
BCS-29
Advanced Computer Architecture

Pipelined Processing

INSTRUCTION PIPELINE DESIGN

Pipeline Hazards

• Pipeline Hazards
• The situations that prevent the next instruction in the instruction

stream from executing in its designated clock cycle.
• Hazards reduce the performance from the ideal speedup gained by

pipelining

• Three types of hazards
• Structural hazards

• Arise from resource conflicts when the hardware can’t support all
possible combinations of overlapping instructions

• Data hazards
• Arise when an instruction depends on the results of a previous

instruction in a way that is exposed by overlapping of instruction in
pipeline

• Control hazards
• Arise from the pipelining of branches and other instructions that

change the PC (Program Counter)

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-2

Structural Hazards

• If certain combination of instructions can’t be accommodated
because of resource conflicts, the machine is said to have a
structural hazard

• It can be generated by:
• Some functional unit is not fully pipelined

• Some resources has not been duplicated enough to allow all the
combinations in the pipeline to execute

• For example: a machine may have only one register file write port, but
under certain conditions, the pipeline might want to perform two writes
in one clock cycle – this will generate structural hazard
• When a sequence of instructions encounter this hazard, the pipeline will

stall one of the instructions until the required unit is available

• Such stalls will increase the Clock cycle Per Instruction from its ideal 1 for
pipelined machines

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-3

Structural Hazards

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-4

Instruction
Number

Clock number

1 2 3 4 5 6 7 8 9 10

load IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 stall IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB

Instruction i+5 IF ID EX MEM

• A machine with structural hazard will have lower CPI
• Why a designer allows structural hazard?

• To reduce cost
• Pipelining all the functional units or duplicating them may be too costly

• To reduce latency
• Introducing too many pipeline stages may cause latency issues

INSTRUCTION PIPELINE DESIGN

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-5

In-order Instruction issuing

X = Y + Z and A = B X C

Pipelined Instruction Processing

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-6

INSTRUCTION PIPELINE DESIGN

Reordered Instruction issuing

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-7

Mechanisms for Instruction Pipelining

Prefetch Buffers:
Three types of buffers can be used to match the instruction fetch rate to the pipeline
consumption rate.

ln one memory-access time, a block of consecutive instructions are fetched into a prefetch
buffer.

Sequential Buffer: Sequential instructions are loaded into this Buffer for in-sequence
pipelining.

Target Buffer: Instructions from a branch target are loaded into this buffer for out-of-
sequence pipelining.

Loop Buffer: This buffer holds sequential instructions contained in a small loop. The
loop buffers are maintained by the fetch stage of the pipeline.

Mechanisms for Instruction Pipelining

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-8

Multiple Functional Unit:
Sometimes a certain pipeline stage becomes the bottleneck. This stage
corresponds to the row with the maximum number of checkmarks in the
reservation table. This bottleneck problem can be alleviated by using multiple
copies of the same stage simultaneously. This leads to the use of multiple
execution units in a pipelined processor design.

P6 Microarchitecture

9

Mechanisms for Instruction Pipelining

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-10

Internal Dara Forwarding:

The throughput of a pipelined processor can be further improved with
internal data forwarding among multiple functional units. In some eases,
some memory-access operations can be replaced by register transfer
operations.

Store-Load forwarding

Store M, R1
Load R2, M

Store M, R1

Move R2, R1

Mechanisms for Instruction Pipelining

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-11

Load-Load forwarding

Load R1, M

Load R2, M

Load R1, M

Move R2, R1

Internal Dara Forwarding

Mechanisms for Instruction Pipelining

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-12

Example of Internal Dara Forwarding

• The read and write of shared variables by different instructions in a
pipeline may lead to Hazard.

• Hazards should be prevented before these instructions enter the
pipeline.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-13

Pipeline Hazards

Dynamic Instruction Scheduling

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-14

Static Scheduling:

• This scheme is supported by an optimizing compiler.

• Data dependences in a sequence of instructions create
interlocked relationships among them.

• Interlocking can he resolved through a compiler-based static
scheduling approach.

• A compiler can be used to increase the separation between
interlocked instructions by re sequencing.

Dynamic Instruction Scheduling

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-15

Tomasulo’s Algorithm

Register tagging

Hardware based Dependence resolution

Scoreboarding Technique

Scoreboard: The centralized control Unit

A type of Data Driven Mechanism

Enables out-of-order execution and allows out-of-order
completion.

