MECHANICAL ENGINEERING DEPARTMENT M. M. M. UNIVERSITY OF TECHNOLOGY GORAKHPUR

	Crea	lit Courses		
Postgraduate Core	e (PC)	Postgraduate Electives (PE)		
Category	Min. Credits	Category	Min. Credits	
Maths (M)	4	Program Electives (PE)	16	
Program Core (PC)	22			
Minor Project (MP)	4			
Dissertation (D)	18			
Seminar (S)	2			
	50		16	
Total		66 (min.)		
	Aud	it Courses		
Audit Courses (Other	6			
Departments)	(min.)			
Grand Total		6 (min.)		

Overall Credit Structure for M.Tech. Programme

Credit Structure M.Tech. (Computer integrated Manufacturing)

Category Semesters	I	II	III	IV	Total
Maths (M)	5	-	-	-	5
ProgrammeCore (PC)	13	9	-	-	22
Program Electives (PE)	-	8	8	-	16
Minor Project (MP)	-	-	4	-	4
Dissertation (D)			4	14	18
Seminar (S)	-	-	-	2	2
Total	18	17	16	16	67

Curriculum of M.Tech. (Computer integrated Manufacturing)

Junior Year, Semester-I

S.N	Category	Paper Code	Subject Name	L	Т	Р	Credit
1.	М	MAS-101	Numerical Methods & Engineering	3	1	2	5
			Optimization				
2.	PC	MME-101	Advanced Computer Aided Design	3	1	2	5
3.	PC	MME-102A	Computational Methods in Engineering	3	1	0	4
4.	PC	MME-103	Machining Science	3	1	0	4
5.	AC		Audit subject				
			Total	12	4	4	18

Junior Year, Semester-II

S.N.	Category	Paper Code	Subject Name	L	Т	Р	Credit
1.	PC	MME-104	Advanced Computer Aided Manufacturing	3	1	2	5
2.	PC	MME-105	Advance Machining Processes	3	1	0	4
3.	PE1	MME-1**	Program Elective-1	3	1	0	4
4.	PE2	MME-1**	Program Elective-2	3	1	0	4
5.	AC		Audit subject				
			Total	12	4	2	17

Senior Year, Semester-III

S.N.	Category	Paper	Subject Name	L	Т	Р	Credit
		Code					
1.	PE3	MME-1**	Program Elective-3	3	1	0	4
2.	PE4	MME-1**	Program Elective-4	3	1	0	4
3.	MP	MME-120	Minor Project	0	0	8	4
4.	D	MME-130	Dissertation Part-I	0	0	8	4
			Total	6	2	16	16

Senior Year, Semester-IV

S.N.	Category	Paper Code	Subject Name	L	Т	Р	Credit
1.	S	MME-140	Seminar	0	0	4	2
2.	D	MME-150	Dissertation Part-II	0	0	28	14
			Total	0	0	32	16

Program Core(Computer Integrated Manufacturing)

S.N.	Paper Code	Subject	Prerequisite Subject	L	Т	Р	Credit
							S
1.	MAS-101	Numerical Methods & Engineering Optimization	-	3	1	2	5
2.	MME-101	Advanced Computer Aided Design	-	3	1	2	5
3.	MME-102A	Computational Methods in Engineering	-	3	1	0	4
4.	MME-103	Machining Science	-	3	1	0	4
5.	MME-104	Advanced Computer Aided Manufacturing	-	3	1	2	5
6.	MME-105	Advance Machining Processes	-	3	1	0	4
7.	MME-120	Minor Project	-	0	0	8	4
8.	MME-130	Dissertation Part-I	-	0	0	8	4

9.	MME-140	Seminar	-	0	0	4	2
10.	MME-150	Dissertation Part-II	Dissertation Part-I	0	0	28	14

Program Electives	(Computer	Integrated	Manufacturing)
0	\		8/

S.N.	Paper Code	Subject	Prerequisite Subject	L	Т	Р	Credits
		PE-1& PE-2 (Semester-II)					
1.	MME-151	Machine Tool Design	-	3	1	0	4
2.	MME-152	Design for Manufacture and Assembly	-	3	1	0	4
3.	MME-154A	Robotic Engineering	-	3	1	0	4
4.	MME-159	Design of experiments	-	3	1	0	4
5.	MME-155	Micro-Machining and Precision Engineering	-	3	1	0	4
6.	MME-156	Production and Operations Management	-	3	1	0	4
7.	MME-157	Additive Manufacturing	-	3	1	0	4
		PE-3 & PE-4 (Semester-III)					
1.	MME-161	Finite Element Method	-	3	1	0	4
2.	MME-169	Advance Material and	-	3	1	0	4
3	MME 163	Industrial Automation		3	1	0	1
<u>J</u> .	MME-164	Flexible Manufacturing System		3	1	0	4
5.	MME-165	Concurrent Engineering & Product Lifecycle Management	-	3	1	0	4
6.	MME-166	Advanced Strength of materials	-	3	1	0	4

Audit Courses for M.Tech. (Computer Integrated Manufacturing)

