Principle of Communication (BEC-28)

Amplitude Modulation

Dr. Dharmendra Kumar

- Assistant Professor
- Department of Electronics and Communication Engineering
- MMM University of Technology, Gorakhpur–273010.
- Email: dkece@mmmut.ac.in

Correlation and Autocorrelation

- Correlation is a measure of the similarity between the waveforms.
- Correlation between $x_1(t)$ and $x_2(t)$ defined by $R_{12}(\tau)$

•
$$R_{12}(\tau) = T \to \infty \frac{1}{T} \int_{-T/2}^{T/2} x_1(t) x_2(t+\tau) dt$$

where, $x_1(t)$ and $x_2(t)$ not necessarily periodic nor confined to finite time interval.

- If $x_1(t)$ and $x_2(t)$ are periodic with same time period T_0 , then Average cross correlation, $R_{12}(\tau) = T \rightarrow \infty \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x_1(t) x_2(t+\tau) dt$
- If $x_1(t)$ and $x_2(t)$ are finite energy signal, then cross correlation, $R_{12}(\tau) = \int_{-\infty}^{\infty} x_1(t) x_2(t+\tau) dt$
- Autocorrelation, when $x_1(t) = x_2(t) = x(t)$

Correlation and Autocorrelation....

Problem: Find $R_{12}(-1)$, $R_{12}(0)$ and $R_{21}(1)$ for signals given below $x_1(t) = u(t) - u(t-5)$ and $x_2(t) = 2t(u(t) - u(t - 3))$ Solution: $x_1(t)$ is nonzero for $0 \le t \le 5$, and $x_2(t)$ is nonzero for $0 \le t \le 3$ $R_{12}(\tau) = \int_{-\infty}^{\infty} x_1(t) x_2(t+\tau) dt$ $R_{12}(0) = 9$ $R_{12}(1) = 8 = R_{12}(-1)$

Fourier Transform

- A periodic waveform of finite amplitude and finite frequency $f_0 = \frac{1}{T_0}$ can be expressed as sum of spectral components.
- Normalized power of above signal is also finite.
- When $T_0 \rightarrow \infty$: Above signal will be single pulse nonperiodic waveform.
- As $T_0 \rightarrow \infty$, spacing between spectral components becomes infinitesimal.
- Frequency of spectral components in Fourier series was discontinuous variable, but now it becomes a continuous variable.
- Now energy of nonperiodic signal remains finite, but power becomes infinitesimal.
- So, spectral amplitude become infinitesimal.

Fourier Transform.....

• Fourier series of periodic waveform:

 $v(t) = \sum_{n=-\infty}^{\infty} V_n e^{j2\pi f_0 t}$

• Above expression becomes

 $v(t) = \int_{-\infty}^{\infty} V(f) e^{j2\pi ft} df$

- Finite spectral amplitudes V_n analogous to Infinitesimal spectral amplitudes V(f)df. V(f) is amplitude spectral density known as Fourier Transform of v(t).
- Fourier Transform of v(t):

$$V(f) = \int_{-\infty}^{\infty} v(t) e^{-j2\pi ft} dt$$

• In correspondence with V_n

$$V_n = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} v(t) e^{-j2\pi n f_0 t} dt$$

Fourier Transform.....

• Let v(t) is passed through LTI system of transfer function H(f), its output:

$$v_0(t) = \int_{-\infty}^{\infty} H(f) V(f) e^{j2\pi ft} df$$
$$v_0(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V(\omega) e^{j\omega t} d\omega$$

Problem: Find Fourier Transform of $x(t) = cos(\omega_0 t)$.

Solution:
$$v(t) = \frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2}; \omega_0 = \frac{2\pi}{T_0}$$

 $V(f) = \int_{-\infty}^{\infty} \cos(\omega_0 t) e^{-j2\pi f t} dt$
 $= \int_{-\infty}^{\infty} \left(\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2}\right) e^{-j2\pi f t} dt$
 $= \frac{1}{2} \left(\delta(f - f_0) + \delta(f + f_0)\right)$

Problem: Find the Fourier Transform $x(t) = \delta(t)$, a unit impulse function.

Problem: Transfer function of a network is given by H(f). A unit impulse $\delta(t)$ is applied at input. Show that response at the output is the inverse transform of H(f).

Fourier Transform Properties

٠

- $v(t) \leftrightarrow V(f)$
- Time Shifting

$$v(t+\tau) \leftrightarrow V(f)e^{j2\pi f\tau}$$

• Time Inversion

 $v(-t) \leftrightarrow V(-f)$

• Time Scaling

$$v(at) \leftrightarrow \frac{1}{|a|} V\left(\frac{f}{a}\right)$$

• Differentiation property

$$\frac{dv}{dt} \leftrightarrow j2\pi f V(f)$$

• Integration Property

$$\int_0^t v(\tau) d\tau \leftrightarrow \frac{1}{j2\pi f} V(f) + \pi V(0)\delta(f)$$

where $V(0) = \int_{-\infty}^{\infty} v(\tau) d\tau$ i.e. area under $v(t)$.

- Frequency Shifting $v(t)e^{i2\pi f_c t} \leftrightarrow V(f - f_c)$
- Derivative with frequency $-j2\pi t. v(t) \leftrightarrow \frac{dV(f)}{df}$
- Duality or Symmetry $V(t) \leftrightarrow v(-f)$ $V(t) \leftrightarrow 2\pi v(-\omega)$
 - Linearity $av_1(t) + bv_2(t) \leftrightarrow aV_1(f) + bV_2(f)$ where $v_1(t) \leftrightarrow V_1(f)$ and $v_2(t) \leftrightarrow V_2(f)$

Examples

Problem: Find Fourier Transform of the signal $v(t) = e^{-at}u(t)$ where u(t) is unit step function. Solution: $V(f) = \int_{-\infty}^{\infty} u(t)e^{-at}e^{-j2\pi ft}dt$

$$=\int_0^\infty e^{-(a+j2\pi f)t}dt = \frac{1}{a+j2\pi f}$$

Problem: Find Fourier Transform of the signal $v(t) = e^{-a|t|}$ where *a* is positive real number. Solution: $e^{-a|t|} = e^{-at}u(t) + e^{at}u(-t)$

$$e^{-at}u(t)\leftrightarrow rac{1}{a+j2\pi f}$$

Time Reversal property, $e^{at}u(-t) \leftrightarrow \frac{1}{a+j2\pi(-f)}$ Linearity property, $e^{-a|t|}$ $\leftrightarrow \frac{1}{a+j2\pi f} + \frac{1}{a+j2\pi(-f)}$ $e^{-a|t|}$ $\leftrightarrow \frac{2a}{a^2+4\pi^2f^2}$

Problem: Find Fourier transform of sgn(t) = u(t) - u(-t). Solution: $sgn(t) = a \rightarrow 0[e^{-at}u(t) - e^{at}u(-t)]$ Using linearity property, $sgn(t) \leftrightarrow \frac{1}{j\pi f}$ Problem: Find inverse Fourier transform of $-jsgn(\omega)$. Solution: From the above problem, $sgn(\omega) = \frac{2}{j\omega}$ $IFT[-jsgn(\omega)] = jIFT[sgn(-\omega)]$ Duality property, $IFT[-jsgn(\omega)] = \frac{1}{\pi t}$

Thank You