

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Theory of Relativity

UNIT I Relativistic Mechanics

Lecture-4

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Simultaneity in the observation

• The time of occurrence of the events observed by observer of moving frame of reference

$$t'_{1} = \frac{t_{1} - (\upsilon x_{1}/c^{2})}{\sqrt{1 - \frac{\upsilon^{2}}{c^{2}}}}$$
 and $t'_{2} = \frac{t_{2} - (\upsilon x_{2}/c^{2})}{\sqrt{1 - \frac{\upsilon^{2}}{c^{2}}}}$

$$t_{2}' - t_{1}' = \frac{t_{2} - t_{1}}{\sqrt{1 - (v^{2}/c^{2})}} - \frac{(v/c^{2})(x_{2} - x_{1})}{\sqrt{1 - (v^{2}/c^{2})}}$$

- If both the events are occurring simultaneously for the observer in stationary frame of reference
- Then $\Delta t = t_1 t_2 = 0$

$$\Delta t' = \frac{(v/c^2) (x_1 - x_2)}{\sqrt{1 - (v^2/c^2)}}$$

i.e.,
$$\Delta t' \neq 0$$

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Time depends on the state of motion of the observer!!

Events that occur simultaneously according to one observer can occur at different times for other observers

Gunfight viewed by observer at rest

He sees both shots fired simultaneously

Viewed by a moving observer

Viewed by a moving observer

He sees boy shoot 1st & girl shoot later

Viewed by an observer in the

opposite direction

Viewed by a moving observer

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Prior to Einstein, everyone agreed the distance between events depends upon the observer, but not the time.

Catch ball on a rocket ship

Event 2: girl catches the ball

Event 1: boy throws the ball

Location of the 2 events is different Elapsed time is the same The ball appears to travel faster S

t=1s

Flash a light on a rocket ship

Event 2: light flash reaches the girl

Event 1: boy flashes the light

 $t = \frac{c \ t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$

 \rightarrow t= k t₀

Moving clocks run slower

Properties of $\mathbf{k} = \frac{1}{\sqrt{1 - v^2/c^2}}$

Suppose v = 0.01c (i.e. 1% of c)

$$\kappa = \frac{1}{\sqrt{1 - (0.01c)^2/c^2}} = \frac{1}{\sqrt{1 - (0.01)^2 c^2/c^2}}$$

$$\kappa = \frac{1}{\sqrt{1 - (0.01)^2}} = \frac{1}{\sqrt{1 - 0.0001}} = \frac{1}{\sqrt{0.99999}}$$

 $\kappa = 1.00005$

Properties of $\mathbf{k} = \frac{1}{\sqrt{1 - v^2/c^2}}$

Suppose v = 0.01c (i.e. 1% of c)

$$\kappa = \frac{1}{\sqrt{1 - (0.01c)^2/c^2}} = \frac{1}{\sqrt{1 - (0.01)^2 c^2/c^2}}$$

$$\kappa = \frac{1}{\sqrt{1 - (0.01)^2}} = \frac{1}{\sqrt{1 - 0.0001}} = \frac{1}{\sqrt{0.99999}}$$

 $\kappa = 1.00005$

Properties of
$$\mathbf{k} = \frac{1}{\sqrt{1 - v^2/c^2}}$$
 (cont'd)

Suppose v = 0.1c (i.e. 10% of c)

$$\kappa = \frac{1}{\sqrt{1 - (0.1c)^2/c^2}} = \frac{1}{\sqrt{1 - (0.1)^2 c^2/c^2}}$$

$$\kappa = \frac{1}{\sqrt{1 - (0.1)^2}} = \frac{1}{\sqrt{1 - 0.01}} = \frac{1}{\sqrt{0.99}}$$

k = 1.005

Let's make a chart

V	$\kappa = 1/\sqrt{(1-v^2/c^2)}$
0.01 c	1.00005
0.1 c	1.005

Other values of $\mathbf{k} = -\frac{1}{\sqrt{1 - v^2/c^2}}$

Suppose v = 0.5c (i.e. 50% of c)

$$\kappa = \frac{1}{\sqrt{1 - (0.5c)^2/c^2}} = \frac{1}{\sqrt{1 - (0.5)^2 c^2/c^2}}$$

$$\kappa = \frac{1}{\sqrt{1 - (0.5)^2}} = \frac{1}{\sqrt{1 - (0.25)}} = \frac{1}{\sqrt{0.75}}$$

