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BMS- 05 DISCRETE MATHEMATICS Number of Credits : 4 
UNIT-I :  Set Theory, Relation and Function: Definition of sets, Countable and uncountable sets, Venn 
Diagrams, Proofs of some general identities on sets. Definition and types of relation, composition of relation, 
equivalence relation, partial order relation. Function: Definition, types of function, one to one, into and onto 
function, inverse function, composition of functions. 

UNIT-II Algebraic Structures: Definition, properties and types of algebraic structures, Semi groups, Monoid, 
Groups, Abelian group, properties of groups, Subgroups, Cyclic groups, Cosets, Factor group, Permutations 
groups, Normal subgroups, examples and standard results. Rings and fields: Definition and Standard results. 

UNIT-III  Graphs: Simple graph, multigraph, graph terminology, representation of graphs, Bipartite, regular, 
planar and connected graphs, connected components in a graph, Euler graphs, Hamiltonian path and circuits, 
graph colouring, chromatic number, chromatic polynomials. Tree: types and definition, rooted tree, 
properties of trees. 
UNIT-IV  Combinatorics: Basic counting Technique, Pigeon-hole principle, Discrete Numeric function, 
Recurrence relations and their solution, Generating function, Solution of recurrence relations by method of 
generating function. 
Books & References 
1. J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with applications to computer science, 
Tata McGraw-Hill. 
2. D. Narsingh, Graph Theory with application to engineering and computer science - Prentice Hall 
3. V. Krishnamurthy, Combinatorics: Theory and applications -, East East-West Press PVT. LTD, 1985
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Set Theory

• Set: Collection of objects (“elements”)

• aA “a is an element of A”
“a is a member of A”

• aA “a is not an element of A”

• A = {a1, a2, …, an}   “A contains…”

• It does not matter how often the same element is 
listed.
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Set Equality

•Two sets A and B are said to be equal if and only if 
they contain the same elements.

•Examples:

• A = {1, 2, 7, -3}, B = {7, 1, -3, 2} :

• A = {dog, cat, horse}, 
B = {cat, horse, squirrel, dog} 

A = {dog, cat, horse}, 
B = {cat, horse, dog, dog} 
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Examples for Sets

• Natural numbers N = {0, 1, 2, 3, …}

• Integers Z = {…, -2, -1, 0, 1, 2, …} 

• Positive Integers Z+ = {1, 2, 3, 4, …}

• Real Numbers R = {47.3, -12, , …}
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Examples for Sets
• A =  “empty set/null set”  

• A = {z} Note: zA, but z  {z}

• Q = {a/b | aZ and  bZ+} , set of rational numbers

• A = {{x, y}} 
Note: {x, y} A, but {x, y}  {{x, y}}

• A = {x | P(x) is the …..}
“set of all x such that P(x) is the…”

• A = {x | xN ,  x > 7} = {8, 9, 10, …}
“set builder notation”
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Subsets

•A  B “A is a subset of B”

•A  B if and only if every element of A is also  
an element of B.

i.e., 

•Examples:

A = {3, 9}, B = {5, 9, 1, 3}, A  B ? true

A = {3, 3, 3, 9}, B = {5, 9, 1, 3},   A  B ?

false

true

A = {1, 2, 3}, B = {2, 3, 4}, A  B ?
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Subsets
• Useful rules:

• A = B  (A  B)  (B  A) 

• (A  B)  (B  C)  A  C   (see Venn Diagram)

U

A
B

C
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Subsets
• Useful rules:

•   A for any set A 

• A  A for any set A

• Proper subsets:

• A  B     “A is a proper subset of B” 

• A  B
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Cardinality of Sets

•If a set A contains n distinct elements, nN, then 
we call A a finite set with cardinality n.

•Examples:

•A = {Mercedes, BMW, Porsche},   |A| = 3

B = {1, {2, 3}, {4, 5}, 6} |B| = 4

C = 𝜙 |C| = 0

D = { x ∈N | x ≥1 } D is infinite!
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The Power Set
• P(A)           “power set of A”

• P(A) = {B | B  A}     (contains all subsets of A)

• Examples:

• A = {x, y, z}

• P(A) = {, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}

• A = 

• P(A) = {}

• Note: |A| = 0,  |P(A)| = 1
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The Power Set
• Cardinality of power sets:

• | P(A) | = 2|A|

• Imagine each element in A has an “on/off” switch

• Each possible switch configuration in A corresponds to 
one element in 2A

zzzzzzzzz

yyyyyyyyy

xxxxxxxxx

87654321A

• For 3 elements in A, there are 
2x2x2 = 8 elements in P(A)
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Cartesian Product
•The ordered n-tuple (a1, a2, a3, …, an) is an ordered 

collection of objects.

•Two ordered n-tuples (a1, a2, a3, …, an) and 

(b1, b2, b3, …, bn) are equal if and only if they contain 

the same elements in the same order, i.e. ai = bi for 1  i

 n.

•The Cartesian product of two sets is defined as:

•AB = {(a, b) | aA  bB}

•Example: A = {x, y}, B = {a, b, c}

AB = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)}
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Cartesian Product
•The Cartesian product of two sets is defined as: AB = 

{(a, b) | aA  bB}

•Example:

•A = {good, bad}, B = {student, prof}

•AB = { (good, student), (good, prof), (bad, student), (bad, prof)}

(student, good), (prof, good), (student, bad), (prof, bad)}BxA = {
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Cartesian Product

•Note that:

• A = 

• A = 

• For non-empty sets A and B: AB  AB  BA

• |AB| = |A||B|

•The Cartesian product of two or more sets is defined 

as:

•A1A2…An = {(a1, a2, …, an) | aiA for 1  i  n}
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Set Operations

• Union: AB = {x | xA  xB}

• Example: A = {a, b}, B = {b, c, d}

• AB = {a, b, c, d} 

• Intersection: AB = {x | xA  xB}

• Example: A = {a, b}, B = {b, c, d}

• AB = {b}



The intersection of two sets A and B is:
A  B = { x : x  A  x  B}

If A = {Charlie, Lucy, Linus}, and 

B = {Lucy, Desi}, then

A  B = {Lucy}

A
B



The intersection of two sets A and B is:
A  B = { x : x  A  x  B}

If A = {x : x is a US president}, and 

B = {x : x is in this room}, then

A  B = {x : x is a Indian president in this room} = 

Sets whose 
intersection is 

empty are called 
disjoint sets

B
A
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Set Operations
•Two sets are called disjoint if their intersection is 
empty, that is, they share no elements:

•AB = 

•The difference between two sets A and B contains 
exactly those elements of A that are not in B:

•A-B = {x | xA  xB}
Example: A = {a, b}, B = {b, c, d}, A-B = {a}



The symmetric difference, A  B, is:
A  B = { x : (x  A  x  B)  (x  B  x  A)}

= (A – B)  (B – A)

= { x : x  A  x  B}

U

A – B B – A 



The complement of a set A is:

If A = {x : x is not shaded}, then

= U
and 

U = 

A
U

ሜ𝐴 = {𝑥: 𝑥 ∉ 𝐴}

ሜ𝐴 = {𝑥: 𝑥 is shaded}

ሜ𝐴



◼ Identity A  U = A

A   = A

◼ Domination A  U = U

A   = 

◼Idempotent A  A = A

A  A = A



◼ Excluded Middle

𝐴 = 𝐴

𝐴 ∪ 𝐴 = 𝑈

𝐴 ∩ ሜ𝐴 = ∅
◼Uniqueness

◼Double complement



Set  Identities

◼ DeMorgan’s I 𝐴 ∪ 𝐵 = ሜ𝐴 ∩ ሜ𝐵

𝐴 ∩ 𝐵 = ሜ𝐴 ∪ ሜ𝐵◼DeMorgan’s II
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Set Operations

•The complement of a set A contains exactly those 
elements under consideration that are not in A: 

•Ac = U-A

•Example: U = N( set of whole number)

B = {250, 251, 252, …}

Bc = {0, 1, 2, …, 248, 249}



Set  Identities

◼ Commutativity A  B = B  A 

A  B = B  A

◼ Associativity (A  B)  C = A  (B  C) 

(A  B)  C =A  (B  C)

◼ Distributivity
A  (B  C) = (A  B)  (A  C) 

A  (B  C) = (A  B)  (A  C)
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Problem1

❑A computer Company must hire 20 programmers to 
handle system programming job and 30 programmers for 
applications programming. Of those hired, 5 are 
expected to perform job both types. How many 
programmers must be hired?

Sol: Let 𝐴 → 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑒𝑟𝑠 ℎ𝑖𝑟𝑒𝑑, 𝐵 →
𝑠𝑒𝑡 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑒𝑟𝑠 ℎ𝑖𝑟𝑒𝑑.

Given 𝑛 𝐴 = 20, 𝑛 𝐵 = 30, 𝑛 𝐴 ∩ 𝐵 = 5. The number 
of programmers that must be hired is 𝑛 𝐴 ∪ 𝐵 = 𝑛 𝐴 +
𝑛 𝐵 − 𝑛 𝐴 ∩ 𝐵 =20+30-5=45.
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Problem2

• In a class of 25 students , 12 have taken Mathematics, 8 have taken 
Mathematics but not Biology. Find the number of students who have taken 
mathematics and biology and those who have taken biology but not 
mathematics.

• Let A&B be the sets of students who have taken Mathematics and Biology 
respectively, then A-B is there Is the set of students who have taken 
mathematics but not biology so ,

𝑛 𝐴 = 12, 𝑛 𝐴 ∪ 𝐵 = 25, 𝑛 𝐴 − 𝐵 = 8. 𝐴𝑠 𝑛 𝐴 − 𝐵 + 𝑛 𝐴 ∩ 𝐵 = 𝑛 𝐴 , 𝑠𝑜

8 + 𝑛 𝐴 ∩ 𝐵 = 12 ⇒ 𝑛 𝐴 ∩ 𝐵 =4.

Now 𝑛 𝐴 ∪ 𝐵 = n A + n B − n A ∩ 𝐵 ⇒ 𝑛 𝐵 = 17.

Also 𝑛 𝐵 − 𝐴 + 𝑛 𝐴 ∩ 𝐵 = 𝑛 𝐵 ⇒ 𝑛 𝐵 − 𝐴 = 13.
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Set Theory - Inclusion/Exclusion

Example:
How many people are wearing a watch? a
How many people are wearing sneakers? b

How many people are wearing a 
watch OR sneakers? a + b

What’s wrong?

AB

Wrong.

|A  B| = |A| + |B| - |A  B|
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Set Theory - Inclusion/Exclusion

Example:
There are 217 students in a class.
157 are taking Maths.
145 are taking DM.
98 are taking both.
How many are taking neither?

217 - (157 + 145 - 98) = 13
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Set Theory – Generalized Inclusion/Exclusion

Suppose we have: 

And I want to know |A U B U C|

A B

C

|A U B U C| = |A| + |B| + |C|

+ |A  B  C| 
- |A  B| - |A  C| - |B 

C|



Prove that 𝐴 ∪ 𝐵 = ሜ𝐴 ∩ ሜ𝐵

𝑥 ∈ 𝐴 ∪ 𝐵 ⇔ 𝑥 ∉ 𝐴 ∪ 𝐵 ⇔ 𝑥 ∉ 𝐴 ∧ 𝑥 ∉ 𝐵

⇔ 𝑥 ∈ ሜ𝐴 ∧ 𝑥 ∈ ሜ𝐵 ⇔ 𝑥 ∈ ሜ𝐴 ∩ ሜ𝐵



Another Method

using a membership table.