Split the ID pipe stage of pipeline into 2 stages:

Decode instructions, check for structural hazards

Wait until no data hazards, then read operands

Dynamic Instruction Scheduling

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-16

Tomasulo’s Algorithm

Control & buffers distributed with Function Units (FU)

FU buffers called “reservation stations”; have pending operands

Registers in instructions replaced by values or pointers to reservation stations
(RS);

form of register renaming ;

avoids WAR, WAW hazards

More reservation stations than registers, so can do optimizations compilers can’t

Results to FU from RS, not through registers, over Common Data Bus that
broadcasts results to all FUs

Load and Stores treated as FUs with RSs as well

Dynamic Instruction Scheduling

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-17

Tomasulo’s Algorithm

• An issued instruction whose operands are
not available is forwarded to an RS associated
with the functional unit it will use.

• It waits until its data dependences have been
resolved and its operands become available.

• The dependence is resolved by monitoring
the result bus, when all operands for an
instruction are available, it is dispatched to
the functional unit for execution

• All working registers are tagged. lf a source
register is busy when an instruction reaches
the issue stage, the tag for the source register
is forwarded to an RS.

• When the register data becomes available, it
also reaches the RS which has the same tag.

Dynamic Instruction Scheduling

Scoreboarding –

• Technique for allowing instructions to execute out of order
when there are sufficient resources and no data dependencies.

• Scoreboard keeps track of dependencies, state or operations

• Scoreboard replaces ID, EX, WB with 4 stages
• ID1: Issue — decode instructions & check for structural hazards

• ID2: Read operands — wait until no data hazards, then read operands

• EX: Execute — operate on operands; when the result is ready, it notifies
the scoreboard that it has completed execution

• WB: Write results — finish execution; the scoreboard checks for WAR
hazards. If none, it writes results. If WAR, then it stalls the instruction

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-18

The Scoreboard

Three Parts of the Scoreboard
• Instruction status—which of 4 steps the instruction is in

• Functional unit status—Indicates the state of the functional unit (FU).

• Register result status—Indicates which functional unit will write each
register, if one exists. Blank when no pending instructions will write
that register

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-19

Branch Handling Techniques

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-20

for (i = 0; i < 100; i++)

if (a[i] <= 50)

j = j + 1;

else

k = k +1;

mov r1,0

mov r2,0

ld_i r3, A, 0

L1:

Ld_i r4,r3,r2

Bgt r4, 50, L2

Add r5, r5, 1

Jmp l3

L2:

add r6,r6,1

L3:

add r1,r1,1

add r2,r2,4

blt r1,100,L1

mov r1,0

mov r2,0

ld i r3,A,0

L1:

ld i r4,r3,r2

pgt p1(U),p2(U),r4,50

add r5,r5,1 (p2)

add r6,r6,1 (p1)

add r1,r1,1

add r2,r2,4

blt r1,100,L1

Source code segment Assembly code segment
assembly code segment after if-

conversion

Branch Handling Techniques

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-21

Instruction Fetch

Instruction

Decode

Instruction

Execute

Memory Access

Write Back

Regi

ster
File

T F Predi

cate

Regi

ster
File

Branch Handling Techniques
Delayed branches:
• A delayed branch of d cycles allows at least d-1 useful instructions to be

executed after the branch instruction.

• Execution of these instructions must be independent of branch instruction
to achieve the zero branch penalty.

• Code motion across branches can be used to achieve a delayed branch

and on non availability of useful instructions, NOPs can be used as fillers.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-22

Branch Handling Techniques

Branch Prediction:
Branch can be predicted either based on branch code types statically or
dynamically, based on branch history during program execution.

Static Branch Prediction:

• The static prediction direction (token or not taken) can even be wired into
the processor. According to past experience, the best performance is given
by predicting taken.

• The wired-in static prediction cannot be changed once committed to the
hardware.

• However, the scheme can be modified to allow the compiler to select the
direction of each branch on a semi-static prediction basis.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-23

Branch Handling Techniques
Dynamic Branch Prediction:
• The dynamic branch prediction strategy works better because it uses recent

branch history to predict whether or not the branch will be taken next time
when it occurs.

• Dynamic prediction demands additional hardware to keep track of the past
behavior of the branch instructions at run time.

• Following state transition diagram may used for tracking the last two
outcomes at each branch instruction in a given program.

Dr. P K Singh MMMUT, Gorakhpur BCS-29(!)-24