S.N.	Paper	Subject		L	Т	Р	Credits
	Code						
		Semester-I					
1.	MAS-105	Applied Probability and Statistics	-	3	1	0	4
2.	BOE-04	Principles of Remote Sensing		2	1	0	3
3.	BOE-07	Introduction to Data and File	-	2	1	2	4
		Structures					
4.	MBA-109	Research Methodology	-	3	1	0	4
		Semester-II					
1.	BAS-27	Discrete Mathematics	-	3	1	0	4
2.	BCE-21	Environmental Impact Assessment	-	3	1	0	4
		& Management					
3.	BCS-73	Neural Network & Fuzzy Systems	-	3	1	0	4
4.	BEE-15	Introduction to Microprocessors	-	3	1	2	5
5.	MBA-106	Human Resource Management	-	3	1	0	4

Department of Mechanical Engineering Madan Mohan Malaviya University of Technology, Gorakhpur-273 010, India

MAS-101 NUMER	ICA	AL METHODS & ENGINEERING OPTIMIZATION				
Course category	:	Program Core (PC)				
Pre-requisite Subject	:	NIL				
Contact hours/week	:	Lecture : 3, Tutorial : 1, Practical: 2				
Number of Credits	:	5				
Course Assessment	:	Continuous assessment through tutorials, attendance, home assignme	nts,			
methods		quizzes, practical work, record, viva voce and One Minor tests and O	One			
		Major Theory & Practical Examination				
Course Outcomes	:	The students are expected to be able to demonstrate the follow	ving			
		knowledge, skills and attitudes after completing this course	-			
Topics Covered						
UNII-I	4:	- Caladaria and toward and the metions has Disation Decale Palai and	0			
Newton-Raphson methods	tion Inter	of algebraic and transcendental equations by Bisection, Regula-Faisi and polation: Newton's forward and backward interpolation formulae. Lagrange's	9			
formula andNewton's divid	led of	lifference formula. Solution of system of linear equations by Guass-Siedel				
method and Crout'smethod	, Nı	merical Integration: Trapezoidal Rule, Simpson's one-third and three-eight				
rules.						
UNIT-II			0			
Classical Optimization Teo	ehni No	ques: Introduction, Review of single and multi-variable optimization methods	9			
	, INC	n-inear one dimensional minimization problems, Examples.				
Constrained Ontimization	Tec	hniques: Introduction Direct Methods, Cutting plane method and method of	9			
feasible directions. Indire	ect	methods. Convex programming problems. Exterior penalty function	9			
method, Examples and probl	ems					
UNIT-IV						
Unconstrained optimization	on t	echniques: Introduction: Direct search method, Random, Univariate and	9			
Patternsearch methods, Ros	enb	rock's method of Rotating co-ordinates, Descent methods, Steepest Descent				
EXPERIMENTS	u vi					
Minimum Eight experime	its a	re to be performed				
1. To implement numerical	integ	ration using Simpson's one-third and Simpson's three-eight rules.				
2. To implement Gauss-Siec	lel n	nethod for solution of simultaneous equations.				
3. To implement Relaxation	met	nod for solving simultaneous equations.				
5. To implement Euler's me	thod	to find solution of differential equations.				
6. To find optimum solution	5. To find optimum solution to problem parameters.					
7. To find derivatives of static displacements and stresses.						
8. To write Computer based	algo	writhm and program for solution of Eigen-value problems.				
10 To find Derivatives of Fi	gen.	values and Eigen vectors				
	ovin					

M. Tech. (Computer Integrated Manufacturing) Syllabus

Books	ooks & References		
1.	Engineering Optimization		
2.	Applied Optimal Design		
3.	Optimization for Engineering Design		
4.	Engineering Mathematics		

MME-101	ADVAN	CE	D COMPUTER AIDED DESIGN
Course catego	ory	:	Program Core (PC)
Pre-requisite	Subject	:	NIL
Contact hours/week		:	Lecture : 3, Tutorial : 1, Practical: 2
Number of C	redits	:	5
Course Asses	sment	:	Continuous assessment through tutorials, attendance, home assignments,
methods	quizzes, practical work, record, viva voce and one Minor test and One		
			Major Theory & Practical Examination
Course Outco	omes	:	The students are expected to be able to demonstrate the following
			knowledge, skills and attitudes after completing this course

1. The knowledge of computer graphics system and its hardware such as graphics input, display and output devices.

- 2. The ability to generate circle and ellipse using Bresenham's algorithm and understand the mathematics behind 3D geometric transformations.
- 3. Understand analytical representations of different types of parallel such as orthographic, oblique and axonometric projections as well as non parallel such as perspective and stereographic projections.
- 4. The analytical representations of parametric planar curves and synthetic space curves such as Hermite, Bezier, non rational& rational B-spline curves and their properties.
- 5. The synthetic surfaces and their parametric representations, different solid modeling techniques and skill of generating 3D geometric models in CAD software.

9

9

Topics Covered

UNIT-I

Graphic Systems

Introduction, Graphics systems, Graphics hardware input devices, Display devices, Color displays, Solid state monitors, Output devices, Software configuration and functions, Graphics software standards

Output Primitives

Scan conversion of primitives, Bresenham's Circle generating algorithm and Ellipse generating algorithms, problems.