0 : x is not in the specified set

1 : otherwise

A B A  B

1 1 0 0 0 1 0

1 0 0 1 0 1 0

0 1 1 0 0 1 0

0 0 1 1 1 0 1

Haven’t we seen 
this before?

Prove that

𝐴 ∪ 𝐵ሜ𝐴 ∩ ሜ𝐵ሜ𝐴 ሜ𝐵
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Set Operations

How can we prove A(BC) = (AB)(AC)?

• Method I:

xA(BC)

 xA  x(BC)

 xA  (xB  xC)

 (xA  xB)  (xA  xC)
(distributive law for logical expressions)

 x(AB)  x(AC)

 x(AB)(AC)
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Set Operations
•Method II: Membership table

•1 means “x is an element of this set”
0 means “x is not an element of this set” 

111111   1   1

111101   1   0

111101   0   1

111101   0   0

111110   1   1

001000   1   0

010000   0   1

000000   0   0

(AB) (AC)ACABA(BC)BCA   B   C



Prove that

using known identities

𝐴 ∪ (𝐵 ∩ 𝐶) = ( ሜ𝐶 ∪ ሜ𝐵) ∩ ሜ𝐴

𝐴 ∪ (𝐵 ∩ 𝐶) = ሜ𝐴 ∩ (𝐵 ∩ 𝐶)

= ሜ𝐴 ∩ ( ሜ𝐵 ∪ ሜ𝐶)

= ( ሜ𝐵 ∪ ሜ𝐶) ∩ ሜ𝐴

= ( ሜ𝐶 ∪ ሜ𝐵) ∩ ሜ𝐴
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Introduction to Relations

Relations can be used to solve problems such as

determining which pairs of cities are linked by

airline flights in a network, or producing a

useful way to store information in computer

databases. Relationships between elements

of sets occur in many contexts.
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Introduction to Relations

Relationships between elements of sets are

represented using a structure called relation.

Definition: Let A and B be sets. A relation R from A to

B (a binary relation) is a subset of

 BA
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Cartesian Products and Relations
• Definition 5.1: For sets A, B  U, the Cartesian product, or cross product, 

of A and B is denoted by A  B and equals {(a, b)| a  A, b  B}.

• We say that the elements of A  B are ordered pairs. The following 
properties hold:

• For (a, b), (c, d)  A  B, we have (a, b) = (c, d) if and only if a = c and b = d.
• If A, B are finite, it follows from the rule of product that |A  B| = |A| • |B|.

We will have |A  B| = |B  A|, but not have A  B = B  A. 
• Although A, B  U, it is not necessary that A  B  U.
• If n  Z+, n  3, and A1, A2, …, An  U, then the (n-fold) product of A1, A2, …, 

An is denoted by A1A2…An and equals {(a1,a2,…,an)| ai Ai , 1in}. 
• The elements of A1A2…An are called ordered n-tuples.
• If (a1,a2,…,an), (b1,b2,…,bn)  A1A2…An, then (a1,a2,…,an) = (b1,b2,…,bn) if 

and only if ai =bi, for all 1in. 
e.g. If A={1,2} and B={a,b,c}, then

c)}(2,b),(2,a),(2,c),(1,b),(1,a),{(1, BA =
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Introduction to Relations

Definition: Let A and B be non-empty sets. A

relation R from A and B is a subset of A x B.

We say that a is related to b by R

a R b
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Lemma: 

• For finite sets A, B with |A| = m and |B| = n,
there are 2mn relations from A to B, including the
empty relation and A  B itself. There are also 2nm

(=2mn) relations from B to A, one of which is also 

and another of which is B  A.
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Relations and Their Properties

Use ordered pairs (a, b) to represent the relationship between elements of two sets.

• Example
Let A be the set of CS students in MMMUT

Let B be the set of courses,

Let R be the relation that consists of those pairs

(a, b) where a is a student enrolled in course b.

Then we may have 

(Abhinav, DM), (Raj, Math) belonging to R.
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Example: 

Let A={0,1,2} and B={a,b}.

If R={(0,a), (0,b), (1,a), (2,b)}, then 

0 is related to a

but 1 is not related to b.
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Relations can be represented graphically and 
in tabular form

Graphical method
Tabular form

0

1

2

a

b

R={(0,a), (0,b), (1,a), (2,b)}

R a b

0 X X

1 X

2 X
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Relations on a Set

• Relations from a set A to itself are of special interest.

• Definition: A relation on a set A is a relation from A to A.

• Example

Let A = {1, 2, 3, 4 }. Which ordered pairs are in the relation 

R ={(a, b)                :  a divides b } ?

R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4),                                                                           

(3, 3), (4, 4)} ∈ A × A
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Which of the following relations contain the 

ordered pairs (1, 1), (1, 2), (2, 1), (1, -1) or (2, 2) ?

R1 = {(a, b) : a < b }

{(1, 1), (1, 2), (2, 2)}

R2 = {(a, b) : a > b }

{(2, 1), (1, - 1)}

R3 = {(a, b) : a = b or a = -b}

{(1, 1), (1, -1), (2, 2)}



16-10-2020 Side 48

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Which of the following relations contain the 

ordered pairs (1, 1), (1, 2), (2, 1), (1, -1) or (2, 2) 

?
R4 = {(a, b) : a = b }

{(1, 1), (2, 2)}

R5 = {(a, b) : a = b + 1 }

{(2, 1)}

R6 = {(a, b) : a + b < 3 }.

{(1, 1), (1, 2), (2, 1), (1, -1)}
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Combining Relations

Two relations from A to B can be

combined using the set operations of union

, intersection  and complement \.

Consider the following examples.



16-10-2020 Side 50

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Example

Let R1 = {(1, 1), (2, 2), (3, 3)} and

R2 = {(1, 1), (1, 2), (1, 3), (1,4)}

then :

R1  R2 =  {(1, 1), (1, 2), (1, 3), (1,4), (2, 2), (3, 3)}

R1  R2 =  {(1, 1)}

R1 \ R2  =  {(2, 2), (3, 3)}

R2 \ R1 =  {(1, 2), (1, 3), (1,4)}
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Relations using matrices

Suppose that A = {1, 2, 3} and B ={1, 2}. Let R be
the relation from A to B such that it contains (a, b) if

a  A,     b  B, and a > b.

What is the matrix representing R ?

Since R = {(2, 1), (3, 1), (3, 2)}, where 𝑀𝑖,𝑗 =
1, 𝑥, 𝑦 ∈ 𝑅
0, 𝑥, 𝑦 ∉ 𝑅

, 

then the logical matrix for R is 𝑀𝑅 =
0 0
1 0
1 1
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Example

The binary relation R on the set {1, 2, 3, 4} is defined so

that aRb holds if and only if a divides b evenly, with no remainder.

For example, 2R4 holds because 2 divides 4 without leaving a

remainder, but 3R4 does not hold because when 3 divides 4 there

is a remainder of 1.
The following set is the set of pairs for which the relation R holds.

{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}. The

corresponding logical matrix is

𝑀𝑅 =

1 1 1 1
0 1 0 1
0
0

0
0

1
0

0
1

.

https://en.wikipedia.org/wiki/Divides
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Relations using directed graphs

R = {(1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,3), (4,1), 

(4,3)}

1

3

2

4
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Properties of Binary
Relations

The most direct way to express a relationship between two sets was to use ordered 

pairs. For this reason, sets of ordered pairs are called binary relations.



16-10-2020 Side 55

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Reflexive Property of a
Binary Relation

Definition:

A relation R on a set A is called reflexive if (a, a)  R for every

element a  A.
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R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)}

Not reflexive because 3  A but (3,3)  R1

R2 = {(1, 1), (1, 2), (2, 1)}

Not reflexive because, say, 4  A but (4, 4)  R2

R3 = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)}

Reflexive

Consider the following relations on 

{1, 2, 3, 4}. Which of these relations are 

reflexive?
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R4 = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)}

Not reflexive - (1, 1) ?

R5 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3),           

(2, 4),(3, 3), (3, 4), (4, 4)}

Reflexive   - Why ?

R6 = {(3, 4)}

Not Reflexive - Why ?
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Symmetric Property of a
Binary Relation

A relation R on a set A is called symmetric if for all 

a, b  A, (a, b)  R implies (b, a)  R .

Definitions:
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R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)}

Not symmetric - (3, 4) but no (4, 3)

R2 = {(1, 1), (1, 2), (2, 1)}

Symmetric

Which of the relations are symmetric?
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R3 = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3),               

(4, 1), (4, 4)}

Symmetric

R4 = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)}

Not symmetric - (2, 1) but no (1, 2)
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R5 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4),   

(3, 3), (3, 4), (4, 4)}

Not symmetric - (1, 3) but no (3, 1)

R6 = {(3, 4)}

Not symmetric - (3, 4) but no (4, 3)
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Transitive Property of a
Binary Relation

Definition:

A relation R on a set A is called transitive if whenever (a, b)  R and (b, 

c)  R then

(a, c)  R, for  a, b, c  A.
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R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4),                (4, 1), (4, 4)}

Not transitive 

- (3, 4) & (4, 1)  R1 but (3, 1)  R1

R2 = {(1, 1), (1, 2), (2, 1)}

Not Transitive

- (2, 1) & (1, 2)  R2 but (2, 2)  R2

Which of the following relations are transitive?
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R3 = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3),   (4, 1), (4, 4)}

Not transitive 

- (4, 1) & (1, 2)  R3 but (4, 2)  R3

R4 = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)}

Transitive

R5 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3),   (2, 4), (3, 3), (3, 4), (4, 4)}

Transitive
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Equivalence Relation

Definition:

A relation R that is reflexive, symmetric and transitive on a set A is 

called equivalence relation
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Consider a set A={1, 2 , 3 , 4 , 5 }

R5 = {(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (3, 1), (3, 3),   

(3, 5), (4, 2), (4, 4), (5, 1), (5, 3), (5, 5 )}

Is relation R5 ia an equivalence relation on set A?

Yes, R5 is an equivalence relation. Why ?
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Consider a set A={a , b , c, d,}

R6 = {(a, a), (b, c), (c, b), (d, d)}

Is relation R6 is an equivalence relation on set A?

No, R6 is an equivalence relation , Why ?
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Partial ordering

• A relation R on a set S is called a partial ordering or partial 
order if it is:

• reflexive

• antisymmetric

• transitive

• A set S together with a partial ordering R is called a 
partially ordered set, or poset, and is denoted by (S,R).
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Example

• Let R be a relation on set A. Is R a partial order?

A = {1,2,3,4}

R = {(1,1),(1,2),(1,3),(1,4),(2,2),

(2,3),(2,4),(3,3),(3,4),(4,4)}
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Example

• Is the “” relation is a partial ordering on the set of integers?
• Since a  a for every integer a,  is reflexive

• If a  b and b  a, then a = b. Hence  is anti-symmetric.

