Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Theory of Relativity

UNIT I

Relativistic Mechanics

Lecture-4

अच्छे ने अच्छा जाना मुझे, बुरे ने बुरा जाना मुझे, जिसकी जैसी सोच थी, उसने उतना ही पहचाना मुझे..

Simultaneity in the observation

- The time of occurrence of the events observed by observer of moving frame of reference

$$
t_{1}^{\prime}=\frac{t_{1}-\left(v x_{1} / c^{2}\right)}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \text { and } t_{2}^{\prime}=\frac{t_{2}-\left(v x_{2} / c^{2}\right)}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

$$
\text { Therefore, } \quad t_{2}^{\prime}-t_{1}^{\prime}=\frac{t_{2}-t_{1}}{\sqrt{1-\left(v^{2} / c^{2}\right)}}-\frac{\left(v / c^{2}\right)\left(x_{2}-x_{1}\right)}{\sqrt{1-\left(v^{2} / c^{2}\right)}}
$$

- If both tne events are occurring simuitaneousiy tor tne observer in stationary frame of reference
- Then $\Delta t=t_{1}-t_{2}=0$

$$
\begin{aligned}
& \Delta t^{\prime}=\frac{\left(v / c^{2}\right)\left(x_{1}-x_{2}\right)}{\sqrt{1-\left(v^{2} / c^{2}\right)}} \\
& \text { i.e., } \Delta t^{\prime} \neq 0
\end{aligned}
$$

Time depends on the state of motion of the observer!!

Events that occur simultaneously according to one observer can occur at different times for other observers

Gunfight viewed by observer at rest

He sees both shots
fired simultaneously

Viewed by a moving observer

Viewed by a moving observer

He sees boy shoot $1^{\text {st }} \&$ girl shoot later

Viewed by an observer in the

opposite direction

Viewed by a moving observer

He sees girl shoot $1^{\text {st }} \&$ boy shoot later

Events

Prior to Einstein, everyone agreed the distance between events depends upon the observer, but not the time.

Same events, different observers

Catch ball on a rocket ship

Event 2: girl catches the ball

Event 1: boy throws the ball

Flash a light on a rocket ship

Event 2: light flash reaches the girl

Event 1: boy flashes the light

How is t related to t_{0} ?

$\mathrm{t}=$ time on Earth clock

$$
\mathrm{t}_{\mathrm{o}}=\text { time on moving clock }
$$

$$
\begin{aligned}
& c=\sqrt{\frac{(v t)^{2}+W^{2}}{t}} \\
& c t=\sqrt{(v t)^{2}+w^{2}}
\end{aligned}
$$

$$
\mathrm{ct}_{0}=\mathrm{w}
$$

$$
(c t)^{2}=(v t)^{2}+w^{2}
$$

$$
\begin{aligned}
& (c t)^{2}=(v t)^{2}+\left(c t_{o}\right)^{2} \\
& \rightarrow(\mathrm{ct})^{2}-(\mathrm{vt})^{2}=\left(\mathrm{ct}_{\mathrm{o}}\right)^{2} \\
& \rightarrow\left(\mathrm{c}^{2}-\mathrm{v}^{2}\right) \mathrm{t}^{2}=\mathrm{c}^{2} \mathrm{t}_{\mathrm{o}}{ }^{2} \\
& \Rightarrow t^{2}=\frac{c^{2} t_{0}^{2}}{c^{2}-v^{2}} \\
& t^{2}=\frac{c^{2} t_{0}^{2}}{1-\frac{v^{2}}{c^{2}}} \\
& \Rightarrow \mathrm{t}=\frac{c t_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& \Rightarrow \mathrm{t}=\mathrm{kt}_{0}
\end{aligned}
$$

Moving clocks run slower

$$
\underset{K \rightarrow 1 \rightarrow t>t_{0}}{t}
$$

Properties of
 $$
\mathbf{k}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