UNIT-II

3D Transformation

Linear transformations, translation, rotation, scaling, reflection and shear, Matrix representation, Overall scaling, Composite transformations, Rotation about local axes parallel to global axes, Rotation about an arbitrary axis, Scaling with respect to fixed point, Reflection through an arbitrary plane

Projections

Plane geometric projection, Parallel projections-Matrix equations for Orthographic projection, Oblique projection-Cavalier and Cabinet projections, Axonometric projections-isometric, diametric and trimetric

projections, Perspective projections-vanishing point, Equation for one point, two point and three point perspective projections, Stereographic projections-monocular and binocular depth perceptions

UNIT-III

Curves

Classical representation of curves, Parametric analytic curves, Space curves, Hermite curves-Blending functions, properties, Bezier curves-Blending functions, properties, Composite Bezier curves and drawbacks, Non-rational B-spline curves-spline blending functions, blending function formulation, knot vector, uniform, open uniform and non uniform non rational spline blending functions, B-splines curve generation for various control points, Shape control of spline curves, properties, Rational B-spline curves-open uniform, periodic uniform and non uniform knot vector, Conic sections generation

9

9

UNIT-IV

Surface Description and Generation

Parametric representation, Surfaces of revolution, Sweep surfaces, Bilinear surface, Ruled and developable surfaces, Coons bicubic surfaces, Bezier and B-spline surfaces

3D Graphics

Polygon surfaces-polygon meshes, Wire frame and Solid models-Regularized Boolean set operations, Sweep and boundary representations, Constructive Solid Geometry- unbounded and bounded primitives

EXPERIMENTS

Minimum Eight experiments are to be performed

- 1. Understanding and use of drafting software AutoCAD
- 2. Sketching and solid modeling of a machine component in CAD software such as ProE/ Solidworks etc.
- 3. Writing and validation of circle drawing algorithm
- 4. Writing and validation of ellipse drawing algorithm
- 5. Writing and validation of computer program for individual geometric transformation such as translation/ rotation/ scaling
- 6. Writing and validation of computer program for combined geometric transformations such as translation/ rotation/ scaling
- 7. Writing and validation of computer program for design of shaft under the combined bending and torsional loading
- 8. Experiments on generation of analytic curves
- 9. Experiments on generation of space curves
- 10. Experiments on generation of surfaces
- 11. Experiments on generation of solid models in CAD software
- 12. Experiments on projection of an object

Books & References

- 1. Computer Graphics-Hearn & Baker, Prentice Hall of India
- 2. Computer Aided Engineering Design-Anupam Saxena & B. Sahay, Anamaya Publishers
- 3. CAD/CAM Theory and Practice- Ibrahim Zeid& R Sivasubramaniam, McGraw Hill
- 4. Mathematical Elements for Computer Graphics- DF Rogers & JA Adams, McGraw Hill
- 5. CAD/CAM-HP Groover & EW Zimmers Jr, Prentice Hall India Ltd
- 6. Computer Aided Design-S.K. Srivastava, IK International Publications
- 7. Computer Aided Design-R.K. Srivastava, Umesh Publications

MME-102A	Computa	atio	onal Methods in Engineering
Course Categ	ory	:	Program Core (PC)
Pre-requisites		:	NIL
Contact Hours	/Week	:	Lecture: 3, Tutorial : 1, Practical: 0
Number of Cre	edits	:	4
Course As	sessment	:	Continuous assessment through tutorials, attendance, home
Methods			assignments, quizzes, one minor test and one major examination
Course Outcor	nes	:	The students are expected to be able to demonstrate the following
			knowledge and skills after completing this course

1. Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions

2. Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations.

3. Ability to select appropriate numerical methods for various types of problems in engineering.

4. Analyse and evaluate the accuracy of common numerical methods.

Topics Covered

UNIT-I

Introduction to Linear Algebraic Equation, Roots of Equation, Numerical differentiation and 9 Integration, Initial and boundary value problems.

Systems of Linear Algebraic Equations: Gauss Elimination Method, LU Decomposition Methods, Interpolation and Curve Fitting: Polynomial Interpolation, Interpolation with Cubic Spline.

UNIT-II

Roots of Equations: Incremental Search Method, Method of Bisection, Methods Based on 9 Linear Interpolation, Newton–Raphson Method, Systems of Equations

UNIT-III

Numerical Differentiation and Integration: FiniteDifferenceApproximations, 9 RichardsonExtrapolation, DerivativesbyInterpolation, Implicit and explicit integration schemes.

UNIT-IV

Initial and Boundary ValueProblems: TaylorSeriesMethod, Runge–KuttaMethods, 9 ShootingMethod.SymmetricMatrixEigenvalueProblems.