• Since a  b and b  c implies a  c,  is transitive.

• Therefore “” is a partial ordering on the set of integers and (Z, ) is a poset.
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Comparable/Incomparable

• The elements a and b of a poset (S, ≼) are called comparable if either a≼b or 
b≼a.

• The elements a and b of a poset (S, ≼) are called incomparable if neither 
a≼b nor b≼a.

• In the poset (Z+, |): 
• Are 3 and 9 comparable?

• Are 5 and 7 comparable?
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Total Order

• If every two elements of a poset (S, ≼) are comparable, 
then S is called a totally ordered or linearly ordered set and 
≼ is called a total order or linear order.

• The poset (Z+, ) is totally ordered.
• Why?

• The poset (Z+, |) is not totally ordered.
• Why?
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Relation Vs Function
• A relation is a link between the elements of two sets. In a more

formal setting, it can be described as a subset of the Cartesian

product of two sets X and Y.

• Functions are a special type of relations. This special type of relation

describes how one element is mapped to another element in another

set or the same set. Every element of the set where each mapping

starts must have an associated/linked element in the other set.

• The elements in the set where mapping starts can only be

associated/linked to one and only one element in the other set

• The set from which the relation is mapped is known as the Domain.

The set, where the relation is mapped into is known as the Codomain.

The subset of elements in the codomain containing only the elements

linked to the relation is known as the Range.
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Functions: Definitions

A function f : A →B is given by a domain set A, a codomain set 
B, and a rule which for every element a of A, specifies a 
unique element f (a) in B

f (a) is called the image of a, while a is called the pre-image of 
f (a)

The range (or image) of f  is defined by

f (A) = {f (a) | a  A }.
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Functions

Suppose we have: 

And I ask you to describe the yellow 
function.

Notation:  f: R→R, f(x) = -(1/2)x - 25 

What’s a function? y = f(x) = -(1/2)x - 25

domain co-domain

-50 -25
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Function or not?

A

B

A

B
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Functions: examples

A = {Rahul, Ankit, Sudhir, Ram, Abhi}
B = {Ankita, Laxmi, Sunita}

Let f: A → B be defined as f(a) = mother(a).

Rahul
Ankit
Sudhir
Ram
Abhi

Ankita 

Laxmi 

Sunita
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Functions - image set

For any set S  A, image(S) = {f(a) : a  S}

So, image({Rahul, Ankit}) = {Ankita}, image(A) = B - {Sunita}

image(A) is 
also called 

range

image(S) = f(S)

Rahul
Ankit
Sudhir
Ram
Abhi

Ankita 

Laxmi 

Sunita
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Functions – preimage set

For any S  B, preimage(S) = {a  A: f(a)  S}

So, preimage({Laxmi}) = {Ram, Abhi}, preimage(B) = A

preimage(S) = f-1(S)

Rahul
Ankit
Sudhir
Ram
Abhi

Ankita 

Laxmi 

Sunita
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Functions - injection

A function f: A → B is one-to-one (injective, an injection) if a,b,c, (f(a) 
= b  f(c) = b) → a = c

Not one-to-one

Every b  B has 
at most 1 
preimage.

Rahul
Ankit
Sudhir
Ram
Abhi

Ankita 

Laxmi 

Sunita
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Functions - surjection

A function f: A → B is onto (surjective, a surjection) if b  B, a  A, 
f(a) = b

Not onto

Every b  B has 
at least 1 
preimage.

Rahul
Ankit
Sudhir
Ram
Abhi

Ankita 

Laxmi 

Sunita
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Functions - bijection

A function f: A → B is bijective if it is one-to-one and onto.

Isaak 
Bri 
Lynett
e 
Aidan 
Evan

Cinda 
Dee 
Deb 
Katrina 
Dawn

Every b  B has 
exactly 1 
preimage.

An important 
implication of this 
characteristic:

The preimage (f-1) 
is a function!

Alice 
Bob  
Tom 
Charles 
Eve

A         
B         
C         
D

A-
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Functions - examples

Suppose f: R+ → R+, f(x) = x2.

Is f one-to-one?

Is f onto?

Is f bijective?

yes

yes

yes
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Functions - examples

Suppose f: R → R+, f(x) = x2.

Is f one-to-one?

Is f onto?

Is f bijective?

no
yes

no
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Functions - examples

Suppose f: R → R, f(x) = x2.

Is f one-to-one?

Is f onto?

Is f bijective?

no

no

no
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Functions - examples

Q: Which of the following are 1-to-1, onto, a bijection?  
If f is invertible, what is its inverse?

1. f : Z → R is given by f (x ) = x 2

2. f : Z → R is given by f (x ) = 2x

3. f : R → R is given by f (x ) = x 3

4. f : Z → N is given by f (x ) = |x |

5. f : {people} → {people} is given by             

f (x ) = the father of x.
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Operation

• Sum

(f + g)(x)=f(x) + g(x) 

Difference

(f-g)(x)  = f(x)-g(x) 

• Product

f(x) * g(x) = (f g)(x)

• Divide

(f/g)=f(x)/g(x), 
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Special Type of Function

Identity function

• Identity function maps each element from A to A.
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Special Type of Function

Inverse function

An inverse function of   f : A → B is   f -1:B → A, 

given that f is a bijective function (onto and one-to-
one).
Note that not all functions have the inverse 
function.
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Special Type of Function

Invertible function

A function f: A→B is said to be invertible if its 
inverse relation, f -1 , is also a function.
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Special Type of Function

Composition function
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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5.6 Function Composition and 
Inverse Functions 
• In this section we study a method for combining two 

functions into a single function. Then we develop the 
concept of the inverse (of a function) for functions. 

• Definition 5.15: If f:A → B, then f is said to be bijective, or 
to be a one-to-one correspondence, if f is both one-to-one 
and onto. 
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Example
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Definition

• Definition 5.16: The function IA: A → A, defined by IA(a) = a
for all a  A, is called the identity function for A. 

• Definition 5.17: If f, g: A → B, we say that f and g are equal
and write f = g, if f(a) = g(a) for all a  A. 
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Example
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Example
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Definition

• If f: A → B and g: B → C, we define the composite function, 
which is denoted g◦f: A → C, by g◦f(a) = g(f(a)), for each a
 A. 
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Example
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Example

• For any f: A → B, we observe that f ◦ IA = f = IB ◦ f. 
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Example 5.55: page 252. 
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Theorem 5.6: 

• If f: A → B, g: B → C, and h: C → D, then (h◦g)◦f = h◦(g◦f). 
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Example
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Theorem

• A function f: A → B is invertible if and only if it is one-
to-one and onto. 
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Example
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Theorem

• if f: A → B, g: B → C are invertible functions, then g◦f: A →

C is invertible and (g◦f) -1= f-1◦g-1. 
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Example
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Example
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Example
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Example
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Example
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Cardinality

Definition: The cardinality of a set A is said to be equal to 
the cardinality of a set B, denoted by

|A| = |B|,

if and only if there is a one-to-one correspondence (i.e., a 
bijection)  from A to B. 

• If there is a one-to-one function (i.e., an injection) from A
to B, the cardinality of A is less than or the same as the 
cardinality of B and we write     |A| ≤ |B|. 
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Cardinality 

• Definition: A set A that has the same cardinality as the set
N of natural numbers is called a countable set. A set that is
not countable is uncountable.

• The set of real numbers R is an uncountable set.

• When an infinite set is countable (countably infinite) its
cardinality is ℵ0 (where ℵ is aleph, the 1st letter of the
Hebrew alphabet). We write |S| = ℵ0 and say that S has
cardinality “aleph null.”
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Showing that a Set is Countable

• An infinite set is countable if and only if it is possible to list the elements 
of the set in a sequence (indexed by the positive integers) i.e if there is 
one to one correspondence with the set of Natural numbers 

• The reason for this is that a one-to-one correspondence f from the set of 
positive integers to a set S can be expressed in terms of a sequence         
a1,a2,…, an ,… where a1 = f(1), a2 = f(2),…, an = f(n),… 
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Showing that a Set is Countable

Example 1: Show that the set of positive even integers E is 
countable set.

Solution: Let f(x) = 2x. 

1    2    3    4    5     6  …..

2    4    6    8    10  12  ……

Then f is a bijection from N to E since f is both one-to-one and 
onto.  To show that it is one-to-one, suppose that     f(n) = 
f(m).   Then 2n  = 2m, and so n = m. To see that it is onto, 
suppose that t is an even positive integer. Then            t = 2k 
for some positive integer k and f(k) = t. 
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Showing that a Set is Countable

Example 2: Show that the set of integers Z is countable.

Solution: Can list in a sequence:

0, 1, − 1, 2, − 2, 3, − 3 ,………..

Or can define a bijection from N  to Z:

 When n is even:    f(n) = n/2

 When n is odd:     f(n) = −(n−1)/2

i.e. 𝒇 𝒏 = ቐ

𝒏

𝟐
,When n is even

−(𝒏−𝟏)

𝟐
,When n is odd



16-10-2020 Side 127

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

The Positive Rational Numbers are 
Countable
• Definition: A rational number can be expressed as the ratio of 

two integers p and q such that q ≠ 0.
• ¾ is a rational number

• √2 is not a rational number.

Example 3: Show that the positive rational numbers are 
countable.

Solution: The positive rational numbers are countable since 
they can be arranged in a sequence:

r1 , r2 , r3 ,…   

The next slide shows how this is done.                →
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The Positive Rational Numbers are Countable

First column q = 1.

Second column q = 2. etc.

The set of rational numbers R is also countable.

• Proof: in two steps.

a) Card(N)  Card(R), 
because each natural number is rational: N 
R. 

b) Now we construct a mapping of N onto R
(surjection N onto R), by which we prove that
Card(R)  Card(N):

1      2     3     4     5     6 …

1/1  2/1  1/2  1/3 2/2  3/1 …

But, in the table there are repeating rationales,
hence the mapping is not one-to-one.
However, no rational number is omitted,
therefore it is a mapping of N onto R
(surjection).

Card(N) = Card(R).
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The Real Numbers are Uncountable

Example: Show that the set of real numbers in [0,1] is uncountable.

Solution: The   method is called the Cantor  diagonalization argument and is a proof by contradiction.

▪ Suppose [0,1] is countable. Then all the real numbers between 0 and 1 can be listed in order r1 , r2 , r3 ,… 
.Let the decimal representation of this listing be

Where each 𝑑𝑖𝑖 𝑖𝑠 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑡{0,1,2,3,… .9}(𝑒. 𝑔. 𝑟1 = 0.35765312)

Form a new real number with the decimal expansion 𝑐 = 0. 𝑏1𝑏2𝑏3𝑏4 ………

where 𝑏𝑖 = ቊ
1, 𝑖𝑓 𝑑𝑖𝑖 = 9

9 − 𝑑𝑖𝑖 , 𝑖𝑓 𝑑𝑖𝑖 = 0,1, . . 8
.