Suppose $\mathrm{v}=\mathrm{o} .01 \mathrm{c}$ (i.e. 1% of c$)$

$$
\begin{aligned}
& \kappa=\frac{1}{\sqrt{1}-(0.01 c)^{2} / c^{2}}=\frac{1}{\sqrt{1-(0.01)^{2} c^{2} / c^{2}}} \\
& \kappa=\frac{1}{\sqrt{1-(0.01)^{2}}}=\frac{1}{\sqrt{1-0.0001}}=\frac{1}{\sqrt{0.9999}}
\end{aligned}
$$

$$
\kappa=1.00005
$$

Properties of
 $\mathbf{k}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}$

Suppose $\mathrm{v}=\mathrm{o} .01 \mathrm{c}$ (i.e. 1% of c$)$

$$
\begin{aligned}
& \kappa=\frac{1}{\sqrt{1}-(0.01 c)^{2} / c^{2}}=\frac{1}{\sqrt{1}-(0.01)^{2} c^{2} / c^{2}} \\
& \kappa=\frac{1}{\sqrt{1-(0.01)^{2}}}=\frac{1}{\sqrt{1}-0.0001}=\frac{1}{\sqrt{0.9999}} \\
& \kappa=1.00005
\end{aligned}
$$

Properties of $\mathbf{k}=\frac{1}{\sqrt{1-v^{2} / c^{2}}} \quad$ (cont'd)

Suppose $v=0.1 c$ (i.e. 10% of c)

$$
\begin{aligned}
& \kappa=\frac{1}{\sqrt{1-(0.1 c)^{2} / c^{2}}}=\frac{1}{\sqrt{1-(0.1)^{2} c^{2} / c^{2}}} \\
& \kappa=\frac{1}{\sqrt{1-(0.1)^{2}}}=\frac{1}{\sqrt{1-0.01}}=\frac{1}{\sqrt{0.99}} \\
& k=1.005
\end{aligned}
$$

Let's make a chart

v	$\kappa=1 / \sqrt{ }\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right)$
0.01 c	1.00005
0.1 c	1.005

Other values of
 $$
\mathbf{k}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

Suppose $v=0.5 \mathrm{c}$ (i.e. 50% of c)

$$
\begin{aligned}
& \kappa=\frac{1}{\sqrt{1-(0.5 c)^{2} / c^{2}}}=\frac{1}{\sqrt{1-(0.5)^{2} c^{2} / \mathrm{c}^{2}}} \\
& \kappa=\frac{1}{\sqrt{1-(0.5)^{2}}}=\frac{1}{\sqrt{1-(0.25)}}=\frac{1}{\sqrt{0.75}} \\
& \kappa=1.15
\end{aligned}
$$

Enter into chart

v	$\kappa=1 / \sqrt{ }\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right)$
0.01 c	1.00005
0.1 c	1.005
0.5 c	1.15

Other values of
 $$
\mathbf{k}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

Suppose $\mathrm{v}=0.6 \mathrm{c}$ (i.e. 60% of c)

$$
\begin{aligned}
& \kappa=\frac{1}{\sqrt{1-(0.6 c)^{2} / c^{2}}}=\frac{1}{\sqrt{1-(0.6)^{2} c^{2} / c^{2}}} \\
& \kappa=\frac{1}{\sqrt{1-(0.6)^{2}}}=\frac{1}{\sqrt{1-(0.36)}}=\frac{1}{\sqrt{ } 0.64} \\
& \kappa=1.25
\end{aligned}
$$

Back to the chart

v	$\kappa=1 / \sqrt{ }\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right)$
0.01 c	1.00005
0.1 c	1.005
0.5 c	1.15
0.6 c	1.25

Other values of $\quad k=\frac{1}{\sqrt{1-v^{2} / c^{2}}}$

$$
\begin{aligned}
& \text { Suppose } v=0.8 c \quad(\text { i.e. } 80 \% \text { of } c) \\
& \kappa=\frac{1}{\sqrt{1-(0.8 c)^{2} / c^{2}}}=\frac{1}{\sqrt{1-(0.8)^{2} c^{2} / c^{2}}} \\
& \kappa=\frac{1}{\sqrt{1-(0.8)^{2}}}=\frac{1}{\sqrt{1-(0.64)}}=\frac{1}{\sqrt{ } 0.36} \\
& \kappa=1.67
\end{aligned}
$$

