Optoelectronics Devices & Circuits (MEC-166)

UNIT-II

By

Dr. POOJA LOHIA

Department of Electronics & Communication

Madan Mohan Malaviya University of Technology, Gorakhpur

Madan Mohan Malaviya University of Technology, Gorakhpur-273 010, India

M. Tech. (Digital Systems) Syllabus

9

9

9

9

	M. Teen. (Digital Systems) Synabus
MEC-166	Optoelectronics Devices & Circuits
Topics Cov	rered
UNIT-I	
Elements a effective m scattering p phenomena	and compound Semiconductor, Electronic Properties of semiconductor, Carrier asses and band structure, effect of temperature and pressure on bandgap, Carrier henomena, conductance processes in semiconductor, bulk and surface recombination
UNIT-II	
Optical Presention	operties of semiconductor, EHP formation and recombination, absorption in tor, Effect of electric field on absorption, absorption in quantum wells, radiation in tor, Deep level transitions, Augur recombination's.
UNIT-III	
Junction th Photo Detec	eory, Schottky barrier and ohmic contacts, semiconductor heterojunctions, LEDs, ctors, Solar cells.
UNIT-IV	
Optoelectro	nics modulation and switching devices: Analog and Digital modulation, Franz-
Keldysh and	d stark effects modulators, Electro-optic modulators.
Optoelectro	nics Integrated Circuits (OEICs): Need for hybrid and monolithic integration, OEIC
transmitters	and receivers.
Textbooks	

1. Semiconductor optoelectronic Devices By Pallab Bhattachrya, Prentice Hall Publications.

2. Physics of Semiconductor Devices, By S.M. Sze, Wiley Publication.

Key Points

- Electron-Hole Pair recombination Rate
- Low Level Injection
- High Level Injection

Absorption in semiconductors

- Band to band Recombination
- Indirect intrinsic transitions
- Exciton absorption
- Donor Acceptor and impurity-band absorption
- Low energy(long Wavelength) absorption
- Effect of electric field on absorption:
- Franz-Keldysh Effect
- stark Effects

 \succ All the processes occur at the same time in a material but at different rates.

- If we have device with low field and non-degenerate semiconductor then the recombination-generation mechanism at room temperature that dominates is-
- **1. Band-to- Band Transition**
- 2. R-G Center Transition
- \succ For example,
- In a **direct** band gap semiconductor, **band-to-band** transitions dominate.
- In **indirect** band gap semiconductors, **R-G center** transitions dominate.

➤ In general, the total recombination rate is given by the sum of recombination rate due to all the processes-

$R = B_1 n p + B_2 n p + B_3 n p + \dots$

- ➢ Not all of them will dominate so one can simplify the expression by looking at only the dominating recombination mechanism.
- > There are two special cases in device physics-
- 1. Low Level Injection
- 2. High Level Injection or Excitation

<u>Case I- Low Level Injection :</u>

Let in equilibrium we have the equilibrium concentration of electrons and holes is $n_0 \& p_0$ and n_i be the intrinsic carrier concentration then-

$$n_0 p_0 = n_i^2 \tag{1}$$

Now, we create excess electrons and holes such that new carrier concentration be-

$$\boldsymbol{n} = \boldsymbol{n_0} + \Delta \boldsymbol{n} ; \boldsymbol{p} = \boldsymbol{p_0} + \Delta \boldsymbol{p}$$
 (2)

Where Δn and Δp are the excess number of electrons and holes generated respectively.

 \succ At t = 0, in optical and thermal generation,

$$\Delta \boldsymbol{n_0} = \Delta \boldsymbol{p_0} \; ; \; \Delta \boldsymbol{n} = \Delta \boldsymbol{p} \tag{3}$$

2

Low level injection means the excess carrier generated at any time must be much smaller than the majority carrier concentration of semiconductor.

$$\Delta p, \Delta n \ll n_0$$
 for n-type (4)
 $\Delta p, \Delta n \ll p_0$ for p-type (5)

Now we want to see how the carrier concentration is changing with time at any time 't'-

the carrier concentration at any time 't' is-

$$\frac{d(n_0 + \Delta n)}{dt} = B(n_0 + \Delta n)(p_0 + \Delta p) - Bn_0p_0 \qquad (7)$$

$$\frac{d(n_0 + \Delta n)}{dt} = B(n_0 + \Delta n)(p_0 + \Delta p) - Bn_0p_0$$

$$\frac{d(\Delta n)}{dt} = B(n_0 p_0 + p_0 \Delta n + n_0 \Delta p + \Delta n \Delta p) - Bn_0 p_0$$
(8)

 $\Delta n \Delta p$ is negligible at low level injection

$$\frac{d(\Delta n)}{dt} = B(p_0 \Delta n + n_0 \Delta p)$$
(9)

Since $\Delta n = \Delta p$

$$\frac{d(\Delta n)}{dt} = B\Delta n(p_0 + n_0)$$
(10)

At t=0, $\Delta n = \Delta n_0$, therefore after solving above equation we get the equation for change in excess carrier concentration at any time t-

$$\Delta \boldsymbol{n} = \Delta \boldsymbol{n}_0 \boldsymbol{e}^{-\frac{\boldsymbol{t}}{\tau}}$$

(11)

Where $'\tau'$ is the '*carrier life time*' which is defined as

$$\tau = \frac{1}{B(n_0 + p_0)}$$

(12)

▶ From equation 10 and 12 we get, the recombination rate R is given by-

$$R = \frac{dn}{dt} = \frac{d(\Delta n)}{dt} = B\Delta n(p_0 + n_0) = \frac{\Delta n}{\tau}$$
(13)
Since $\tau = \frac{1}{B(n_0 + p_0)}$

In a **n-type device** majority carrier concentration is n_0 so, $\tau = \frac{1}{B(n_0)}$ (14)

• In a **p-type device** majority carrier concentration is p_0 so, $\tau = \frac{1}{B(p_0)}$ (15)

> For a single recombination process

If more processes of recombination are involved then the recombination rate is given by-

 $R = \frac{\Delta n}{\Delta n}$

$$\boldsymbol{R} = \frac{\Delta \boldsymbol{n}}{\boldsymbol{\tau}_1} + \frac{\Delta \boldsymbol{n}}{\boldsymbol{\tau}_2} + \frac{\Delta \boldsymbol{n}}{\boldsymbol{\tau}_3} + \dots \dots$$

(16)

• This expression of recombination is for low level injection

<u>Case I- High Level Injection :</u>

The excess carrier generated in this case is very much larger than the total equilibrium concentration of electrons an holes-

$\Delta \boldsymbol{n} \gg \boldsymbol{n_0} + \boldsymbol{p_0} \tag{17}$

Simillar to low level injection eq (8) is given by-

$$\frac{d(\Delta n)}{dt} = B(n_0 p_0 + p_0 \Delta n + n_0 \Delta p + \Delta n \Delta p) - Bn_0 p_0$$
(18)

Here, in this case $n_0 p_0$ is negligible as compared to other and $\Delta n = \Delta p$.

$$\frac{d(\Delta n)}{dt} = B(\Delta n(p_0 + n_0) + \Delta n^2)$$
(19)

After solving this gives change in carrier concentration,

$$\Delta \boldsymbol{n}(\boldsymbol{t}) = \frac{1}{(\boldsymbol{B}\boldsymbol{t} + \Delta \boldsymbol{n}^{-1})}$$

Thus, the rate of recombination at high level injection is given by-

$$R = -\frac{dn}{dt} = -\frac{B}{\left(Bt + \Delta n_0^{-1}\right)^2}$$

(21)

Summary Recombination Rate