5. For all i. For those numbers which can be expressed in two different decimal expansions. e.g. ½ 
=0.5000000=0.49999999, we choose the expansion which ends with nine. This means we have a unique 
representation for all numbers. Clearly the numbers 0. 𝑏1𝑏2𝑏3 … . Is a real number between 0 and 1 that does not 
have trailing 0’s. Now the real number 𝑐 is not equal to any of 𝑟1, 𝑟2, 𝑟3 … . 𝑁𝑜𝑡𝑒 𝑖𝑡 . Since there is a real number c 
between 0 and 1  that is not in the list which contradicts the assumption that the set is countably infinite. Hence 
[0,1] is uncountable.

Georg Cantor

(1845-1918)
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Unit –II
( Group and Ring Theory)



Unit II (Group and Ring Theory)

◼ 1 Group

◼ 2 Subgroup

◼ 3 Homomorphism, Isomorphism

◼ 4 Cyclic Group

◼ 5 Lagrange Theorem 

◼ 6 Normal Subgroup

◼ 7 Factor Group

◼ 8 Permutation Group

◼ 9 Rings and Field



Group

Definition 16.1

If G is a nonempty set and  is a binary operation on G, 

then <G,*> is called a group if the following 

conditions are satisfied. 

1. For all a,b  G, a * b  G (Closure of under * )

2. For all a, b, c  G, (a * b) * c = a * (b * c).

(Associative)

3. There exists e  G with e *a = a * e  =  a for all a 

 G. (Existence of an Identity)

4. For each a  G, there is an elements a´  G such 

that a´ * a  = a * a´ = e. (Existence of Inverses)

132



Abelian Group

Abelian Group
5. A group <G,*> is abelian if * is commutative.

i.e., a * b = b * a for all a, b  G.

Monoid

(3)

Abelian
Group(5)

(5)
Abelian

Semigroup

Abelian
Monoid(5)

Group

(4)

Set
(1),(2)

Semigroup

Properties 

(1) Closure

(2) Associative

(3) Identity

(4) Inverse 

(5) Commutative
133



The set of Real Numbers R for binary addition 

is group(why?)

The Set of on zero real numbers R* for the bi

nary operation x is a group.

The set of  positive integers Z+ is not a group 

with respect to addition.

The fourth roots of unity {1,-1,i,-i} from a grou

p under multiplication. (Draw multiplication ta

ble) 
∗ 1 −1 𝐢 −𝑖

1 1 −1 i −𝑖

−1 −1 1 −𝑖 𝑖

𝑖 𝐼 −𝑖 𝐼 1

−𝑖 −𝑖 𝐼 −𝑖 −1



Zn ={0,1 ,2 ,….n-1} modulo n

The group Zn uses only the integers from 0 to n - 1. Its basic operation is addition, whic

h ends by reducing the result modulo n; that is, taking the integer remainder when the res

ult is divided by n.                                10 + 12 𝑚𝑜𝑑 15
= 22 𝑚𝑜𝑑 15
= 7

<Zn ,+> is an abelian group.

Draw Multiplication Table

Associative ?

Identity : 0

Inverse exists in Zn. 

 (-a) for all a in Zn

 We can also subtract element in Zn.

 We define a-b in Zn to be (a + (-b)) mod n.

Commutative?
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Example : < Zn*,  >, the integers coprime (relatively prime) to n from the set {0,1,2, …𝑛 −
1} 𝑜𝑓 𝑛 non-negative integers form a group under multiplication modulo 𝑛, called 

the multiplicative group of integers modulo 𝑛

Theorem :

If n is any positive integer, 

<Zn* ,·> is an abelian group.

Example : The multiplication table of Z9* is

1  2  4  5  7  8

1 1  2  4  5  7  8

2 2  4  8  1  5  7

4 4  8  7  2  1  5

5 5  1  2  7  8  4

7 7  5  1  8  4  2    

8 8  7  5  4  2  1

< Z9*,  >

1) Closed

2) Associative

3) Identity

4) Inverse

5) Commutative
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Properties of Groups

For every group G,

(1) the identity of G is unique.

(2) the inverse of each element of G is unique.

(3) if a, b, c  G, and ab = ac ➔ b = c

(Left-cancellation property)

(4) if a, b, c  G, and ba = ca ➔ b = c

(Right-cancellation property)

(Notation) a * b → ab



Properties of Groups

( Proof )
(1) If e1, e2 are both identities in G,

then  e1 = e1e2 = e2

(2) Let a  G and suppose that b,c are both 
inverses of a,

then b = be = b(ac) = (ba)c = ec = c

(Note) 

The properties (3),(4) imply that each group 
element appears exactly once in each row and 
each column of the table for a finite group
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Properties of Groups

Example : < Z9*,  >,

ab = ac ➔ b = c ,     ba = ca ➔ b = c

1  2  4  5  7  8

1 1  2  4  5  7  8

2 2  4  8  1  5  7

4 4  8  7  2  1  5

5 5  1  2  7  8  4

7 7  5  1  8  4  2    

8 8  7  5  4  2  1
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Properties of Groups

Cancellation Laws hold in Group

ab = ac ➔ b = c ,     ba = ca ➔ b = c For all a,b in G.
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Proof) In the first case multiply each member on the 

left by a-1 and use associativity. 

ab = ac ➔ a-1ab=a-1ac ➔ (a-1a)b=(a-1a)c ➔ b = c



Show that in a group G show that 𝑎−1 −1 =
𝑎 𝑎𝑛𝑑 𝑎𝑏 −1 = 𝑏−1𝑎−1.
Proof 2:  Let 𝑒 ∈ 𝐺, 𝑡ℎ𝑒𝑛 𝑎 ∗ 𝑎−1 = 𝑒 = 𝑎 ∗
𝑎−1 ⇒ 𝑎−1 −1 ∗ 𝑎−1 −1 = 𝑒

⇒ 𝑎−1 ∗ 𝑎 = 𝑎−1 ∗ 𝑎−1 −1

⇒ 𝑎= 𝑎−1 −1.

Also 𝑎, 𝑏 ∈ 𝐺 ⇒ 𝑎−1, 𝑏−1 ∈ 𝐺 𝑎𝑛𝑑 𝑎𝑏 ∈ 𝐺
Now 𝑎𝑏 𝑏−1𝑎−1 = 𝑎 𝑏𝑏−1 𝑎−1 = 𝑒
𝑏−1𝑎−1 𝑎𝑏 = 𝑏−1 𝑎−1𝑎 𝑏 = 𝑒.

Hence we have the result. 



1Prove that if 𝑎2 = 𝑎, then 𝑎 = 𝑒, a being the 

element of group.

2 Show that if every element has its own inver

se in a group G then group G is abelian.

Proof 2: It is given that 𝑎 = 𝑎−1 ∀ 𝑎 ∈ 𝐺 hence

𝑖𝑓 𝑎 ∈ 𝐺, 𝑏 ∈ 𝐺 𝑡ℎ𝑒𝑛 𝑎𝑏 ∈ 𝐺 𝑎𝑛𝑑 we have 

𝑎𝑏 = 𝑎𝑏 −1

⇒ 𝑎𝑏 = 𝑏−1𝑎−1

⇒ 𝑎𝑏 = 𝑏𝑎 ∀𝑎, 𝑏 ∈ 𝐺 .



Order of Group

Definition For every group G the number of 

elements in G is called the order of G and is 

denoted by |G |.

When the number of elements in a group is not finite 

we say that G has infinite order.

For all n  Z+ , |<Zn ,+>| = n.

|<Zp* ,·>| = p-1.

Notice that |<Zn* ,·>| = (n).
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Subgroup

Definition Let G be a group and G  H  .

If H is a group under the binary operation on G, then 

we call H a subgroup of G.

( Examples )

❑Every group G has {e} and G as subgroup.

 These are trivial subgroups of G.

❑G =<Z6 ,+> , H = {0,2,4}

❑The group <Z ,+> is a subgroup of <Q ,+> , which is 

a subgroup of <R ,+> .
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Examples

< {e},  >

1) Closed

e  e = e

2) Associative

3) Identity

4) Inverse

5) Commutative

+  0  1  2  3  4 5

0 0  1  2  3  4  5

1 1  2  3  4  5  0

2 2  3  4  5  0  1

3 3  4  5  0  1  2

4 4  5  0  1  2  3   

5 5  0  1  2  3  4

G =<Z6 ,+> , H = {0,2,4}



Subgroup Condition (I)

Theorem 1

If H is a nonempty subset of a group G, then H is a 

subgroup of G ➔

(a) for all a, b  H, ab  H,  (closed) and 

(b) for all a  H, a-1  H.  (inverse)

❑ Proof : (Necessary Condition)

Let 𝑯 𝒊𝒔 subgroup of G. Hence H is group.

𝒂𝒏𝒅 𝒂, 𝒃 ∈ 𝑯 ⇒ 𝒂𝒃 ∈ 𝑯 and 𝒂−𝟏 ∈ 𝑯.

146



(Sufficient Condition)
Assume that (a) and (b) are true, then again associative law holds in H as all 
elements of H are in G.
Now we must show that identity exists in H. 

𝐴𝑠 𝑎 ∈ 𝐻 , 𝑎−1 ∈ 𝐻, ℎ𝑒𝑛𝑐𝑒 𝑏𝑦 𝑝𝑎𝑟𝑡 𝑎
𝑎𝑎−1 = 𝑒 ∈ 𝐻.

Hence sufficient conditions are satisfied. 



Subgroup Condition (II)

Theorem 2

If G is a group and G  H   with H finite,

then H is a subgroup of G ➔

H is closed under the binary operation on G. 

+  0  1  2  3  4 5

0 0  1  2  3  4  5

1 1  2  3  4  5  0

2 2  3  4  5  0  1

3 3  4  5  0  1  2

4 4  5  0  1  2  3   

5 5  0  1  2  3  4

+  0  1  2  3  4 5

0 0  1  2  3  4  5

1 1  2  3  4  5  0

2 2  3  4  5  0  1

3 3  4  5  0  1  2

4 4  5  0  1  2  3   

5 5  0  1  2  3  4

distinct

identity inverseG =<Z6 ,+> , H = {0,2,4}
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Subgroup Condition (II)

( proof of  )

If a  H, then aH = {ah | h  H}  H because of the 

closure condition. By the left-cancellation in G, if h1 

h2, then ah1  ah2. So |aH| = |H| and furthermore 

aH = H.

If a  H, then there exists b  H with ab = a. 

Therefore there exist an identity element e in H.

Since e  aH, there is an element c  H such that ac = 

e. Therefore, each element of H has its inverse in H.

From the theorem 1, H is a subgroup of G.
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Direct Product of Groups

Theorem 3

Let <G ,> and <H,*> be groups. 

Define the operation · on G  H by 

(g1, h1) · (g2, h2) = (g1  g2, h1 * h2)

Then <G  H , · > is a group and is called the direct 

product of G and H. 

( Example )On G = <Z2 ,+>  <Z9* , >,

 (0,2)  (1,7) = (0+1, 27) = (1,5)

 G is a group of order 12(=2x6).

 Identity is (0,1) and Inverse of (1,2) is (1,5).
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Powers of Elements

Definition of an

For a group G, a  G and n  Z,

a0 = e, a1 = a, a2 = aa, an+1 = ana ,

a-n = (a-1)n, aman = am+n, (am)n = amn

❑ Examples for < Z4 , + >

[3]2=[3]+[3]=[6]=[2], [3]-2=[3-1]2=[1]2=[2]

[3]2 [3]-2 =[2][2]=[4]=[0]= [3]0 =[3]2-2

(ab)n = anbn ?

