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The Equations of Electromagnetism
(at this point ...)

Gauss’ Law for Electrostatics JIEdA=

S |e

Gauss’ Law for Magnetism ffﬂ edA=0

dd
Faraday’s Law of Induction ff Eedl =- dtB

Ampere’s Law §B o dl = 14



The Equations of Electromagnetism

Gauss’s Laws ..monopole..
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...there’s no

magnetic monopole....!!



The Equations of Electromagnetism

Faraday’s Law

Ampere’s Law

4+ §Bedl =y

T s IS the reverse

.. If you change a
magnetic field you
Induce an electric

true..?



Basic Definition of Current

| = neAv.

For current flowing through a conductor it is must
that the electronic charge should move through it.

Now the question is how to test the flow of current
through a conductor in the simplest way ??

For 1t let us recall Ampere’s law....



Recall Ampere’s Law




View of Magnetic field around a current
carrying conductor

»The presence of electric current can be observed using the
magnetic compass

»When we will place the magnetic compass around the current
carrying conductor there will be deflection in it.



What will happen if any where there is
no current carrying conductor in a
circuit
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» The current flowing In the circuit is I, but what Is the current
flowing between the plates of capacitor.
»Obviously Zero !l!




 Now according to the Ampere’s law there should be no
magnetic field between the plates of the capacitor.

* Let us verify it experimentally what the situation is prevailing

between the plates of a capacitor, by putting magnetic compass
there.

« Surprisingly ! There i1s the deflection In the magnetic
compass.

|t suggests that the definition of current what we have read is
either wrong or Ampere’s law need modification for its
generalization .

« This important task was accomplished by Maxwell on the
basis of change In electrical field between plates of capacitor
and introducing the concept of displacement current.



»If Ampere’s Law still holds, there must be a
magnetic field generated by the changing E-field
between the plates. This induced B-field makes it
look like there iIs a current (call it the displacement
current) passing through the plates.




...lets take a look at charge flowing into a capacitor...

...when we derived Ampere’s Law B E
we assumed constant current... %

§5-m=m|




...lets take a look at charge flowing into a capacitor...

...when we derived Ampere’s Law B E

we assumed constant current...
E

fBedl =1

.. If the loop encloses one B, £
plate of the capacitor..there "

is a problem ... I =0

Side view: (Surface
IS now like a bag:)




Maxwell solved this problem
by realizing that....

Inside the capacitor there must B E

be an induced magnetic field...

How?.



Maxwell solved this problem
by realizing that....

Inside the capacitor there must B E

be an induced magnetic field...

How?. Inside the capacitor there is a changing E =

B A changing

electric field
Induces a

— magnetic field




Maxwell solved this problem
by realizing that....

Inside the capacitor there must
be an induced magnetic field...

g0

How?. Inside the capacitor there is a changing E =

B A changing d e

electric field §B'_|=,UO€0W:,UO|d
Induces a where 1 is called the

- magnetic field displacement current




Maxwell solved this problem
by realizing that....

Inside the capacitor there must
be an induced magnetic field...

g0

How?. Inside the capacitor there is a changing E =

B A changing d e
electric field §B'_|=,UO€0W:,UO|d
— mduc_:es _a where 1 is called the
magnetic field displacement current

Therefore, Maxwell’s revision _ d @E
of Ampere’s Law becomes.... §B odl = HO | + Ho&0 dt




Derivation of Displacement Current

: d
For a capacitor, d = &EA and | = d—? = &p d((iA) .
Now, the electric flux is given by EA, so: | =& d(iE) ,

where this current , not being associated with charges, Is
called the “Displacement current”, 1.

d D
dt

Hence: lg = Lo&0



Derivation of Displacement Current

: d
For a capacitor, d = &EA and | = d—? = &) d((iA) .
Now, the electric flux is given by EA, so: | =& d(iE) ,

where this current, not being associated with charges, Is
called the “Displacement Current”, 1.

d D
dt

and: @.m:ﬂouﬂd)

Hence: lg = Lo&0



Maxwell’s Equations of Electromagnetism

Gauss’ Law for Electrostatics § E e dA = 9
=eERT

Gauss’ Law for Magnetism E& BedA=0

Faraday’s Law of Induction § Eedl= d(iB
Ampere’s Law §E o dl = 1l + &y dCﬁE



Maxwell’s Equations of Electromagnetism
In Vacuum (no charges, no masses)

Consider these equations in a vacuum.....
...... No mass, no charges. no currents.....

 dog o dag
JEedl=—"34" —> JEedl=—"4
d & d D




Maxwell’s Equations of Electromagnetism
In Vacuum (no charges, no masses)
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Electromagnetic Waves

Faraday’s law:

dB/dt —— electric field

Maxwell’s modification of Ampere’s law

dE/dt — magnetic field

§E’_|=,UO<90T

ddjE §

These two equations can be solved simultaneously.

