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The Electromagnetic Spectrum



The Equations of Electromagnetism 

(at this point …)
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Gauss’ Law for Electrostatics

Gauss’ Law for Magnetism

Faraday’s Law of Induction

Ampere’s Law
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The Equations of Electromagnetism

0
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B dA • = 0

..monopole..   

?
...there’s no 

magnetic  monopole....!!

Gauss’s Laws
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The Equations of Electromagnetism

E dl
d
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B
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

B dl I • = 0
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.. if you change a

magnetic field you 

induce an electric

field.........

.......is the reverse

true..?    

Faraday’s Law

Ampere’s Law



Basic Definition of Current

• I = neAvd 

• For current flowing through a conductor it is must 

that the electronic charge  should move through it.

• Now  the question is how to test  the flow of current 

through a conductor in the simplest way ??

• For it let us recall Ampere’s law….



Recall Ampere’s Law

encIdlB = 0




View of Magnetic field around a current 

carrying conductor

➢The presence of electric current can be observed using the

magnetic compass

➢When we will place the magnetic compass around the current

carrying conductor there will be deflection in it.



What will happen if any where there is 

no current carrying conductor in a 

circuit 

➢The current flowing in the circuit is I, but what is the current

flowing between the plates of capacitor.

➢Obviously Zero !!!



• Now according to the Ampere’s law there should be no

magnetic field between the plates of the capacitor.

• Let us verify it experimentally what the situation is prevailing

between the plates of a capacitor, by putting magnetic compass

there.

• Surprisingly !! There is the deflection in the magnetic

compass.

• It suggests that the definition of current what we have read is

either wrong or Ampere’s law need modification for its

generalization .

• This important task was accomplished by Maxwell on the

basis of change in electrical field between plates of capacitor

and introducing the concept of displacement current.



➢If Ampere’s Law still holds, there must be a

magnetic field generated by the changing E-field

between the plates. This induced B-field makes it

look like there is a current (call it the displacement

current) passing through the plates.



...lets take a look at charge flowing into a capacitor...

...when we  derived  Ampere’s Law 

we assumed constant current...

EB

B dl I • = 0



...lets take a look at charge flowing into a capacitor...

E

...when we  derived  Ampere’s Law 

we assumed constant current...

.. if the  loop  encloses one 

plate of the capacitor..there 

is a problem … I = 0

B

Side view: (Surface

is now like a bag:)

EB

B dl I • = 0



Maxwell solved this problem 

by realizing that....

B E
Inside the capacitor there must  

be an induced magnetic field...

How?. 



Maxwell solved this problem 

by realizing that....

B E
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A changing 

electric field

induces a 

magnetic field

Inside the capacitor there must  

be an induced magnetic field...

How?. Inside the capacitor there is a changing E 

E

B



Maxwell solved this problem 

by realizing that....
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A changing 

electric field

induces a 

magnetic field

Inside the capacitor there must  

be an induced magnetic field...

How?. Inside the capacitor there is a changing E 

where Id is called the

displacement current  
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Maxwell solved this problem 

by realizing that....

B E

B dl I
d
dt

E
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x  x 

A changing 

electric field

induces a 

magnetic field

Inside the capacitor there must  

be an induced magnetic field...

How?. Inside the capacitor there is a changing E 

where Id is called the

displacement current  

Therefore, Maxwell’s revision 

of Ampere’s Law becomes....
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Derivation of Displacement Current
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Derivation of Displacement Current
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Maxwell’s Equations of Electromagnetism

E dA
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Gauss’ Law for Electrostatics
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Maxwell’s Equations of Electromagnetism

in Vacuum (no charges, no masses)

Consider these equations in a vacuum.....

......no mass, no charges. no currents.....
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Maxwell’s Equations of Electromagnetism

in Vacuum (no charges, no masses)
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Electromagnetic Waves

Faraday’s law:   dB/dt         electric field

Maxwell’s modification of Ampere’s law 

dE/dt         magnetic field

These two equations can be solved simultaneously.

The result is:
E(x, t) = EP sin (kx-t)

B(x, t) = BP sin (kx-t) k̂

ĵ
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Electromagnetic Waves
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Special case..PLANE WAVES...

satisfy the  wave equation  

  = +A tsin( )Maxwell’s Solution  

Electromagnetic Waves
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Plane Electromagnetic Waves

x

Ey

Bz

E(x, t) = EP sin (kx-t)

B(x, t) = BP sin (kx-t) k̂

ĵ

c



Static wave
F(x) = FP sin (kx + )

k = 2  

k = wavenumber

 = wavelength

F(x)

x



Moving wave
F(x, t) = FP sin (kx - t )

 = 2  f

 = angular frequency

f = frequency

v =  / k

F(x)

x



v



x

v Moving wave

F(x, t) = FP sin (kx - t )

What happens at x = 0 as a function of time?

F(0, t) = FP sin (-t)

F

For x = 0 and t = 0  F(0, 0) = FP sin (0)

For x = 0 and t = t  F (0, t) = FP sin (0 – t) = FP sin (– t) 

This is equivalent to: kx = - t  x = - (/k) t 

F(x=0) at time t is the same as F[x=-(/k)t] at time 0

The wave moves to the right with speed /k



Plane Electromagnetic Waves

x

Ey

Bz

Notes:  Waves are in Phase,

but fields oriented at 900.

k=2.

Speed of wave is c=/k (= f)

c m s= = 1 3 100 0
8/ / 

E(x, t) = EP sin (kx-t)

B(x, t) = BP sin (kx-t) k̂

ĵ

c



Deduction of Maxwell’s Laws 
in Differential form



Gauss Divergence Theorem (Relation between Surface and

Volume Integration)

Stokes Theorem (Relation between Line Integral and Surface

Integration)



➢When a dielectric is placed in a uniform electric field, its

molecules get polarised. Thus, a dielectric in an electric field

contains two types of charges—free charges, which are

embedded, and polarisation charges or bound charges.

➢If ρ and ρP are the free and bound charge densities,

respectively, at a point in a small volume element dv, then for

such a medium, Gauss’s law may be expressed as





➢It has been experimentally observed that the number of

magnetic lines of force entering any closed surface enclosing a

volume is exactly the same as that leaving it, i.e., the net

magnetic flux through any closed surface is always zero.



3. Maxwell’s third equation (Faraday’s law of 

electromagnetic induction):

➢According to Faraday’s law of electromagnetic induction, the induced emf

around a closed circuit is equal to the negative time rate of change of magnetic

flux linked with the circuit, i.e.





4. Maxwell’s fourth equation (modified Ampere’s law):

From the Ampere’s law



This implies that Ampere’s law is applicable only for static charges.

However, for time-varying fields, Maxwell suggested that Ampere’s law

must be modified by adding a quantity having dimension as that of current

and produced due to polarisation of charges. This physical quantity is

called displacement current (Jd).



Thus, modified Ampere’s law now becomes



CONCLUSIONS

➢MAXWELL’S EQUATIONS IN DIFFERENTIAL FORM

➢MAXWELL’S EQUATIONS IN INTEGRAL FORM



MAXWELL’S EQUATIONS IN DIFFERENTIAL FORM:



MAXWELL’S EQUATIONS IN INTEGRAL FORM:
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