(ab)n = (ab)(ab)(ab)  (ab) = aa  abb  b = anbn

, if it is abelian.
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Homomorphism
Definition 16.4

If <G ,> and <H,*> are groups and f : G → H, then f  is 

called a group homomorphism if for all a, b  G,  f (a  b)

= f (a) * f (b).

( Example )

Consider <Z ,+> and <Z4 ,+>. Define f : Z → Z4 by

f (x) = [x] = { x+4k | k  Z }.

For all a,b  Z, f (a+b)= [a+b]= [a]+[b]= f (a)+f (b).

f (7+5)= [7+5]= [12]= [0]= [7]+ [5]= f (7)+f (5)
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Endomorphism, Automorphism
Endomorphism is a morphism (or homomorphism) from a mathematical 

object to itself. 

❑ Example) an endomorphism of a vector space V is a linear map ƒ:V →V

❑ In group G, ƒ: G → G is a group endomorphism

❑ In a set S, endomorphism is a function from a set S into itself.

Automorphism is an invertible endomorphism.

❑ There exists a bijective function. That is, one-to-one correspondence.

❑ The set of all automorphism is a subgroup of Endomorphism.

Isomorphism

❑ Bijective

❑ Is a morphism f:X→Y in a category for which there exists an "inverse" f-1 :Y→X, with 

the property that both f-1 f=idX and f f-1 =idY.

(Homo)morphism

❑ A structure-preserving map between two algebraic structures (such as groups, rings, 

or vector spaces).
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Properties of Homomorphism
Theorem 16.5

Let <G ,> and <H,*> be groups with respective identities eG, 

eH. If f : G →H is a homomorphism, then

(1) f (eG) = eH (2) f (a-1) = [f (a)]-1 for all a  G

(3) f (an) = [f (a)]n for all a  G and all n  Z

(4) f (S) is a subgroup of H for each subgroup S of G

❑ For the example f : Z → Z4 ,

f (0)= [0],

f (5-1)= f(-5)= [-5]= [3]= [1]-1= [5]-1= [f (5)]-1,

[f (5)]3 = [5]3 = [5]+[5]+[5] = [5+5+5]= [53]= f (53)
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Properties of Homomorphism

An Example f : Z → Z4

< Z, + >

< Z4 , + >

0 [0]

5

-5 = 5-1

[1]

[3]=[1]-1

10=52
[2]=[1]2

Set of even numbers

{ [0],[2] }
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Isomorphism

Definition 16.5

If f : <G ,> → <H,*>  is a homomorphism, we call f  

an isomorphism if it is one-to-one and onto.

In this case G, H are said to be isomorphic groups.

( Example )

Let f : <R+ , > → <R ,+>  where f (x) = log10(x)

For all a, b  R+, 

f (ab) = log10(ab) = log10(a) + log10(b) = f (a)+f (b)

This function is one-to-one and onto.

Therefore, f is an isomorphism.
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?

Group

Powers of element

Unique identity & inverse

Left- & right-cancellationProperties

Subgroup
Condition(1): closed & inverse

Condition(2): finite & closed

Direct product (g1, h1) · (g2, h2) = (g1  g2, h1 * h2)

Homomorphism & Isomorphism

f(a  b) = f(a) * f(b)
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Cyclic Group

Definition A group G is called cyclic if there is 

an element x  G such that for each a  G,  a 

= xn for some n  Z. Such element x is called a 

generator (or primitive element) for G.

❑ Given a group G, if a  G consider the set S = {ak | k  Z }. S

is a subgroup of G, because it is closed and satisfies the inverse 

property. (Refer to theorem 2)

This subgroup is called the subgroup generated by a and is 

designated by <a>.
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Order of Elements

Definition If G is a group and a  G, the 

order of a, denoted by ord (a), is |<a>|. ( If 

|<a >| is infinite, we say that a  has infinite 

order.) 

Theorem Let a  G with ord (a) = n.

If k  Z and ak = e, then n|k. 

𝑷𝒓𝒐𝒐𝒇: 𝑨𝒔 𝒂𝒌 = 𝒆, 𝒂𝒏 = 𝒆,𝒏 𝒊𝒔 𝒍𝒆𝒂𝒔𝒕 .𝑯𝒆𝒏𝒄𝒆 𝒌 > 𝒏. Now by 
division algorithm we have 𝒌 = 𝒏𝒒 + 𝒓, for 0  r  n. 
Nowak = aqn+r = ar , but 𝒂𝒌 = 𝒆, 𝒔𝒐 𝒘𝒆 𝒎𝒖𝒔𝒕 𝒉𝒂𝒗𝒆 𝒓 = 𝟎

Therefore, 𝒌 = 𝒏𝒒 𝒂𝒏𝒅 𝒕𝒉𝒊𝒔 𝒊𝒎𝒑𝒍𝒊𝒆𝒔 𝒏 𝒅𝒊𝒗𝒊𝒆𝒔 𝒌 𝒊. 𝒆. , 𝒏|𝒌.
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Example

Group H = <Z4,+>

: [1] and [3] generate H

[0]1 = [0]2 = [0]3 = [0]4 = [0] ➔ <0> = {0}

[1]1 = [1], [1]2 = [1]+[1] = [2],

[1]3 = [3], [1]4 = [4] = [0] = e ➔ <1> = Z4

[2]1 = [2], [2]2 = [2]+[2] = [4] = [0],

[2]3 = [6] = [2], [2]4 = [8] = [0] = e ➔ <2> = {0,2} 

[3]1 = [3], [3]2 = [3]+[3] = [6] = [2],

[3]3 = [9] = [1], [3]4 = [12] = [0] = e ➔ <3> = Z4

 Cyclic Group

160



Example

Group <Z4,+>

[1]1 = [1], [1]2 = [1]+[1] = [2],

[1]3 = [3], [1]4 = [4] = [0] = e ➔ <1> = Z4

ord [1] = 4.

[2]1 = [2], [2]2 = [2]+[2] = [4] = [0],

[2]3 = [6] = [2], [2]4 = [8] = [0] = e ➔ <2> = {0,2}

ord [2] = 2.
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More Examples



More Examples

Therefore, U(8) is not cyclic. 



Example:









Theorems for Cyclic Groups

Theorem Let G be a cyclic group.

If|G| is infinite, then G is isomorphic to <Z,+>. 

If|G|= n > 1, then G is isomorphic to <Zn,+>.

Theorem Every subgroup of cyclic group is 

cyclic.

❑ In <Z4,+>,

<1> = Z4 = {0,1,2,3},   <2> = {0,2}

S = {1,3} ?

Not subgroup
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Theorem Every Cyclic group is abelian. 

Proof: Let 𝐺 =< 𝑎 ≥ 𝑎𝑛 𝑛 ∈ 𝑍}
Let 𝑥, 𝑦 ∈ 𝐺, 𝑡ℎ𝑒𝑛 ∃ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑟 𝑎𝑛𝑑 𝑠 𝑠𝑢𝑐ℎ
𝑡ℎ𝑎𝑡 𝑥 = 𝑎𝑟 , 𝑦 = 𝑎𝑠, ℎ𝑒𝑛𝑐𝑒 𝑥𝑦 = 𝑎𝑟+𝑠 = 𝑎𝑠+𝑟

= 𝑎𝑠𝑎𝑟 = 𝑦𝑥 , 𝐺 𝑖𝑠 𝑎𝑏𝑒𝑙𝑖𝑎𝑛.

Eg: 1. 𝑆3 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 6 , 𝐷4 (

)

𝐷𝑖ℎ𝑒𝑑𝑟𝑎𝑙 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟

8 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑐𝑦𝑐𝑙𝑖𝑐 𝑎𝑠 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒 𝑛𝑜𝑛 𝑎𝑏𝑒𝑙𝑖𝑎𝑛.
2. Abelian group need not to be cyclic e.g. Klein 4-group is abelian but not cycl

ic.



A subgroup of a cyclic group is cyclic.

If |<a>|=n, then the order of any subgroup of <a> divid

es n.

For each +ve integer k, where 

k divides n, the group <a> has exactly one subgroup of order k, 

namely

• The subgroups of Z are exactly nZ for n=0,1,2,…., 

 k
n

a



  

Every subgroup of a cyclic group is cyclic. 

 

Proof. 
 

The main tools used in this proof are the division algorithm and the Principle of Well-Ordering. 

Let G be a cyclic group generated by a and suppose that H is a subgroup of G. If 𝐻 = {𝑒}, then 

trivially H is cyclic. Suppose that H contains some other element g distinct from the identity. 

Then g can be written as 𝑎𝑛  for some integer n. Since H is a subgroup, 𝑔−1 = 𝑎−𝑛 must also be 

in 𝐻. Since either 𝑛 𝑜𝑟 − 𝑛 is positive, we can assume that H contains positive powers 

of a and n>0. Let m be the smallest natural number such that 𝑎𝑚 ∈ 𝐻. Such an 𝑚 exists by the 

Principle of Well-Ordering. We claim that ℎ = 𝑎𝑚 is a generator for  𝐻. We must show that 

every ℎ′ ∈ 𝐻 can be written as a power of h. Since ℎ′ ∈ 𝐻 and H is a subgroup of G, ℎ′ = 𝑎𝑘 

for some integer k. Using the division algorithm, we can find numbers q and r such that 𝑘 =
𝑚𝑞 + 𝑟 where 0 ≤ 𝑟 < 𝑚; hence, 

𝑎𝑘 = 𝑎𝑚𝑞+𝑟 = (𝑎𝑚)𝑞𝑎𝑟 = ℎ𝑞𝑎𝑟. 

So 𝑎𝑟 = 𝑎𝑘ℎ−𝑞. Since 𝑎𝑘 and ℎ−𝑞
  are in H, 𝑎𝑟  must also be in H. However, 𝑚 was the 

smallest positive number such that 𝑎𝑚 was in  𝐻; consequently, 𝑟 = 0 and so 𝑘 =
 𝑚𝑞. Therefore, ℎ′ = 𝑎𝑘 = 𝑎𝑚𝑞 = ℎ𝑞and H is generated by h. 



Let G be a cyclic group of order n and suppose tha

t a is a generator for G.Then 𝑎𝑘 = 𝑒 if and only i

f n divides k. 
Proof.

First suppose that 𝑎𝑘 = 𝑒 . By the division algorithm

, 𝑘 = 𝑛𝑞 + 𝑟where 0 ≤ 𝑟 < 𝑛; hence,

𝑒 = 𝑎𝑘 = 𝑎𝑛𝑞+𝑟 = 𝑎𝑛𝑞 𝑎𝑟 = 𝑒𝑎𝑟 = 𝑎𝑟

Since the smallest positive integer 𝑚 such that 𝑎𝑚 = 𝑒 i

s n, r=0. =0.

Conversely, if n divides k, then 𝑘 = 𝑛𝑠 for some intege

r s. Consequently,

𝑎𝑘 = 𝑎𝑛𝑠 = 𝑎𝑛 𝑠 = 𝑒𝑠 = 𝑠.