Textbooks

1. JaanKiusalaas, Numerical Methods in Engineering with Matlab , Second Edition, Cambridge University Press.

2. Arnold Neumaier, Introduction to Numerical Analysis, , Cambridge University Press.

Reference books

1. Rao. V. Dukkipati ,MATLAB an Introduction with Application, , New Age Publisher

MME-103 MACHININ	NG	SCIENCE	
Course Category	:	Program Core (PC)	
Pre-requisites	:	NIL	
Contact Hours/Week	:	Lecture: 3, Tutorial: 1, Practical: 0	
Number of Credits	:	4	
Course Assessment	:	Continuous assessment through tutorials, attendance, home assignment	S,
Methods		quizzes, and one Minor test and One Major Theory	
Course Outcomes	:	The students are expected to be able to demonstrate the following	ıg
		knowledge, skills and attitudes after completing this course	
1. Ability to understand the	ne r	nechanics metal cutting, shear angle, chip flow and chip control methods.	
2. Ability to apply the cor	nce	pt of Thermodynamics of chip formation, tool wear and tool life.	
3. Ability to design and de	eve	lop Economics of metal cutting-Single and multipass machining operation	s.
4. Ability to develop method	hod	s for defining Dynamic metal cutting, Problems associated with machinir	ng
of plastics and Analysis	s of	non-conventional machining processes ECM, EDM, LBM, WJM, USM et	c.
Topics Covered			
UNIT-I			
Mechanics of metal cutting-To	ol g	geometry, Mechanics of orthogonal and oblique cutting, Shear angle relations in	9
orthogonal cutting, Shear angle	and	t chip flow direction in oblique cutting, Chip control methods, Analysis of cutting	
process, Machining with rotary	' too	DIS	
UNIT-II Thermodynamics of chin forms	atio	n Machining at super high speeds. Theories of tool wear, Basic action of cutting	0
fluids tool life Factors govern	ino	tool life. Machinability-definition and evaluation	9
UNIT-III	mg	toor me, muchinuomey deminion and evaluation.	
Economics of metal cutting-Sin	ngle	and multipass machining operations. Criteria, variables, and restrictions for the	9
economical conditions	0		
UNIT-IV			
Dynamic metal cutting-Compa	risc	n of steady and dynamic process, Shear angle and force relationships, Grinding	9
mechanics, Wheel characteris	tics	and theory of wheel wear, Lapping, Honning, High speed grinding theory,	
Grinding of drills, form cutter	s e	tc., Problems associated with machining of plastics, Tools for plastic cutting,	
Analysis of non-conventional r	nac	hining processes ECM, EDM, LBM, WJM, USM etc.	
Textbooks			
1. Introduction to Machining	g So	cience- GK Lal (New Age International)	
2. Machining Fundamentals	- W	alker John R (Goodheart)	
Keterence books		DV Mishar (Norse Bublications)	
I. Non-Conventional Machi 2 Matalanal	nın	g- Y K Mishra (Narosa Publications)	
2. Metalwork and Machinin	g H	ints and tips (Workshop Practice)- Arnold Throp	

MME-104	ADVANCED COMPUTER AIDED MANUFACTURING		
Course Catego	ory	:	Program Core (PC)
Pre-requisites	Pre-requisites : NIL		
Contact Hour	Contact Hours/Week : Lecture: 3, Tutorial: 1, Practical: 2		
Number of C	redits	•	5

Course Assessment	: Continuous assessment through tutorials, attendance, home assignments,						
Methods	guizzes, practical work, record, viva voce and one Minor test and One Major						
	Theory & Practical Examination						
Course Outcomes	• The students are expected to be able to demonstrate the following knowledge						
	se outcomes statements are expected to be used to demonstrate the following knowledg						
	skins and autodes after completing this course						
1 Understanding the impl	lementation of automation in production system and ability to know the role of						
1. Onderstanding the impl	monufacturing						
Computer in the area of	manufacturing.						
2. Ability to design and o	develop various parts of CNC Machines for improving their effectiveness and						
implementation of adap	tive control.						
3. Ability to develop mat	nual part program and computer assisted part program for the production of						
components							
4. Ability to understand the	e various modules of FMS and apply the concept of group technology and computer						
assisted process plannin	g.						
Topics Covered							
UNIT-I							
Introduction: Introduction to	CAM, CAD/CAM interface, Introduction to Automation, Historical developments and 9						
future trends, automation in pr	oduction system, automation strategies, advantages and disadvantages of automation,						
Need of NC system, fundamen	tal of NC machine tool, Classification of NC machine tool, suitability and limitations,						
applications of NC system.							
UNIT-II	Test Development in MCU testasters Drivints of exerction of CNC started at 0						
Features of CNC Machine	1001: Development in MCU technology, Principle of operation of CNC, standard 9						
controllers, Design considerat	tions of CNC machines for improving machining accuracy – structural members,						
sideways, spindle drive, feed d	rive, lead screws; Methods for improving productivity, work holding device, automatic						
Control of CNC Systems: On	machining centres						
systems	en and Closed loop control systems, reedback devices, interpolators, Adaptive control						
CNC Part Programming: Par	rt programming fundamentals Manual Programming for turning milling drilling etc. 9						
Tool length compensation cut	ter radius compensation canned cycle. Do loops Subroutine and Macro: Concept of						
computer aided part programm	and APT language structure Geometry motion and post processor commands APT						
nart program	mig, mi i unguage structure, Geometry, motion and post processor communes, mi i						
UNIT-IV							
FMS. CIMS & CAPP: Buil	ding blocks of flexible manufacturing systems (FMS) tool management systems 9						
workpiece handling systems.	FMS control, computer integrated manufacturing systems, computer aided process						
planning- variant and generativ	re process planning.						
r of the ofference ofference ofference of the ofference ofference of the ofference ofference of the ofference offerenc	· · · · · · · · · · · · · · · · · · ·						
EXPERIMENTS							
Minimum Eight experiments	are to be performed						
1. Study on Retrofitting of C	Conventional Milling Machine to CNC Milling Machine.						
2. To study the characteristi	cs features of CNC lathe trainer (Model SS-PT-100).						
3. To study the characteristi	cs features of CNC Turning (XLTURN)						
4. To study the characteristi	cs teatures of CNC Milling (XLMILL)						
5. Write a manual part prog	ram for turning operations and prepare the component on CNC Turning.						
 o. Write a manual part prog 7. Write a manual part prog 	gram for Grooving and threading operations and prepare the component on CNC Turning.						
7. write a manual part prog	rain for reck drifting operations and prepare the component on UNU Turning.						
o. write a manual part prog	ram using intear and circular interpolation for CNC Willing and prepare the component.						
9. Write a manual part prog	tions of Floxible Monufacturing System						
Toxtbackc	nons of Frexible Manufacturing System.						
1 Automation Destant'	Systems and Computer Integrated Manufacturing by Mileall D. Converse (DIII)						
1. Automation, Production S	systems and Computer integrated Manufacturing by Mikell P. Groover (PHI)						

