

• same concept – avoid confusion (?)

• line has address and contents

• contents of cache line divided into tag and data fields

• fixed width

• fields used differently !

• data field holds contents of a block of main memory

• tag field helps identify the start address of the block of memory
that is in the data field

Mapping Function Example

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-11

• cache of 64 KByte

• 16 K (214) lines – each line is 5 bytes wide = 40 bits

• 16 MBytes main memory

• 24 bit address

• 224 = 16 M

• will consider DIRECT and ASSOCIATIVE mappings

4 byte blocks

of main memory

holds up to 64 Kbytes

of main memory contents

tag field: 1 byte

data field: 4 bytes

Direct Mapping

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-12

• each block of main memory maps to only one cache line

• i.e. if a block is in cache, it must be in one specific place – based
on address!

• split address into two parts

• least significant w bits identify unique word in block

• most significant s bits specify one memory block

• split s bits into:

• cache line address field r bits

• tag field of s-r most significant bits

s w

tag line

address

s – r r

s

line field

identifies line

containing

block !

Direct Mapping: Address Structure Example

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-13

tag

s-r

line address

r

word

w

8 14 2

24 bit address

s = 22 bit block

identifier

2 bit word identifier

(4 byte block)

• two blocks may have the same r value, but then
always have different tag value !

Direct Mapping Cache Line Table

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-14

cache line main memory blocks held

0 0, m, 2m, 3m, … 2s-m

1 1, m+1, 2m+1, … 2s-m+1

m-1 m-1, 2m-1,3m-1, … 2s-1

. . .

. . .

m=214

s=22

each block = 4 bytes

But…a line can contain only

one of these at a time!

Direct Mapping Cache Organization

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-15

Direct Mapping Summary

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-16

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or bytes

• Block size = line size – tag size = 2w words or bytes

• Number of blocks in main memory = 2s+ w/2w = 2s

• Number of lines in cache = m = 2r

• Size of tag = (s – r) bits

Direct Mapping pros & cons

• Simple

• Inexpensive

• Fixed location for given block

• If a program accesses 2 blocks that map to the
same line repeatedly, cache misses are very high

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-17

Associative Mapping

• main memory block can load into any line of cache

• memory address is interpreted as tag and word
select in block

• tag uniquely identifies block of memory !

• every line’s tag is examined for a match

• cache searching gets expensive

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-18

s = tag → does not use line address !

Fully Associative Cache Organization

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-19

no line

field !

Associative Mapping Example

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-20

tag = most signif.

22 bits of address

Typo-

leading F

missing!

Associative Mapping (Address Structure)

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-21

• 22 bit tag stored with each 32 bit block of data

• Compare tag field with tag entry in cache to check for hit

• Least significant 2 bits of address identify which 8 bit word is required
from 32 bit data block

• e.g.

• Address Tag Data Cache line

• FFFFFC 3FFFFF 24682468 any, e.g. 3FFF

Tag 22 bit
Word

2 bit

Associative Mapping Summary

• Address length = (s + w) bits

• Number of addressable units = 2s+w words or bytes

• Block size = line size – tag size = 2w words or bytes

• Number of blocks in main memory = 2s+ w/2w = 2s

• Number of lines in cache = undetermined

• Size of tag = s bits

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-22

Set Associative Mapping

• Cache is divided into a number of sets

• Each set contains k lines → k – way associative

• A given block maps to any line in a given set

• e.g. Block B can be in any line of set i

• e.g. 2 lines per set

• 2 – way associative mapping

• A given block can be in one of 2 lines in only one set

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-23

Set Associative Mapping Address Structure

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-24

Tag 9 bit Set 13 bit
Word

2 bit

E.g. Given our 64Kb cache, with a line size of 4 bytes, we have 16384 lines. Say
that we decide to create 8192 sets, where each set contains 2 lines. Then we
need 13 bits to identify a set (213=8192)
Use set field to determine cache set to look in
Compare tag field of all slots in the set to see if we have a hit, e.g.:

Address = 16339C = 0001 0110 0011 0011 1001 1100
Tag = 0 0010 1100 = 02C
Set = 0 1100 1110 0111 = 0CE7
Word = 00 = 0

Address = 008004 = 0000 0000 1000 0000 0000 0100
Tag = 0 0000 0001 = 001
Set = 0 0000 0000 0001 = 0001
Word = 00 = 0

Set Associative Mapping

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-25

• To compute cache set number:
• SetNum = j mod v

• j = main memory block number

• v = number of sets in cache
Block 0

Block 1

Block 2

Block 3

Main Memory

Line 0

Line 1

Line 2

Line 3

Set 0

Set 1 Block 4

Block 5

K-Way Set Associative Cache Organization

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-26

Direct + Associative Mappingset select

(direct)

tag

(associative)

Breaking into Tag, Set, Word
• Given Tag=9 bits, Set=13 bits, Word=2 bits

• Given address FFFFFD16

• What are values of Tag, Set, Word?