Theorem Let G be a cyclic group of order n a

nd suppose that 𝑎 ∈ 𝐺 is a generator of the gro

up. If 𝑏 = 𝑎𝑘, then the order of b is 𝑛/𝑑, where

, 𝑑 = gcd(𝑘, 𝑛).





Proof; continue



Example







Euler phi function







Example: find the Euler function  value for each of the f
ollowing numbers: n=81, n=100

)( find  toHow n
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The subgroup lattice 



Lagrange Theorem
Lagrange’s Theorem 

If G is a finite group of order n with H a subgroup of 

order m, then m divides n.
→The order of every subgroup H of G divides the order of G

Corollary If G is a finite group and a  G, then 

ord(a) divides |G|.
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Coset 

• Let H be a subgroup of a group G

and a∈G.

Ha = { ha | h∈H } --- right coset of H

generated by a

aH = { ah | h∈H } --- left coset of H

generated by a



Klein group

• K4 = {1,a,b,ab},  |a| = |b| = 2,   ab = ab

Let  H = {1,a} 

right cosets                          

H1     =H

Ha     ={a,a2}={a,1}=H

Hb     ={b,ab}

H(ab) ={ab,a2b}={ab,b}=Hb



Theorem 

• Let H be a subgroup of G, a,b∈G.

(1) Ha = H iff   a∈H

(2) If a∈Hb ,then Ha = Hb

(3) Either Ha  Hb =  or Ha = Hb.

• Note that Ha may not be equal to aH.



Example

• G = a with |a| = 6, find coset of H = a3 

and K = a2

• Solution:

K = {1, a2, a4}

=Ka2=Ka4

Ka = {a, a3, a5} 

=Ka3=Ka5

H = {1, a3}= Ha3

Ha = {a, a4}= Ha4

Ha2 = {a2, a5}= Ha5



Lemma

• Let H be a finite subgroup of a group G.

Then |H| = |Ha| = |aH| for all a∈G.

• Proof: 

➢Let f: H → Ha with f(h) = ha. 

➢Then f is a bijection. So |H| = |Ha|.

➢Similarly, |H| = |aH|.



Example
Let H be the subgroup of 𝑍6 consisting of t
he elements 0 and 3. The cosets are

0 + 𝐻 = 3 + 𝐻 = 0,3
1 + 𝐻 = 4 + 𝐻 = 1,4
2 + 𝐻 = 5 + 𝐻 = 2,5 .

We will always write the cosets of subgroups 

of Z and 𝑍𝑛 with the additive notation we ha

ve used for cosets here. In a commutative gr

oup, left and right cosets are always identica

l.



Example
Let H be the subgroup of 𝑆3 defined by the permutations {(1),(123

),(132)}.The left cosets of H are

(1)𝐻 = (123)𝐻 = (132) = {(1), (123), (132)}
(12)𝐻 = (13)𝐻 = (23)𝐻 = {(12), (13), (23)}.The right cosets of H are 

exactly the same as the left cosets:
𝐻(1) = 𝐻(123) = 𝐻(132) = {(1), (123), (132)}
𝐻(12) = 𝐻(13) = 𝐻(23) = {(12), (13), (23)}.

It is not always the case that a left coset is the same as a right cose

t. Let K be the subgroup of 𝑆3 defined by the permutations {(1), (
12)}.Then the left cosets of K are

1 𝐾 = 12 𝐾 = 1 , 12
13 𝐾 = 123 𝐾 = 13 , 123

(23)𝐾 = (132)𝐾 = {(23), (132)};
However, the right cosets of K are

𝐾(1) = 𝐾(12) = {(1), (12)}
𝐾(13) = 𝐾(132) = {(13), (132)}
𝐾(23) = 𝐾(123) = {(23), (123)}.



Theorem: Let H be a subgroup of a group G. Then the left cosets of H i

n G partition G. That is, the group G is the disjoint union of the left cosets 

of H in G.

Let 𝑔1𝐻 and 𝑔2𝐻 be two cosets of H in G. We must 

show that either 𝑔1𝐻 ∩ 𝑔2𝐻 = ∅ or 𝑔1𝐻 = 𝑔2𝐻. Su

ppose that 𝑔1𝐻 ∩ 𝑔2𝐻 ≠ ∅ and 𝑎 ∈ 𝑔1𝐻 ∩ 𝑔2𝐻. The

n by the definition of a left coset, 𝑎 = 𝑔1ℎ1 = 𝑔2ℎ2

for some    elements ℎ1 and ℎ2 in H.

Hence,   𝑔1 = 𝑔2ℎ2ℎ1
−1 𝑜𝑟 𝑔1 ∈ 𝑔2𝐻. Hence , 𝑔1𝐻

= 𝑔2𝐻.



Normal subgroup
A normal subgroup is a subgroup that is invariant un
der conjugation by any element of the original group
: H is normal if and only if 𝑔𝐻𝑔−1 = 𝐻 for any 𝑔 ∈ 𝐺
. Equivalently, a subgroup H of G is normal if and only 
if gH = Hg for any 𝑔 ∈ 𝐺.



Let K be a normal subgroup of G and let G/K={K

a|a∈K}.Then G/K is a group under Ka‧Kb=Kab.

The group G/K of all cosets of K in G is called the 

quotient group (or factor group) of G by K.

• Example: Z/nZ  Zn

Theorem



Quotient group
A quotient group is defined as 𝐺/𝑁 for some normal subgroup N of G, which is 
the set of cosets of N w.r.t. G, equipped with the operation ∘ satisfying 𝑔𝑁 ∘
ℎ𝑁 = 𝑔ℎ 𝑁 for all 𝑔, ℎ ∈ 𝐺. This definition is the reason that N must be   

normal to define a quotient group; it holds because the chain of equalities
(𝑔𝑁)(ℎ𝑁) = 𝑔(𝑁ℎ)𝑁 = 𝑔(ℎ𝑁)𝑁 = (𝑔ℎ)(𝑁𝑁) = (𝑔ℎ)𝑁

holds, where 𝑔(𝑁ℎ)𝑁 = 𝑔 ℎ𝑁 𝑁 utilizes the fact that 𝑁ℎ = ℎ𝑁 for any h (true 
𝑖𝑓𝑓 𝑁 is normal, by definition).

For example, consider the subgroup 𝐻 = {0, 2, 4, 6} 𝑜𝑓 𝐺 = 𝑍8 (𝑤ℎ𝑖𝑐ℎ
𝑖𝑠 𝑎𝑛 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑔𝑟𝑜𝑢𝑝). The left cosets are

{0 + ℎ ℎ ∈ 𝐻} = {2 + ℎ ℎ ∈ 𝐻} = {4 + ℎ ℎ ∈ 𝐻} = {6 + ℎ ℎ ∈ 𝐻}
= {0, 2, 4, 6}
{1 + ℎ ℎ ∈ 𝐻} = {3 + ℎ ℎ ∈ 𝐻} = {5 + ℎ ℎ ∈ 𝐻} = {7 + ℎ ℎ ∈ 𝐻}
= {1, 3, 5, 7}

so
𝐺

𝐻
= { {0, 2, 4, 6}, {1, 3, 5, 7}} .This can be more cleanly written as 

𝐺

𝐻
= {0 + 𝐻, 1 + 𝐻}

which is isomorphic to {0,1} or the cyclic group 𝐶2 .



Let K be a normal subgroup of a finite group G. Th

en |G/K|=|G|/|K|=[G:K]

Theorem



Basic facts

Let K be a normal subgroup of a group G, and l

et a,bG. Then

(1) Ka=Kb if and only if ab-1K.

(2) Ka=K if and only if aK.

(3) Ka  Kb = Kab.

(4) K=K1 is the identity of G/K.

(5) (Ka)-1=Ka-1.

(6) (Ka)k=Kak for all kZ.



G=<a>,|a|=12, K=<a4>

The cosets are

K={1,a4,a8}

Ka={a,a5,a9}=Ka5=Ka9

Ka2={a2,a6,a10}=Ka6=Ka10

Ka3={a3,a7,a11}=Ka7=Ka11

G/K=<Ka>

G/K K  Ka Ka2 Ka3

K K Ka Ka2 Ka3

Ka Ka Ka2 Ka3 K

Ka2 Ka2 Ka3 K Ka

Ka3 Ka3 K Ka Ka2

Example

The Cayley table

C4



Let K={,(12)(34),(13)(24),(14)(23)}. Show that K is nor

mal subgroup of A4 . Find A4/K and write down the Cayl

ey table.

Solution:

➢ A4 = K  {(123),(132),(124),(142),(134),(143),(234),(243)}

➢ K=K=K 

➢ (123)K=K(123)={(123),(243),(142),(134)}

➢ (132)K=K(132)={(132),(143),(234),(124)}              =

[K(123)]2

➢ A4/K=<K(123)>

Example

A4/K K K(123) K(132)

K K K(123) K(132)

K(123) K(123) K(132) K

K(132) K(132) K K(123)





Lagrange's Theorem

Proposition
Proposition   
Let H be a subgroup of G with 𝑔 ∈ 𝐺 and define a map 𝜙:H→gH by 𝜙(ℎ) = 𝑔ℎ.The 

map 𝜙 is bijective; hence, the number of elements in H is the same as the number of elements 

in 𝑔𝐻. 

Proof. 
𝑊𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑚𝑎𝑝 𝜙 𝑖𝑠 𝑜𝑛𝑒 𝑡𝑜 𝑜𝑛𝑒. 𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑡ℎ𝑎𝑡  𝜙(ℎ1) =
𝜙(ℎ2) 𝑓𝑜𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ℎ1,ℎ2 ∈ 𝐻. 𝑊𝑒 𝑚𝑢𝑠𝑡 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 ℎ1 = ℎ2, 𝑏𝑢𝑡 𝜙(ℎ1) = 𝑔ℎ1 𝑎𝑛𝑑 𝜙(ℎ2) =
𝑔ℎ2.  So 𝑔ℎ1 = 𝑔ℎ2, and by left cancellation ℎ1 = ℎ2.  To show that ϕ is onto is easy. 𝐵y definition 

every element of 𝑔𝐻 is of the form 𝑔ℎ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 ℎ ∈ 𝐻 𝑎𝑛𝑑 𝜙(ℎ) = 𝑔ℎ. 

Theorem Lagrange.  

 Let G be a finite group and let H be a subgroup of G. Then       
 |𝐺|

|𝐻|
=  𝐺: 𝐻  is the number of 

distinct left cosets of 𝐻 𝑖𝑛 𝐺. 𝐼n particular, the number of elements in H must divide the number of 

elements in G. 

Proof. 

The group G is partitioned into  𝐺: 𝐻  distinct left cosets.  Each left coset has |𝐻| elements; 

therefore,  |𝐺| = [𝐺: 𝐻]|𝐻|. 



Lagrange Theorem

Corollary Every group of prime order is cyclic. 

Let p be a prime and G be a group such that |G|=p. Then G contains more 
than one element. 

Let 𝑔 ∈ 𝐺 such that 𝑔 ≠ 𝑒𝐺 Then ⟨g⟩ contains more than one element. 

Since |⟨𝑔⟩| ≤ |𝐺|, by Lagrange’s theorem, |⟨𝑔⟩| divides p. 