2.	Computer Control of Manufacturing System by Yoram Koren(McGraw Hill).
3.	Computer Aided manufacturing- P. N. Rao, N. K. Tewari & T. K. Kundra (Tata McGraw Hill).
4.	CAD/CAM/CIM – P. Radhakrishnan, S. Subrmanyam and V. Raju (New Age International)
Ref	erence books
1.	Principles of Computer Integrated Manufacturing – S. Kant Bajpai (PHI)
2.	Computer Aided Design & Manufacture – C. B. Besant & C. W. K. Lui (East West Press)

MME-105	ADVANCE	D	MACHINING PROCESSES
CourseCategory		:	Program Core (PC)
Pre-requisites		:	NIL
Contact Hours/We	ek	:	Lecture: 3, Tutorial: 1, Practical: 0
Number of Credits	1	:	4
Course Assessmen	t Methods	:	Continuous assessment through tutorials, attendance, home assignments,
			and one Minor test and One Major Theory Examination
Course Outcomes		:	The students are expected to be able to demonstrate the following
			knowledge, skills and attitudes after completing this course

1. Able to understand the limitations of conventional and need of unconventional processes.

- 2. Able to understand working principle, mechanics of material removal, and applications of USM, AJM, and MAF.
- 3. Acquire the knowledge about working principle and applications of EDM, PAM, LBM and EBM.
- 4. Ability to know about chemical, electrochemical and hybrid unconventional machining processes.

Topics Covered

UNIT-I

Introduction: Limitations of Conventional machining processes, Need of advanced machining processes and its classifications, Comparison between precision and micro machining, future trends of advanced machining

UNIT-II

Mechanical Type Metal Removal Processes: Ultrasonic machining; Elements of the process; Tool design and economic considerations; Applications and limitations, Abrasive jet and Abrasive water jet machining principles; Mechanics of metal removal; Design of nozzles; applications, Abrasive finishing process, Magnetic abrasive finishing process

UNIT-III

Thermal Type Advance Machining Processes: Classification, General principles and applications of Electro discharge, Plasma arc, Ion beam, Laser beam, Electron beam machining, Mechanics of metal removal in EDM, selection of EDM pulse generator dielectric, machining accuracy, surface finish and surface damage in EDM, Generation and control of electron beam for machining applications, advantages and limitations.

UNIT-IV

Chemical and Electro-chemical Type Metal Removal Processes: Principle, working advantages, disadvantages and 9 applications of Electrochemical, Chemical machining, Economy aspects of ECM, Electro-chemical deburring and honning

Hybrid Unconventional Machining Processes: Introduction to ECDM, ECAM, Abrasive EDM etc.

Textbooks

1.	Advance Machining Processes- V.K. Jain (New Age)
2.	Modern Machining Processes- P.C. Pandey (New Age)
Refere	ence books
1.	Manufacturing Processes- Degarmo(McGraw-Hill International)
2.	Manufacturing Processes- Kalpakjian (Tata McGraw-Hill International)

MME-120 MINOR PL	RO.	IECT		
CourseCategory	:	Program Core (PC)		
Pre-requisites	:	NIL		
Contact Hours/Week	:	Lecture: 0, Tutorial: 0, Practical: 8		
Number of Credits	:	4		
Course Assessment	:	Continuous assessment through attendance, project reports, mid semester		
Methods		presentation and end semester presentation.		
Course Outcomes	:	The students are expected to be able to demonstrate the following		
		knowledge, skills and attitudes after completing this course		
1. Understanding of impo	rtan	ce of literature survey.		
2. Develop ability to comp	oreł	end the research paper.		
3. Understanding of steps	inv	olved in writing the research paper.		
4. Develop the ability to v	vrite	a research paper.		

