Control Systems

Subject Code: BEC-26

Unit-III

Shadab A. Siddique
Assistant Professor

Maj. G. S. Tripathi Associate Professor

Lecture 2

Department of Electronics \& Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur

Example 2

For the given transfer function,

$$
\mathrm{T} . F .=\frac{(\mathrm{s}+2)}{s(\mathrm{~s}+4)\left(\mathrm{s}^{2}+6 \mathrm{~s}+25\right)}
$$

Find: (i) Poles
(ii)Zeros
(iii) Pole-zero Plot
(iv) Characteristics Equation

Solution: (i)Poles
The poles can be obtained by equating denominator with zero

$$
\begin{aligned}
& s(\mathrm{~s}+4)\left(\mathrm{s}^{2}+6 \mathrm{~s}+25\right)=0 \\
& \therefore s=0 \\
& \therefore \mathrm{~s}+4=0 \quad \therefore \mathrm{~s}=-4
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& \qquad s(\mathrm{~s}+4)\left(\mathrm{s}^{2}+6 \mathrm{~s}+25\right)=0 \\
& \text { roots }=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \therefore \mathrm{~s}=-3+\mathrm{j} 4 \\
& \therefore \mathrm{~s}=-3-\mathrm{j} 4
\end{aligned}
$$

The poles are $s=0,-4,-3+j 4,-3-j 4$
(ii) Zeros:

The zeros can be obtained by equating numerator with zero

$$
\mathrm{s}+2=0 \quad \therefore \mathrm{~s}=-2
$$

The zeros are $s=-2$

Example 2

Example 2

(iv) Characteristics Equation:

$$
\begin{gathered}
s(\mathrm{~s}+4)\left(\mathrm{s}^{2}+6 \mathrm{~s}+25\right)=0 \\
\left(\mathrm{~s}^{2}+4 s\right)\left(\mathrm{s}^{2}+6 \mathrm{~s}+25\right)=0 \\
\therefore \mathrm{~s}^{4}+6 \mathrm{~s}^{3}+25 \mathrm{~s}^{2}+4 \mathrm{~s}^{3}+24 \mathrm{~s}^{2}+100 s=0 \\
\therefore \mathrm{~s}^{4}+10 \mathrm{~s}^{3}+49 \mathrm{~s}^{2}+100 s=0
\end{gathered}
$$

Analysis of first order system for Step input

Consider a first order system as shown;

Here $\quad G(\mathrm{~s})=\frac{1}{T s}$ and $\quad \mathrm{H}(\mathrm{s})=1$

$$
\therefore \frac{\mathrm{C}(\mathrm{~s})}{R(\mathrm{~s})}=\frac{G}{1+G H}=\frac{\frac{1}{T s}}{1+\frac{1}{T s}}=\frac{1}{1+T s}
$$

Analysis of first order system for Step input

For step input;

$$
\begin{array}{rlrl}
r(t) & =u(t) & t>0 \\
& =0 & t<0
\end{array}
$$

Taking Laplace transform;

$$
R(\mathrm{~s})=L\{\mathrm{Ru}(\mathrm{t})\}=\frac{1}{s}
$$

but

$$
\begin{aligned}
& \frac{C(\mathrm{~s})}{R(\mathrm{~s})}=\frac{1}{1+T s} \\
& \therefore C(\mathrm{~s})= \\
& \frac{1}{1+T s} \times R(\mathrm{~s})
\end{aligned}
$$

Analysis of first order system for Step input

$$
\therefore \quad C(\mathrm{~s})=\frac{1}{1+T s} \times \frac{1}{s}
$$

Using partial fraction;

$$
\therefore C(\mathrm{~s})=\frac{A}{s}+\frac{B}{s+\frac{1}{T}}
$$

Solving;

$$
\begin{aligned}
& \therefore A=\left.s \cdot C(\mathrm{~s})\right|_{s=0}=1 \\
& \therefore B=\left.\left(s+\frac{1}{T}\right) C(\mathrm{~s})\right|_{s=-\frac{1}{T}}=-1
\end{aligned}
$$