Since |⟨𝑔⟩| > 1 and |⟨𝑔⟩| divides a prime, |⟨𝑔⟩| = 𝑝 = |𝐺|. Hence, ⟨𝑔⟩ =
𝐺. 𝐼𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 𝐺 𝑖𝑠 𝑐𝑦𝑐𝑙𝑖𝑐.
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A prime number is a positive integer p>1 that has no positive integer divisors other 
than 1 and p itself. 



Lagrange’s Theorem (2nd Proof)

• Proof:

➢Suppose Ha1,………, Hak are distinct 

cosets of H in G.

➢Then k=[G:H] and |Ha1|+………+|Hak| = |G|.

➢This implies k|H| = |G| since |H| = |Hai| for 

each i.

➢So |G| = |H|[G:H].





Example (1)

In <Z15*,>, ord(2) = 4 and ord(4) = 2.

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

2 4 8 1 2 4 8 1

4 1 4 1 4 1 4 1

7 4 13 1 7 4 13 1

8 4 2 1 8 4 2 1

11 1 11 1 11 1 11 1

13 4 7 1 13 4 7 1

14 1 14 1 14 1 14 1

1

2

4

7

8

k
a

11

13

14

Table of Powers, ak
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Example (2)

In <Z11*,>, |Z11*| = 10

Table of Powers, ak

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

2 4 8 5 10 9 7 3

3 9 5 4 1 3 9 5

4 5 9 3 1 4 5 9

5 3 4 9 1 5 3 4

6 3 7 9 10 5 8 4

7 5 2 3 10 4 6 9

8 9 6 4 10 3 2 5

1

2

3

4

5

k
a

6

7

8

9 4 3 5 1 9 4 3

10 1 10 1 10 1 10 1

9

10

1 1

6 1

4 1

3 1

9 1

2 1

8 1

7 1

5 1

10 1

9 10

207



Example (3)

In <Z5,+>, |Z5| = 5

Note that the number 5 is prime.

0

1

0

2

0

3

0

4

0

5

1 2 3 4 0

2 4 1 3 0

3 1 4 2 0

4 3 2 1 0

0

1

2

3

4

k
a

Table of Powers, ak
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Every group of prime order is cyclic. 

A group G is called cyclic if there exists an 
element g in G such that G = { gn | n is an integer }.



Group

Powers of element

Properties

Subgroup

Direct product

Homomorphism

Isomorphism

Generator

(cyclic) subgroup <a>

ak * ord(a) = e

Cyclic group

Ord(subgroup) | ord(G)

|<a>| | |G|

Prime order group is 
cyclic

Lagrange Th
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?

Lagrange’s Theorem

| G | = k | H |

· 1     2     4     7     8    11   13   14

1 1     2     4     7     8    11   13   14
4 4     8     1   13     2    14     7   11

< Z15*,  > < {1,4},  > · 1     4 
1 1     4
4 4     1

k = 4 ?

8 2

210

H is a subgroup of G



Euler Theorem 

Euler Theorem

For each n  Z+, n > 1, and each a  Z, if gcd(a,n) = 

1, then a(n)  1 (mod n).

For any integer n > 1, 

a(n)  1 (mod n) for all a  Zn*.

( Proof )
Zn* is a multiplicative group of order (n) .
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Example

In <Z15*,>, a(n)  1 (mod n) .

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

2 4 8 1 2 4 8 1

4 1 4 1 4 1 4 1

7 4 13 1 7 4 13 1

8 4 2 1 8 4 2 1

11 1 11 1 11 1 11 1

13 4 7 1 13 4 7 1

14 1 14 1 14 1 14 1

1

2

4

7

8

k
a

11

13

14

Table of Powers, ak

(15)=8
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Fermat Theorem 

Fermat Theorem

If p is prime, ap  a (mod p) for each a  Z.

If p is prime, 

ap  a (mod p) for all a  Zp*.

If p is prime, 

ap-1  1 (mod p) for all a  Zp*.
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1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

2 4 8 5 10 9 7 3

3 9 5 4 1 3 9 5

4 5 9 3 1 4 5 9

5 3 4 9 1 5 3 4

6 3 7 9 10 5 8 4

7 5 2 3 10 4 6 9

8 9 6 4 10 3 2 5

1

2

3

4

5

k
a

6

7

8

9 4 3 5 1 9 4 3

10 1 10 1 10 1 10 1

9

10

1 1

6 1

4 1

3 1

9 1

2 1

8 1

7 1

5 1

10 1

9 10

1

11

2

3

4

5

6

7

8

9

10

Example

In <Z11*,>, ap-1 1 (mod p) & ap  a (mod p)

Table of Powers, ak

(11)=10
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# of Generators
Theorem

If p is prime, then 

Zp* is a cyclic group of order p-1.

The number of generators for Zp* is (p-1).

Example

In Z11*, there are (11-1) = (10) = 4 generators.

 Generators :  2, 6, 7, 8
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1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

2 4 8 5 10 9 7 3

3 9 5 4 1 3 9 5

4 5 9 3 1 4 5 9

5 3 4 9 1 5 3 4

6 3 7 9 10 5 8 4

7 5 2 3 10 4 6 9

8 9 6 4 10 3 2 5

1

2

3

4

5

k
a

6

7

8

9 4 3 5 1 9 4 3

10 1 10 1 10 1 10 1

9

10

1 1

6 1

4 1

3 1

9 1

2 1

8 1

7 1

5 1

10 1

9 10

Example

In <Z11*,>, (p-1) = 4.

Table of Powers, ak
216

# of generators



Permutation of a Set

Let A be the set { 1, 2, …, n }.  
A permutation on A is a function 

f : A → A
that is both one-to-one and onto.

The set of all permutations on A is denoted by Sn

A permutation is represented by a matrix :









=

)()2()1(

21

nfff

n
f





Examples of Permutation

Let A be the set { 1, 2, 3, 4, 5 }

f and g are elements of S5









=

42153

54321
f









=

13524

54321
g



Product of Permutations

The product of f and g is the composition function 
f。g

















=

13524

54321

42153

54321
gf 









=

????2

54321
gf 



An element f of Sn is a cycle (r-cycle) if there exists

such that 

Cycles will be written simply as (i1, i2, ... , ir)

},,,{},,,{ niii r  2121 

},,,{other  allfor  )( and

)(,)(,,)(,)(

r

rrr

iiimmmf

iifiifiifiif





21

113221

=

==== −










51423

54321
Example :                                  = (1, 3, 4)



Product of Cycles

If (1, 3, 2, 4) and (1, 2, 6, 7) are two cycles in S7

we have

(1, 3, 2, 4) (1, 2, 6, 7)  =  (1, 4) (2, 6, 7, 3)

◼ Note that (1, 4) (2, 6, 7, 3) is a product of disjoint 

cycles



Permutations and cycles

Every permutation can be written as a product of disjoint 
cycles. For example









=

519476283

987654321
f

We have 

1 → 3 → 2 → 8 → 1

4 → 6 → 4

5 → 7 → 9 → 5

We can easily verify that 

f = (1, 3, 2, 8)(4, 6)(5, 7, 9)



Transpositions : A special kind of cycles

A 2-cycle such as (3, 7) is called a transposition

◼ Every cycle can be written as a product of 
transposition :

(i1, i2, ... , ir) = (i1, ir)(i1, ir-1) ... (i1, i3)(i1, 
i2) 

For example,

(1, 3, 2, 4) = (1, 4)(1, 2)(1, 3)



Permutations and transpositions

Since every permutation can be expressed as a product of 

(disjoint) cycles, every permutation can be expressed as a 

product of transpositions

For example, 

),)(,)(,)(,)(,)(,(

),,)(,)(,,,(

759564312181

975648231

519476283

987654321

=

=









=f



Product of Transposition

Theorem If a permutation f is expressed as a p
roduct of p transpositions and also a product o
f q transpositions, then p and q are either both 
even or both odd.

◼ Definition A permutation that can be expressed
as a product of an even number of
transpositions is called an even permutation,
and is called an odd permutation if it can be
expressed a product of odd transpositions



Even, Odd Permutations

Observe that (1,3,2,4)(1,7,6,2) = (1,7,6,4)(2,3)

So, we can write this permutation as two different product 

of transpositions :

(1,3,2,4)(1,7,6,2) = (1,4)(1,2)(1,3)(1,2)(1,6)(1,7)

(1,7,6,4)(2,3) = (1,4)(1,6)(1,7)(2,3)

◼ Note that (1,2)(1,2) is an expression of the 
identity mapping, so identity is an even 
permutation



Permutation of  a Set

◼ Let A be the set { 1, 2, …, n }.  
A permutation on A is a function 

f : A → A
that is both one-to-one and onto.

◼ The set of all permutations on A is denoted by Sn

◼ A permutation is represented by a matrix :









=

)()2()1(

21

nfff

n
f





Examples of  Permutation

◼ Let A be the set { 1, 2, 3, 4, 5 }

f and g are elements of S5









=

42153

54321
f









=

13524

54321
g



Product of  Permutations

◼ The product of f and g is the composition function 
f。g

















=

13524

54321

42153

54321
gf 









=

????2

54321
gf 



Cycles : A special kind of  Permutation

◼ An element f of Sn is a cycle (r-cycle) if there exists

such that 

Cycles will be written simply as (i1, i2, ... , ir)

},,,{},,,{ niii r  2121 

},,,{other  allfor  )( and

)(,)(,,)(,)(

r

rrr

iiimmmf

iifiifiifiif





21

113221

=

==== −










51423

54321
Example :                                  = (1, 3, 4)



Product of  Cycles

◼ If (1, 3, 2, 4) and (1, 2, 6, 7) are two cycles in S7

we have

(1, 3, 2, 4) (1, 2, 6, 7)  =  (1, 4) (2, 6, 7, 3)

◼ Note that (1, 4) (2, 6, 7, 3) is a product of disjoint 

cycles



Permutations and cycles

◼ Every permutation can be written as a product of 
disjoint cycles. For example









=

519476283

987654321
f

We have 

1 → 3 → 2 → 8 → 1

4 → 6 → 4

5 → 7 → 9 → 5

We can easily verify that 

f = (1, 3, 2, 8)(4, 6)(5, 7, 9)



Example

◼ Compute  and  if                     and                  .

◼ Sol:

◼ Note that ≠ in general. 

1 2 3 4

3 4 1 2


 
=  
 

1 2 3 4

2 4 3 1


 
=  
 

1 2 3 4 1 2 3 4

3 4 1 2 2 4 3 1


  
=   
  

1 2 3 4
.

4 2 1 3

 
=  
 

1 2 3 4 1 2 3 4

2 4 3 1 3 4 1 2


  
=   
  

1 2 3 4
.

3 1 2 4

 
=  
 





Transpositions : A special kind of cycles

◼ A 2-cycle such as (3, 7) is called a 
transposition

◼ Every cycle can be written as a product of 
transposition :

(i1, i2, ... , ir) = (i1, ir)(i1, ir-1) ... (i1, i3)(i1, i2) 

For example,

(1, 3, 2, 4) = (1, 4)(1, 2)(1, 3)



Transposition

• A cycle of length 2 is called a transposition.

• Thus each transposition  has the form =(m, n), 

where m≠n.