MME-130	DISSERT	AT	ION PART-I
Course Categ	ory	:	Program Core (PC)
Pre-requisite	Subject	:	NIL
Contact Hou	rs/Week	:	Lecture : 0, Tutorial : 0, Practical: 8
Number of Credits : 4		4	
Course Asses	sment	:	Continuous assessment through attendance, project reports, mid semester
Methods			presentation and end semester presentation.
Course Outco	omes	:	The students are expected to be able to demonstrate the following knowledge, skills and attitudes after completing this course
1. Analyze a computati	and apply pr onal problem	ior i ms	knowledge to designing and implementing solutions to open-ended while considering multiple realistic constraints.

2. Analyze the selected topic, organize the content and communicate to audience in an effective manner

- 3. Analyze Database, Network and Application Design methods
- 4. Evaluate the various validation and verification methods

MME-140	SEMINAR			

CourseCategory	:	Program Core (PC)
Pre-requisites	:	-
Contact Hours/Week	:	Lecture: 0, Tutorial: 0, Practical: 4
Number of Credits	:	2
CourseAssessment	:	Continuous assessment through presentations and viva voce
Methods		
Course Outcomes	:	The students are expected to be able to demonstrate the following
		knowledge, skills and attitudes after completing this course
1. Ability to understand the working in real environment and get acquainted with the organization		
structure, business operations and administrative functions.		
2. They able to enhance the communications and presentation skills.		

3. Ability to evaluate, credit, and synthesize sources.

4. Understanding to write technical documents and give oral presentations related to the work completed.

-			
MME-150	DISSERT	ΆT	TON PART-II
Course categ	ory	:	Program Core (PC)
Pre-requisite	Subject	:	Dissertation Part-I
Contact hour	s/week	:	Lecture : 0, Tutorial : 0, Practical: 28
Number of C	redits	:	14
Course Assessment		:	Continuous assessment through attendance, project reports, mid semester
Methods			presentation and end semester presentation.
Course Outcomes		:	The students are expected to be able to demonstrate the following
			knowledge, skills and attitudes after completing this course
1. Synthesizing and applying prior knowledge to designing and implementing solutions to open-ended			
computational problems while considering multiple realistic constraints.			
2. Analyze tl	ne selected t	opi	c, organize the content and communicate to audience in an effective manner

3. Analyze the selected topic, organize the content and communi 3. Analyze Database, Network and Application Design methods

- 4. Evaluate the various validation and verification methods
- 5. Analyzing professional issues, including ethical, legal and security issues, related to computing projects

MME-151	MACHIN	MACHINE TOOL DESIGN	
Course Categ	gory	:	Program Electives (PE)
Pre-requisite	Subject	:	NIL
Contact Hou	rs/Week	:	Lecture: 3, Tutorial: 1, Practical: 0
Number of C	redits	:	4
Course Asses	sment	:	Continuous assessment through tutorials, attendance, home assignments,
Methods			quizzes, practical work, record, viva voce and one Minor test and One
			Major Theory examination.

Course Outcomes	:	The students are expected to be able to demonstrate the following
		knowledge, skills and attitudes after completing this course

- 1. Design different machine tools considering static and dynamic loads.
- 2. Familiar with various attachments, equipment's and machine tools required for metal cutting processes
- 3. Able to select/optimize various machining parameters
- 4. Understand effect of vibrations on life of machine tools.
- 5. Understand design considerations for Special features in Machine tools.

UNIT-I

 Machine Tool Drive: working and auxiliary motion in machine, Machine tool drives, Hydraulic transmission,
 9

 Mechanical transmission, General requirements of machine tool design, Layout of machine tools.
 9

Regulation of Speed and Feed Rates: Aim of speed feed regulation, stepped regulation of speed, design of speed box, Design of feed box, Special cases of gear box design, Set stopped regulation of speed and feed rates.

UNIT-II

Design of Machine Tool Structure: Fundamentals of machine tool structures and their requirements, Design9criteria of machine tool structure, Static and dynamic stiffness, Design of beds and columns, Design of housing
models, Techniques in design of machine tool structure.9

UNIT-III

Design of Guide-ways and power Screws: Function and type of guide-ways, design of slide-ways, Protecting 9 devices for slide-ways, Design of power screws.