Enter into the chart

v	$\kappa=1 / \sqrt{ }\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right)$
0.01 c	1.00005
0.1 c	1.005
0.5 c	1.15
0.6 c	1.25
0.8 c	1.67

Other values of
 $$
\mathbf{k}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

Suppose $v=0.9 \mathrm{c}$ (i.e. 90% of c)

$$
\begin{aligned}
& \kappa=\frac{1}{\sqrt{1-(0.9 c)^{2} / c^{2}}}=\frac{1}{\sqrt{1-(0.9)^{2} c^{2} / c^{2}}} \\
& \kappa=\frac{1}{\sqrt{1-(0.9)^{2}}}=\frac{1}{\sqrt{1-0.81}}=\frac{1}{\sqrt{ } 0.19} \\
& \kappa=2.29
\end{aligned}
$$

update chart

v	$\kappa=1 / \sqrt{ }\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right)$
0.01 c	1.00005
0.1 c	1.005
0.5 c	1.15
0.6 c	1.25
0.8 c	1.67
0.9 c	2.29

Other values of
 $$
\mathbf{k}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

$$
\begin{gathered}
\text { Suppose } v=0.99 c \quad(\text { i.e. } 99 \% \text { of } c) \\
\kappa=\frac{1}{\sqrt{1-(0.99 c)^{2} / c^{2}}}=\frac{1}{\sqrt{1-(0.99)^{2} c^{2} / c^{2} /}} \\
\kappa=\frac{1}{\sqrt{1-(0.99)^{2}}}=\frac{1}{\sqrt{1-0.98}}=\frac{1}{\sqrt{0.02}} \\
\kappa=7.07
\end{gathered}
$$

Enter into chart

v	$\kappa=1 / \sqrt{ }\left(1-v^{2} / \mathrm{c}^{2}\right)$
0.01 c	1.00005
0.1 c	1.005
0.5 c	1.15
0.6 c	1.25
0.8 c	1.67
0.9 c	2.29
0.99 c	7.07

Other values of
 $$
\mathbf{k}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

Suppose v = c

$$
\begin{gathered}
\kappa=\frac{1}{\sqrt{1}-(c)^{2} / c^{2}}=\frac{1}{\sqrt{1-c^{2} / c^{2}}} \\
\kappa=\frac{1}{\sqrt{1-1^{2}}}=\frac{1}{\sqrt{0}}=\frac{1}{0} \\
\kappa=\infty
\end{gathered}
$$

update chart

v	$\kappa=1 / \sqrt{ }\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right)$
0.01 c	1.00005
0.1 c	1.005
0.5 c	1.15
0.6 c	1.25
0.8 c	1.67
0.9 c	2.29
0.99 c	7.07
1.00 c	∞

Other values of

$$
\mathbf{k}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

Suppose v=1.1c

$$
\begin{aligned}
& \kappa=\frac{1}{\sqrt{1-(1.1 c)^{2} / c^{2}}}=\frac{1}{\sqrt{1-(1.1)^{2} c^{2} / c^{2}}} \\
& \kappa=\frac{1}{\sqrt{1-(1.1)^{2}}}=\frac{1}{\sqrt{1-1.21}}=\frac{1}{\sqrt{-0.21}}
\end{aligned}
$$

$$
\gamma=? ? \text { Imaginary number!!! }
$$

Complete the chart

v	$\kappa=1 / \sqrt{ }\left(1-\mathrm{v}^{2} \mathrm{c}^{2}\right)$
0.01 c	1.00005
0.1 c	1.005
0.5 c	1.15
0.6 c	1.25
0.8 c	1.67
0.9 c	2.29
0.99 c	7.07
1.00 c	∞
Larger than c	Imaginary number

Plot results:
$\kappa=\frac{1}{\sqrt{1-v^{2} / c^{2}}}$

Never-never land

Assignment based on what we learnt in this lecture?

- What will happen when two simultaneous events are observed by the stationary and moving frame of reference?
- Describe the physical significance regarding the observations of simultaneous events observed by moving and stationary observers.
- Discuss the infinite time for the moving observer.