Analysis of first order system for Step input

$$
\therefore C(\mathrm{~s})=\frac{1}{s}-\frac{1}{s+\frac{1}{T}}
$$

Taking Inverse Laplace transform;

$$
\therefore c(\mathrm{t})=L^{-1}\{C(\mathrm{~s})\}=L^{-1}\left\{\frac{1}{s}\right\}-L^{-1}\left\{\frac{1}{s+\frac{1}{T}}\right\}
$$

$$
\therefore c(\mathrm{t})=1-e^{-\frac{1}{T}}
$$

Analysis of first order system for Step input

Plot c(t) vs t;

Sr. No.	\mathbf{t}	$\mathbf{C}(\mathbf{t})$
1	T	0.632
2	2 T	0.86
3	3 T	0.95
4	4 T	0.982
5	5 T	0.993
6	∞	1

Time Constant (T)

\checkmark The value of $\mathrm{c}(\mathrm{t})=1$ only at $\mathrm{t}=\infty$.
\checkmark Practically the value of $\mathrm{c}(\mathrm{t})$ is within 5% of final value at $\mathrm{t}=3 \mathrm{~T}$ and within 2% at $\mathrm{t}=4 \mathrm{~T}$.
\checkmark In practice $\mathrm{t}=3 \mathrm{~T}$ or 4 T may be taken as steady state.
\checkmark How quickly the value reaches steady state is a function of the time constant of the system.
\checkmark Hence smaller Tindicates quicker response.

Damping

Every system has a tendency to oppose the oscillatory behavior of the system which is known as "Damping".

Damping Factor ξ

The damping in any systemis measured by a factor or ratio which is known as damping ratio. It is denoted by ξ (Zeta)

Analysis of second order system for Step input

Consider a second order system as shown;

Here $\quad G(\mathrm{~s})=\frac{\omega_{2}^{2}}{s\left(\mathrm{~s}+2 \xi \omega_{\mathrm{n}}\right)} \quad$ and $\quad \mathrm{H}(\mathrm{s})=1$

$$
\therefore \frac{\mathrm{C}(\mathrm{~s})}{R(\mathrm{~s})}=\frac{G}{1+G H}=\frac{\frac{\omega_{n}^{2}}{s\left(\mathrm{~s}+2 \xi \omega_{\mathrm{n}}\right)}}{1+\frac{\omega_{n}^{2}}{s\left(\mathrm{~s}+2 \xi \omega_{\mathrm{n}}\right)}}=\frac{\omega_{n}^{2}}{s^{2}+2 \xi \omega_{\mathrm{n}} \mathrm{~s}+\omega_{n}^{2}}
$$

Analysis of second order system for Step input

$$
\frac{C(\mathrm{~s})}{R(\mathrm{~s})}=\frac{\omega_{n}^{2}}{s^{2}+2 \xi \omega_{\mathrm{n}} \mathrm{~s}+\omega_{n}^{2}}
$$

This is the standard form of the closed loop transfer function
These poles of transfer function are given by;

$$
\begin{aligned}
s^{2}+2 \xi \omega_{n} \mathrm{~S} & +\omega_{n}{ }^{2}=0 \\
\therefore s & =\frac{-2 \xi \omega_{\mathrm{n}} \pm \sqrt{\left(2 \xi \omega_{\mathrm{n}}\right)^{2}-4\left(\omega_{\mathrm{n}}\right)^{2}}}{2} \\
& =-\xi \omega_{\mathrm{n}} \pm \sqrt{\xi \omega_{\mathrm{n}}^{2}-\omega_{\mathrm{n}}^{2}} \\
& =-\xi \omega_{\mathrm{n}} \pm \omega_{\mathrm{n}} \sqrt{\xi-1}
\end{aligned}
$$

Analysis of second order system for Step input

The poles are;
(i) Real and Unequal if $\sqrt{\xi-1}>0$
i.e. $\quad \xi>1 \quad$ They lie on real axis and distinct
(ii) Real and equal if $\sqrt{\xi^{2}-1}=0$
i.e. $\quad \xi=1 \quad$ They are repeated on real axis
(iii) Complex if $\sqrt{\xi^{2}-1}<0$
i.e. $\quad \xi<1 \quad$ Poles are in second and third quadrant