UNIT-IV

Design of Spindles and Spindle Supports: Materials for spindles, Design of spindles, Antifriction bearings,
sliding bearings. Dynamics of Machines Tools: General procedure of assessing dynamic stability of EES,
Cutting processing, closed loop system, Dynamic characteristics of cutting process, Stability analysis.9

Books & References

- 1. Machine Tool Design- N.K. Mehta (Tata McGraw Hill)
- 2. Machine Tool design Handbook (CMTI Bangalore)
- 3. Design of Machine Tools- S. K. Basu& D Pal (Oxford University Press)
- 4. Machine Tools & Tool Desig –P.C. Sharma (S. Chand Publishing)

MME-152	DESIGN FOR MANUFACTURE AND ASSEMBLY		
Course Catego	ory	:	Program Elective (PE)
Pre-requisites	5	:	NIL
Contact Hour	·s/Week	:	Lecture: 3, Tutorial: 1, Practical: 0
Number of C	redits	:	4
Course Asses	sment	:	Continuous assessment through tutorials, attendance, home assignments,
Methods			quizzes, and one Minor test and One Major Theory examination.
Course Outco	mes	:	The students are expected to be able to demonstrate the following knowledge,
			skills and attitudes after completing this course

- 1. Understand the quality aspects of design for manufacture and assembly.
- 2. Apply the concept of DFM for casting, welding, forming and assembly.
- 3. Identify the design factors and processes as per customer specifications.
- 4. Apply the DFM method for a given product.

UNIT-I

Introduction to DFMA: History of DFMA, Steps for applying DFMA during product design, Advantages of applying DFMA during product design, Reasons for not implementing DFMA, Traditional design and manufacture Vs concurrent engineering, DFA index, poke-yoke, lean principles, DFMA as the tool for concurrent engineering, three DFMA criteria for retaining components for redesign of a product.

Introduction to Manufacturing Process: Classification of manufacturing process, Basic manufacturing processes, Mechanical properties of material: Tensile properties, Engineering stress-strain, True stress strain, Compression properties, Shear properties, Introduction to materials and material selection: Classification of engineering materials, Material selection for product design.

UNIT-II

Metal Casting: Appraisal of various casting processes, Selection of casting process, General design considerations 9 for casting – Use of Solidification Simulation in casting design – Product design rules for sand casting.

Forging: Design factors for Forging – Closed die forging design – Location of parting lines of dies – Drop forging die design – General design recommendations.

Extrusion, Sheet Metal Work & Plastics:Design guidelines for Extruded sections - Keeler Goodman Forming Limit Diagram -Component Design for Blanking. Plastics: Viscoelastic and Creep behavior in plastics – Design guidelines for Plastic components. Injection moulding: Typical characteristics of injection moulded parts, Effect of shrinkage, Suitable materials, Design recommendations.

Design for powder metal processing: Introduction to powder metal processing, Typical characteristics and applications, Limitations, Design recommendations.

UNIT-III

 Machining Process:Overview of various machining processes – general design rules for machining -Dimensional tolerance and surface roughness – Design for Machining ease – Redesigning of components for machining ease with suitable examples, General design recommendations for machined parts
 9

Metal Joining: Appraisal of various welding processes, Factors in design of weldments – General design guidelines – pre and post treatment of welds – Effects of thermal stresses in weld joints – Design of brazed joints. Design for adhesively bonded assemblies: Introduction, Typical characteristics, Suitable materials, Design recommendations for adhesive joint.

UNIT-IV

Design for Assembly: The assembly process, Characteristics and applications, Example of common assembly, Economic significance of assembly, General taxonomies of assembly operation and systems, Developmentof Systematic DFA Methodology, Assembling a product, Design for Assembly: Introduction, Design consideration, Design for Fasteners: Introduction, Design recommendation for fasteners.

Textbooks

1.	Geoffrey Boothroyd, Peter Dewhurst and Winston Knight (2002) Product Design forManufacture and Assembly,
	Second Edition, CRC press, Taylor & Francis, Florida, USA

- 2. George E. Deiter, Engineering design-Material & Processing Approach, Mc. Graw Hill, Intl. 2nd Ed.2000.
- 3. Handbook of Product Design for Manufacture: A Practical Guide to Low Cost Production- J.G. Bralla (McGraw Hill)

Reference books

1.	A.K Chitale and R.C Gupta, Product design and Manufacturing / A.K Chitale, Prentice – Hall of India, New Delhi,
	2003.

2. Fundamental of Design and Manufacturing, G.K. Lal, Vijay Gupta, N.V.Reddy, Alpha Science Int Ltd.

3.	Surender Kumar & GouthamSutradhar, Design and Manufacturing, Oxford & IBH, Publishing Co. Pvt. Ltd., New
	Delhi, 1998.

MME-154A ROBOTIC ENGINEERING

Course Category	:	Program Elective (PE)
Pre-requisites	:	
Contact Hours/Week	:	Lecture : 3, Tutorial : 1, Practical: 0
Number of Credits	:	4
Course Assessment Methods	:	Continuous assessment through tutorials, attendance, home assignments, quizzes, One
		Minor test and One Major Theory
Course Outcomes	:	The students are expected to be able to demonstrate the following knowledge, skills
		and attitudes after completing this course

1. Ability to understand the Classification of Robots, Robot specifications, applications and Robot Sensors.

2. Ability to solve problems related to Manipulator kinematics, modeling of mechanical systems and elements.

3. Ability to solve problems related to Manipulator dynamics.

4. Ability to design and develop various Robot Control and robot programming for welding, material handling.

Topics Covered

UNIT-I

Introduction

Definition, Classification of Robots, Geometric classification and control classification, Robot Componentsmanipulator, controller and its elements, sensory devices, Functions of a robot system, Robot specifications and applications,

9

9

9

9

Robot Sensors

Introduction, Classification, Non-optical position sensors, Optical position sensors, Velocity sensors, Acceleration sensors, Contact and non-contact type proximity sensors.