The result Is:

E(x, t) = Ep sin (kx-wt)
B(X, t) = Bp sin (kx-ot) K




Electric Field ——

Electric Field Maghetic Field ——
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Electromagnetic Waves

do dod
Bedl = 3 —_— B
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Electromagnetic Waves

do do
Bedl = 1¢ E __0%g
§Bedl =0~ JEedl=-°C
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Special case..PLANE WAVES... E=E,(xt)]  B=B,(xt)
. . oy 1 J%y
satisfy the wave equation X2 2 A2

Maxwell’s Solution =~ W = A Sin( ot + ¢)




Plane Electromagnetic Waves

E(x, t) = Ep sin (kx-wt)
B(X, t) = By sin (kx-ot) K




Static wave

F(X) = Fpsin (kx + ¢)
k=2n/A

k = wavenumber

A = wavelength

Moving wave

F(X, 1) = Fpsin (kx - ot )
ow=2n/f

® = angular frequency
f = frequency

v=on/k



% Moving wave

/ L ’ ' / | X F(X, 1) = Fpsin (kx - ot )

What happens at x = 0 as a function of time?
F(0, t) = Fp sin (-ot)

Forx=0andt=0 = F(0, 0) = F; sin (0)
Forx=0andt=t=F (0, t) = Fy sin (0 — ot) = F; sin (— wt)
This Is equivalent to: kx = - ot = x =- (w/k) t

F(x=0) at time t is the same as F[x=-(w/k)t] at time 0

The wave moves to the right with speed w/k



Plane Electromagnetic Waves

E E(x, t) = Ep sin (kx-ot) j
B(Xx, t) = By sin (kx-ot) k

Notes: Waves are in Phase,
but fields oriented at 90°.

K=27/A.
Speed of wave Is c=a/k (= fA)

c=1/. /sy =3x108m/ s



Deduction of Maxwell’s Laws
in Differential form



Gauss Divergence Theorem (Relation between Surface and
\Volume Integration)

—’
This theorem states that the flux of a vector field F , over any closed surface S, is equal to the volume

mtegral of the divergence of that vector field over the volume V enclosed by the surface 5.
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Stokes Theorem (Relation between Line Integral and Surface
Integration)

v
This theorem states that the surface integral of the curl of a vector field A4, taken over any surface §, is
—a

equal to the line integral of A around the closed curve forming the periphery of the surface.
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1. Maxwell's first equation, divD = por V- D = p

»When a dielectric is placed in a uniform electric field, its
molecules get polarised. Thus, a dielectric in an electric field
contains two types of charges—free charges, which are
embedded, and polarisation charges or bound charges.

»>If p and p- are the free and bound charge densities,
respectively, at a point in a small volume element dv, then for
such a medium, Gauss’s law may be expressed as

. — | -
J E-dS =—| (p+pp)dV
5 s 0 |

where £_ 1s the permittivity of the free space
Now, the bound charge density
Cd +
i, div P, where P is electric polarisation.

-

. — | -
[herefore, J E-d¥ —J (p—divPyal
& |'_II F




[ £-dS = [ divEar - éLp:ﬂ’—i div PdV

Ey ¥
_I'vE,;,divEdF+Ldiv-P'dF = [ pav
_LdivEnEJF+ Lﬂiv];dr = [ pav

[ divieo E+Pyav = | pav

= = )
But £  E+ P = D is the electric displacement vector.

Thus, _L divﬁdl’ = Lpdl’

_L{divE —p)ydvV =0

Therefore, for an arbitrary surface, we have
div D -p=10
div E =p

=5

—5
V-D=p




2. Maxwell’s second equation, div B =0or V- B =)

»It has been experimentally observed that the number of
magnetic lines of force entering any closed surface enclosing a
volume Is exactly the same as that leaving it, i.e., the net
magnetic flux through any closed surface Is always zero.