 $\kappa = 1.15$

Enter into chart

V	$\kappa = 1/\sqrt{(1-v^2/c^2)}$
0.01 c	1.00005
0.1 c	1.005
0.5c	1.15

Other values of $\mathbf{k} = \frac{1}{\sqrt{1 - v^2/c^2}}$

Suppose v = 0.6c (i.e. 60% of c)

$$\kappa = \frac{1}{\sqrt{1 - (0.6c)^2/c^2}} = \frac{1}{\sqrt{1 - (0.6)^2 c^2/c^2}}$$

$$\kappa = \frac{1}{\sqrt{1 - (0.6)^2}} = \frac{1}{\sqrt{1 - (0.36)}} = \frac{1}{\sqrt{0.64}}$$

 $\kappa = 1.25$

Back to the chart

V	$\kappa = 1/\sqrt{(1-v^2/c^2)}$
0.01 c	1.00005
0.1 c	1.005
0.5c	1.15
0.6c	1.25

Suppose v = 0.8c (i.e. 80% of c)

$$\kappa = \frac{1}{\sqrt{1 - (0.8c)^2/c^2}} = \frac{1}{\sqrt{1 - (0.8)^2 c^2/c^2}}$$

$$\kappa = \frac{1}{\sqrt{1 - (0.8)^2}} = \frac{1}{\sqrt{1 - (0.64)}} = \frac{1}{\sqrt{0.36}}$$

 $\kappa = 1.67$

Enter into the chart

V	$\kappa = 1/\sqrt{(1-v^2/c^2)}$
0.01 c	1.00005
0.1 c	1.005
0.5c	1.15
0.6c	1.25
0.8c	1.67

Other values of $\mathbf{k} = \frac{1}{\sqrt{1 - v^2/c^2}}$

Suppose v = 0.9c (i.e.90% of c)

$$\kappa = \frac{1}{\sqrt{1 - (0.9c)^2/c^2}} = \frac{1}{\sqrt{1 - (0.9)^2c^2/c^2}}$$

$$\kappa = \frac{1}{\sqrt{1 - (0.9)^2}} = \frac{1}{\sqrt{1 - 0.81}} = \frac{1}{\sqrt{0.19}}$$

 $\kappa = 2.29$

update chart

V	$\kappa = 1/\sqrt{(1-v^2/c^2)}$
0.01 c	1.00005
0.1 c	1.005
0.5c	1.15
0.6c	1.25
0.8c	1.67
0.9c	2.29

Other values of $\mathbf{k} = \frac{1}{\sqrt{1 - v^2/c^2}}$

Suppose v = 0.99c (i.e.99% of c)

$$\kappa = \frac{1}{\sqrt{1 - (0.99c)^2/c^2}} = \frac{1}{\sqrt{1 - (0.99)^2c^2/c^2}}$$

$$\kappa = \frac{1}{\sqrt{1 - (0.99)^2}} = \frac{1}{\sqrt{1 - 0.98}} = \frac{1}{\sqrt{0.02}}$$

 $\kappa = 7.07$

Enter into chart

V	$\kappa = 1/\sqrt{(1-v^2/c^2)}$
0.01 c	1.00005
0.1 c	1.005
0.5c	1.15
0.6c	1.25
0.8c	1.67
0.9c	2.29
0.99c	7.07

Suppose v = c

update chart

V	$\kappa = 1/\sqrt{(1-v^2/c^2)}$
0.01 c	1.00005
0.1 c	1.005
0.5c	1.15
0.6c	1.25
0.8c	1.67
0.9c	2.29
0.99c	7.07
1.00c	Ø

γ = **???**

Imaginary number!!!

Complete the chart

V	$\kappa = 1/\sqrt{(1-v^2/c^2)}$
0.01 c	1.00005
0.1 c	1.005
0.5c	1.15
0.6c	1.25
0.8c	1.67
0.9c	2.29
0.99c	7.07
1.00c	Ô
Larger than c	Imaginary number

Assignment based on what we learnt in this lecture ?

- What will happen when two simultaneous events are observed by the stationary and moving frame of reference?
- Describe the physical significance regarding the observations of simultaneous events observed by moving and stationary observers.
- Discuss the infinite time for the moving observer.