• First 9 bits are Tag, next 13 are Set, next 2 are Word

• Rewrite address in base 2: 1111 1111 1111 1111 1111
1101

• Group each field in groups of 4 bits starting at right

• Add zero bits as necessary to leftmost group of bits

• 0001 1111 1111 0001 1111 1111 1111 0001

• → 1FF 1FFF 1 (Tag, Set, Word)

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-27

Replacement Algorithms Direct Mapping

• what if bringing in a new block, but no line available
in cache?

• must replace (overwrite) a line – which one?

• direct → no choice

• each block only maps to one line

• replace that line

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-28

Replacement Algorithms (Associative & Set Associative)

• hardware implemented algorithm (speed)

• Least Recently Used (LRU)

• e.g. in 2-way set associative

• which of the 2 blocks is LRU?

• First In first Out (FIFO)

• replace block that has been in cache longest

• Least Frequently Used (LFU)

• replace block which has had fewest hits

• Random

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-29

Write Policy

• must not overwrite a cache block unless main
memory is up to date

• Complication: Multiple CPUs may have individual
caches!!

• Complication: I/O may address main memory too
(read and write)!!

• N.B. 15% of memory references are writes

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-30

Write Through Method

• all writes go to main memory as well as cache

• Each of multiple CPUs can monitor main memory
traffic to keep its own local cache up to date

• lots of traffic → slows down writes

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-31

Write Back Method

• updates initially made in cache only

• update (dirty) bit for cache slot is set when update
occurs

• if block is to be replaced, write to main memory only
if update bit is set

• Other caches get out of sync

• I/O must access main memory through cache

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-32

Example-1

• M1 : 16K word 50 ns access time

• M2: 1M words 400 ns Access time

• If 8 word cache line and set size is 256 words with set
associative mapping

• Give Mapping between M2 and M1

• Calculate Effective memory access time (Cache hit
ratio =0.95)

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-33

Cache Performance

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-34

• Two measures that characterize the performance of a cache are
the hit ratio and the effective access time

(Num times referenced words are in cache)

Hit Ratio = ---

(Total number of memory accesses)

(# hits)(TimePerHit)+(# misses) (TimePerMiss)

Eff. Access Time = --

(Total number of memory accesses)

Cache Performance Example

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-35

• Direct-Mapped Cache
Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Memory

0-15

Slot 0

Slot 1

Slot 2

Slot 3

Cache Memory

Cache access time = 80ns

Main Memory time = 2500 ns

16-31

32-47

48-63

64-79

80-95

…

Cache Performance Example

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-36

• Sample program executes from memory location 48-95
once. Then it executes from 15-31 in a loop ten times
before exiting.

Cache Performance Example

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-37

• Hit Ratio: 213 / 218 = 97.7%

• Effective Access Time: ((213)*(80ns)+(5)(2500ns)) /
218 = 136 ns

• Although the hit ratio is high, the effective access
time in this example is 75% longer than the cache
access time due to the large amount of time spent
during a cache miss

• What sequence of main memory block accesses
would result in much worse performance?

Cache Performance Example
• Consider Cache and Main Memory hierarchy

• Cache targeted to maintain a hit ratio of 0.9.

• A cache access on read-hit takes 20 ns; that on a write-hit
takes 60 ns with a write-back scheme, and with a write-
through scheme it needs 400 ns.

• The probability of a cache block is to be replaced i.e. dirty is
estimated as 0.1.

• An average block transfer time between the cache and shared
memory via the bus is 400 ns.

• Consider the read and write accesses are assumed equally
probable.

• Derive the effective memory-access times per instruction for
the write-through and write-back caches separately.

Dr P K Singh BCS-29 Advanced Computer Architecture BCS-29(!)-38