1 2 3 1 2 3
(1 2)(2 3)

2 1 3 1 3 2

  
=   
  

1 2 3
(1 2 3)

2 3 1

 
= = 
 



Permutations and transpositions

◼ Since every permutation can be expressed as a 

product of (disjoint) cycles, every permutation can be 

expressed as a product of transpositions

For example, 

),)(,)(,)(,)(,)(,(

),,)(,)(,,,(

759564312181

975648231

519476283

987654321

=

=









=f



• A permutation  is called even or odd

according as it can be written in some way 

as the product of an even or odd number 

of transpositions. 

• The set of all even permutations in Sn is 

denoted An and is called the alternating 

group of degree n.



Product of  Transposition

◼ Theorem 4.3 If a permutation f is expressed 
as a product of p transpositions and also a 
product of q transpositions, then p and q are 
either both even or both odd.

◼ Definition 4.4 A permutation that can be 
expressed as a product of an even number of 
transpositions is called an even permutation,
and is called an odd permutation if it can be 
expressed a product of odd transpositions



Example

(1, 2, 3) = (1, 2)(2, 3) 

(1, 2, 3, 4) = (1, 2)(2, 3)(3, 4)

(1, 2, 3, 4, 5) = (1, 2)(2, 3)(3, 4)(4, 5) 

(1, 2, 3, 4, 5, 6) = (1, 2)(2, 3)(3, 4)(4, 5)(5, 6)



Example

• Determine the parity of

• Solution:

➢We have  = (1, 5, 7, 2, 4)(3, 6, 8, 9)

=(1,5)(5,7)(7,2)(2,4)(3,6)(6,8)(8,9)

➢So  is odd because it has a product of 7

transpositions.

1 2 3 4 5 6 7 8 9

5 4 6 1 7 8 2 9 3


 
=  
 



Identity permutation

◼ The identity permutation  in Sn is defined as

◼ In other words, (k)=k holds for every k∈Xn. 

◼ It is easy to verify that == holds for all 

∈Sn.

1 2

1 2
.

n

n


 
=  
 



inverse

◼ If ∈Sn, the fact that  : Xn→Xn is one-to-one 

and onto implies that a uniquely determined 

permutation -1 : Xn→Xn exists (called the 

inverse of ), which satisfies

(-1(k))=k and   -1((k))=k,   for all k∈Xn. 



Example

◼ Find the inverse of 

in S8.

◼ Sol:

1 2 3 4 5 6 7 8

4 1 8 3 2 5 6 7


 
=  
 

1
1 2 3 4 5 6 7 8

.
2 5 4 1 6 7 8 3

 −  
=  
 



Example

• The set Sn of all permutations of {1,2,···,n} is 

a group under composition, called the 

symmetric group of degree n. 



• Consider the permutation

in S6.

The action of  is described graphically as:

1          4                           

6          2

1 2 3 4 5 6

4 6 3 2 5 1


 
=  
 

3



Example

• Factor

as a product of (pairwise) disjoint cycles.

=(1, 5, 9, 7, 4)(2, 12, 8, 3)(6, 11, 13)

1 2 3 4 5 6 7 8 9 10 11 12 13

5 12 2 1 9 11 4 3 7 10 13 8 6


 
=  
 



Example

• Find the order of

• Solution: 

 = (1, 2, 3)(4, 5)

|| = 6

1 2 3 4 5

2 3 1
.

5 4


 
=  
 

= lcm(2, 3)



Example

• Find the order of

• Solution: 

 = (1,5,10,13,4,14)(2,7,12,6,11)(3,9)

|| = lcm(6,5,2) = 30.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
.

5 7 9 14 10 11 12 8 3 13 2 6 4 1


 
=  
 



Ring Theory

◼ 1 Ring

◼ 2 Integral Domain & Field

◼ 3 Ring Properties



commutative ring with unity
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Ring Structure

Def

Let R be a nonempty set on which we have two closed

binary operations, denoted by + and . Then (R,+,) is a 

ring if for all a,b,c  R, the following conditions are 

satisfied:

a) a + b = b + a

b) a + (b + c) = (a + b) + c

c)  z ( R) such that a + z = z + a = a

d) For each a  R,  b with a + b = b + a = z

e) a(bc) = (ab)c ➔ a(bc) = (ab)c = abc

f) a(b+c) = ab + ac and  (b+c)a = ba + ca
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Abelian
group

associative

distributive



Examples

Under the ordinary addition and multiplication, Z, Q, R, 

and C are rings.

Let M2,2(Z) be the set of all 2x2 matrices with integer 

entries. Then it is a ring under the ordinary matrix 

addition and matrix multiplication.

(0), (1), (2)

RingSet

(3)

Ring
with Unity

(5)
Commutative

Ring

Field
(4)

Commutative
Ring with Unity(5)

(3)

(0)Distributive

(1) Closure

(2) Associative

(3) Identity

(4) Inverse 

(5)Commutative

256



Commutative Ring with Unity

Let (R,+,) be a ring.

Commutative Ring : ab = ba for all a,b  R

Ring with Unity : 

 u ( R) such that au = ua = a and

u  z for all a  R. The u is called 

a unity or multiplicative identity.

Commutative Ring with Unity : 

a commutative ring that has the unity.

Note that the unity is unique.
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An Example

(Z,,); xy = x+y-1 and xy = x+y-xy

1)  and  are closed operators.

2)  is commutative and associative.

3)  a zero element (additive identity) z=1 for .

x1 = 1x = x+1-1 = x

4) The additive inverse of x is 2-x.

x(2-x) = (2-x)x = x+(2-x)-1 = 1

5) (Z,,) satisfies the associative law of  and the distributive 

law of  over .

6) Unity (multiplicative identity) 0:

xu = x+u-xu = x ➔ u = 0 (z) Ring with 
unity
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Zero Element ? 

▪  a zero element (additive identity) z=1 for .

x1 = 1x = x+1-1 = x

 : K  K → K

Identity element e for  in K

e  a = a  e = a for all a ∈ K

Zero element z for  in K

z  a = a  z = z for all a ∈ K

Which one is true ?
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Zero Element ? 

260

zero element can be defined as followings 

(depending on the context)

(1) additive identity

(2) absorbing element

 let (S,*) be a set S with a binary operation * on it. A zero 

element is an element z such that for all s in S, z*s=s*z=z. 

 z*s=z : left zero

 s*z=z : right zero



Another Example

U = {1,2} and R = P(U) (power set)

A+B = A  B = { x | xA or xB, but not both }

AB = A  B = intersection of sets A,B  U

 {1} {2} U

{1}
{2}
U







U

U {2}

{2} {1}
{1}

 {1} {2} U



{1}
{2}
U

+  {1} {2} U



{1}
{2}
U











  



{1}

{1}

{1}

{2}
{2} {2}

U

Additive Identity : 

Additive Inverse : itself

Unity : U

Commutative

{1},{2} : proper divisors of zero
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Ref) Proper divisors of zero 

(Ex.) < Z6, +,  >

0 1 2 3

0

1

2

3

+

0 1 2 3

1

2

3

2 3

3 0 1

0 1 2

0

4

5

4 5

4 5

4 5

4 5

4 5

0 1 24 5 3

0 1 25 3 4

0 1 2 3

0

1

2

3



0

4 0

0 3

0 0 0

0

0

0

1 2 3

2

3

4 5

4

5

0 0

0

0

4 5

4

5

2 4

0 3

2 0

4 3

4 2

2 1

➔ Not Field

proper divisors of zero
Unit
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If a,b R,  (additive identity,0) or , then R is said to have no

proper divisors of zero  (zero divisor).

ab z a z b z  =  = =

Unit : Invertible element of ring R ~ No 
zero divisor



Multiplicative Inverse & Unit

Def

Let R be a ‘ring with unity u’. 

If a  R and there exist b  R such that ab = ba = u, 

then

b is called a multiplicative inverse of a and

a is called a unit of R.

(The b is also a unit of R.)
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That is, a unit in a ring R is an invertible element of R !



Integral Domain & Field

Def

Let R be a commutative ring with unity. Then

(a) R is called an integral domain if R has no proper 

divisors of zero.

(b) R is called a field if every nonzero element of R is a 

unit (= invertible !).

❑ (Z,+,) : an integral domain but not field

(only 1 and –1 are units.)

❑ (Q,+,), (R,+,), (C,+,) : integral domain & field
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2 * ½ = 1



An Example

No. Because it is not a commutative ring with unity.

AB = 0 ➔ A = 0 or B = 0 ?









=
















=

















00

00

00

10
,

00

00

00

01

00

10
2

Let M2,2(Z) be the set of all 2x2 matrices with 
integer entries. Is it an integral domain under the 
ordinary matrix addition and matrix multiplication ?

CA = CB ➔ A = B ?      A2 = I ➔ A =  I ?
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from Ring to Field

< K, , >
Closure
Distributive Ring Associative

Commutative 

Ring

Commutative

Ring with 

Unity

Identity
Commutative Ring

with  Unity

Integral Domain

Field
Inverse
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Ring Properties (1)

Theorem 1

In any ring (R,+,),

(a) the zero element z is unique, and

(b) the additive inverse of each ring element is unique.

(Notation) –a = additive inverse of a

Theorem 2 (Cancellation of Addition)

For all a, b, c  R,

(a) a + b = a + c ➔ b = c,  and

(b) b + a = c + a ➔ b = c.
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Ring Properties (2)

Theorem 3

For any ring (R,+,) and any a  R, we have az = za = 

z.

( Proof )

az + z = az = a(z + z) = az + az

By the cancellation law, z = az.

Similarly, za = z.
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Ring Properties (3)

Theorem 4

Given a ring (R,+,), for all a,b  R, 

(a) -(-a) = a

(b) a(-b) = (-a)b = -(ab)

(c) (-a)(-b) = ab

( Proof of (b) )

ab + a(-b) = a[b + (-b)] = az = z &

ab + (-a)b = [a + (-a)]b = zb = z.

From the uniqueness of additive inverse, 

a(-b) = -(ab) = (-a)b.
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Ring Properties (4)

Theorem 5

For a ring (R,+,),

(a) if R has a unity, then it is unique, and

(b) if R has a unity, and x is a unit of R, then the 

multiplicative inverse of x is unique.

( Proof )

If u and v are unity’s of R, then u = uv = v. 

Thus the unity is unique.

Let a and b are multiplicative inverses of x. 

Then a = au = a(xb) = (ax)b = ub = b. 

Therefore, ...
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Ring Properties (5)

Theorem 6

Let (R,+,) be a commutative ring with unity. Then R is an 

integral domain if and only if, for all a,b,c  R where a  z, 

ab = ac ➔ b = c. (cancellation of multiplication)

Theorem 7

If (F,+,) is a field, then it is an integral domain.

( Proof )

Let a ( z), b  F with ab = z. Then a has the unique 

inverse a-1. a-1(ab) = a-1z ➔ b = z.

Hence F has no proper divisors of zero.
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Ring Properties (6)

Theorem 8

A finite integral domain (D,+,) is a field.

( Proof )

Let D = {d1, d2,..., dn }.

dD = {dd1, dd2,..., ddn}, for d  D and d  z.

From closure and multiplicative cancellation, 

ddi  ddj and dD = D. Then, ddk = u for some 

1  k  n and any d is a unit of D. Therefore, 

(D,+,) is a field.
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