

VLSI Design (BEC-41) (Unit- 2, Lecture- 9)

Presented By:

Prof. R. K. Chauhan

Department of Electronics and Communication Engineering

L5-10-2020 Side 1

Problem 1: Design following Boolean expression using complementary CMOS and Pseudo NMOS logic:

$$Y = \overline{AB + C(A + D)}$$
 $Y = AB + BC + D$.

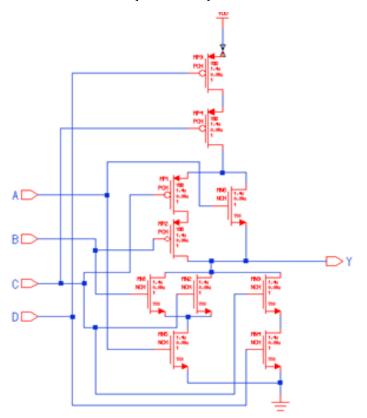
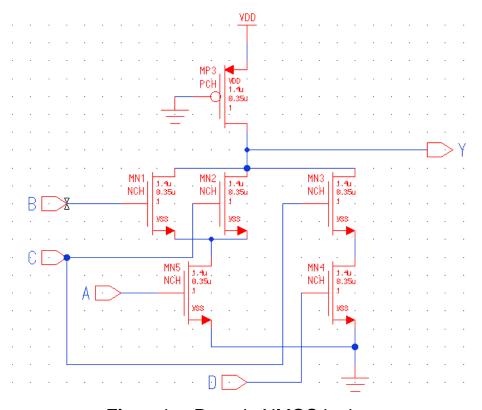
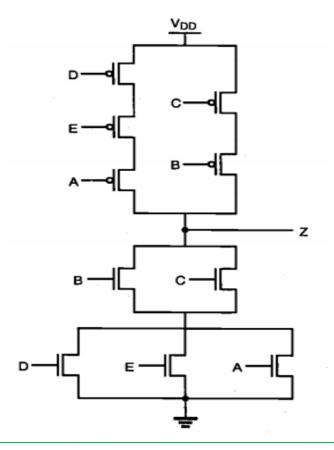


Fig. using complementary CMOS logic

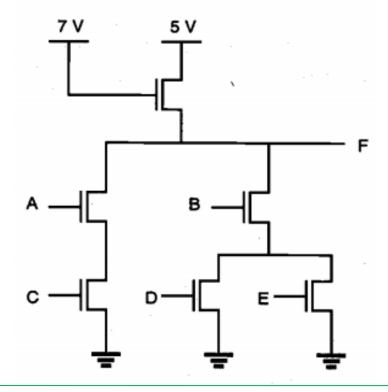



Fig. using Pseudo NMOS logic

15-10-2020 Side 2

Problem 2: Realized following Boolean function and find (W/L)n equivalent and (W/L)p equivalent, if (W/L)n=10 and (W/L)p=15:

$$Y = \overline{(\boldsymbol{D} + \boldsymbol{E} + A)(\boldsymbol{B} + \boldsymbol{C})}$$


$$\left(\frac{W}{L}\right)_{n,eq} = \frac{1}{\left(\frac{W}{L}\right)_D + \left(\frac{W}{L}\right)_E + \left(\frac{W}{L}\right)_A} + \frac{1}{\left(\frac{W}{L}\right)_B + \left(\frac{W}{L}\right)_C}$$
$$= \frac{1}{\frac{1}{30} + \frac{1}{20}} = 12$$

$$\left(\frac{W}{L}\right)_{p,eq} = \frac{1}{\frac{1}{\left(\frac{W}{L}\right)_{D}} + \frac{1}{\left(\frac{W}{L}\right)_{E}} + \frac{1}{\left(\frac{W}{L}\right)_{A}} + \frac{1}{\left(\frac{W}{L}\right)_{B}} + \frac{1}{\left(\frac{W}{L}\right)_{C}} \\
= \frac{1}{\frac{1}{15} + \frac{1}{15} + \frac{1}{15}} + \frac{1}{\frac{1}{15} + \frac{1}{15}} = 12.5$$

Problem 2:

- A. Identify the worst-case input combination(s) for Vol.
- B. Calculate the worst-case value of V_{OL} . (Assume that all pull-down transistors have the same body bias and initially, that V_{OL} =5% V_{DD} .)

15-10-2020 Side 4

Solution 2:

Class1: A-C

Class1: B-D

Class1: B-E

Class2: B-D-E

Class3: A-C-B-D-E

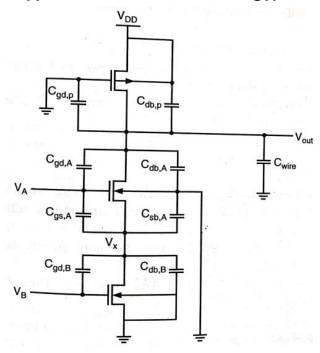
 $V_{OL1}>V_{OL2}>V_{OL3}$

Hence worst case V_{OL} in class 1 combination.

Given: $R_n/(R_u+R_n)$. $V_{DD} = 5\%V_{DD} = V_{DD}/20$

Hence 19R_n= R_u

For Class1: $V_{OL} = 2R_n/(R_u+2R_n)$. V_{DD}


 $V_{OL} = V_{DD} / 10.5$

Problem 3: Find the effective output node capacitance in both two cases of given figure:

A. The input VA is equal to V_{OH} and the other input V is switching from V_{OH} to V_{OL} .

B. V_B is equal to V_{OH} and V_A switches from V_{OH} to V_{OL} .

L5-10-2020 Side 6

Solution 3:

The input V_A is equal to V_{OH} and the other input V is switching from V_{OH} to V_{OL}.
 In this case, both the output voltage V_{OUT}, and the internal node voltage V_x will rise, resulting in:

$$C_{load} = C_{gd,load} + C_{gd,A} + C_{gd,B} + C_{gs,A}$$
$$+ C_{db,A} + C_{db,B} + C_{sb,A} + C_{sb,load} + C_{wire}$$

- Note that this value is quite conservative and fully reflects the internal node capacitances into the lumped output capacitance C_{load} in reality, only a fraction of the internal node capacitance is reflected into C_{load}.
- Now consider another case where V_B is equal to V_{OH} and V_A switches from V_{OH} to V_{OL} . In this case, the output voltage V_{out} , will rise, but the internal node voltage V_x , will remain low because the bottom driver transistor is on. Thus, the lumped output capacitance is

$$C_{load} = C_{gd,load} + C_{gd,A} + C_{db,A} + C_{sb,load} + C_{wire}$$