Hence,

Py 4:\ 5: u"fl? ()

I'he above expression implies that a monopole or an 1solated magnetic pole cannot exast Lo serve as 4

source or sink for the line of magnetic induction & . This expression is also known as Gawss s law in
Magnerostatics,

Using Gauss divergence theorem in Eq. (17.6), we have
- = o
§B-ds - | divBdv -0
where V is the volume enclosed by surface 5.

Hence, for an arbitrary surface,

div B =1

_} —
or V.B ()




3. Maxwell’s third equation (Faraday’s law of
electromagnetic induction):

»According to Faraday’s law of electromagnetic induction, the induced emf
around a closed circuit is equal to the negative time rate of change of magnetic
flux linked with the circuit, 1.e.

_ ¢y
i

o
X B
It 8 is the magnetic induction, then the magnetic flux linked with an area &5 1s
o —5 —5
¢~ | B-dS
i X
On combining Eqs. (17.18) and (17.19), we get
r el a
d r ,
—— | (B-dS)
tlf_f w
e d 2
01 ¢ J—[H-rf’ﬁ]
¥ ot
According to defimition, the induced emft 15 related o the corresponding electne held as
. —F —_
= J | -'.||r.lII
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Equations {17.20) and {17.21) will give
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Now, using Stoke’s theorem on lefi-hand side, we get

- - - -
LE-dl = LcurlE-dS

Thus, we have
-)

[eulE-ds - j—.ds

} curlE+a—B .dS =0
ot

For any arbitrary surface dS, we will have

83
=
curl 5 0

-
curlE-—a—B

ot

-3




4. Maxwell’s fourth equation (modified Ampere’s law):

From the Ampere’s law

- =
:j.]H-LH =yl
- - - |
Using formula { :i-.;' ol 8 [u:ﬂng J :_I}

ve get

$B-dl =p,§J-ds

Using Stoke’s theorem on the left-hand side of the above expression, we get

E]Ecur] E-JE = H“’:f"nj' r,i"E

L-‘icurl Ea":: = -\Jj*_f}cl"?

Hy
—:‘
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§ourl —-ds ~ ¢ J-ds
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Now, from dielectric properties, we have
B
—_=H
Mo
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For an arbitrary surface, we have
curl H — J =10
S

or curl Hf

Taking divergence on both sides, we get

s »
divcurl H =div J

But div curl # =0 (From vector calculus)

L
div J =0
From continuity equation, we have
dp
div S + — =0
ot
Hence, -
dp
ot

or { = constant (static)

0

This implies that Ampere’s law is applicable only for static charges.
However, for time-varying fields, Maxwell suggested that Ampere’s law
must be modified by adding a quantity having dimension as that of current

and produced due to polarisation of charges. This physical quantity is
called displacement current (Jd).



curl = J+.J,
Taking divergence on both sides, we get

diveurl H =div (7+7))

— —+
0 =div J +div J,
=3 =+
div J =—div J,
7 dp . L
div J = T3 (Continuity equation)

div J,
Ve T a
—%
p =div D*

div.i_';=% di

or

Therefore, modified Ampere’s law now becomes

curlH J+a—ﬂ



CONCLUSIONS

»MAXWELL’S EQUATIONS IN DIFFERENTIAL FORM

»MAXWELL’S EQUATIONS IN INTEGRAL FORM



MAXWELL’S EQUATIONS IN DIFFERENTIAL FORM:

1) V-D=p or DwvD=p
- = —
(i) V-B=10 of DivB =0
5 5 B - 03
(ii) VXE = -— or CulE=-—
dt ot
- -
2 2 74D AR’ ) )
(v) VXH =J+— or CulH=J+—
of of




MAXWELL’S EQUATIONS IN INTEGRAL FORM:

—_— —

(ﬂ)jldszijrnrigjﬁeq

. —F —F
i) & B-dS =0

o> —3 a =
(iii) GE-dl =—-— |B-dS
dt ~
. —F — .%'_ﬂ—}
mﬂwaH::'J+E2»ﬁ

’s ot
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