UNIT-II

Manipulator Kinematics

Position and orientation of a rigid body, Homogeneous coordinates, Coordinate transformations-translational, rotational, Matrix operators, Coordinate reference frames, Homogeneous transformations and the manipulator, forward solution, inverse solution, Representation of joints, link representation using D-H parameters.

Mechanical Systems: Components, Dynamics and Modeling

Introduction, Linear motion, Rotational motion, Moment of Inertia-calculation and measurement, Mechanical work and power, Motion conversion, Rotary-to-rotary motion, Rotary-to-linear motion, Problems with real world components, Modeling of mechanical systems, elements, and examples.

UNIT-III

Jacobians: Velocities, Static Forces

Examples of D-H parameters and link transforms, Velocity analysis, linear and rotational velocity of rigid bodies, velocity propagation, Jacobians, Singularities, velocity transformation and inverse velocity and acceleration, force transformation and inverse force, examples.

Manipulator Dynamics

Introduction, Lagrange's equation kinetic and potential energy. Link inertia, Tensor, link Jacobian Manipulator inertia tensor. Newton - Euler formulation, Lagrange - Euler formulation, problems.

UNIT-IV

Robot Control: Linear, Nonlinear and Force Control

Control Techniques, Dynamics Systems, Transfer Function and State-Space Representation, Performance and stability of Feedback Control, Closed-loop control in position servo, Effect of friction and gravity, DC servomotor, position with no friction or gravity, position with nonzero friction and/or gravity, PID Control, State-Feedback Control, Joint Controllers. Control of a moving block, Multivariable Robot Control, Stability of Multi-DOF Robot, PD Position Control, Inverse Dynamic Control, Force control.

Robot Programming

Robot control sequencing, Language based programming, Program algorithm, examples, VAL language, robot programming for welding, machine tools, material handling etc.

Textbooks

- 1. Introduction to Robotics, S.K.Saha, McGraw Hill Publication
- 2. Robotics: Fundamental Concepts and Analysis, Ashitava Ghosal, Oxford University Press
- 3. Robot Dynamics and Control, Mark W. Spong, M. Vidyasagar, John Wiley & Sons
- 3. Robotic Engineering-R.D. Klafter, T.A. Chmielewski and M. Negin, Prentice-Hall International
- 2. Robotics K.S. Fu, R.C. Gonzalez & CSG Lee, McGraw Hill International
- 3. Robotics-K.C. Jain and L.N. Aggrawal, Khanna Publishers
- 4. Robotics for Engineers- Y. Koren, McGraw Hill
- 5. Introduction to Robotics J.J. Craig, Pearson Education

Reference books

- 1. Robotic Technology-Phillipe Collet, Prentice Hall of India
- 2. An Introduction to Robot Technology- Coiffet and Chirooza, Kogan Page
- 3. Robots & Manufacturing Automation Asfahl , Wiley Eastern
- 4. Industrial Robots- Groover, Mitchell Weiss, Nagel Octrey- McGraw Hill
- 5. Robotics Technology and Flexible Automation, S.R. Deb and S. Deb, McGraw Hill Education

MME-159	DESIGN O	FE	CXPERIMENTS
Course Catego	ory	:	Program Electives (PE)
Pre-requisites	5	:	NIL
Contact Hour	·s/Week	:	Lecture: 3, Tutorial: 1, Practical: 0
Number of C	redits	•	4
Course	Assessment	:	Continuous assessment through tutorials, attendance, home assignments,
Methods			quizzes, and One Minor test and One Major Theory examination.
Course Outco	omes	:	The students are expected to be able to demonstrate the following knowledge, skills and attitudes after completing this course. Also, able to plan, design and conduct experiments efficiently and effectively, and analyse the resulting data to obtain objective conclusions. Both design and statistical analysis issues are discussed.

- 1. Understanding of western and Taguchi quality philosophy and steps involved in robust design.
- 2. Understanding of classical and factorial experiments and experimental design.
- 3. Opportunities to use the principles taught in the course arise in all phases of engineeringwork, including new product design and development, process development, & manufacturing process improvement.
- 4. Ability to analyse and interpret the experimental data using ANOVA and regression analysis.
- 5. Understanding of Taguchi's orthogonal arrays and Signal to Noise ratio, parameter design and tolerance design.

Topics Covered

UNIT-I

 Quality Control and Experimental Design: Quality assurance & Total Quality control, Basic statistical concepts,
 9

 Control of accuracy and precision, Quality Engineering System.
 9

Western and Taguchi quality philosophy, Elements of cost, Noise factors causes of variation, Quadratic loss function and variation of quadratic loss functions.

Robust Design: Steps in robust design: parameter design and tolerance design, its application to control of processes with high variability reliability improvement through experiments,Illustration through numerical examples. Software applications and case studies

UNIT-II

ExperimentalDesign:Introduction and application of experimental design, single factor experiments, randomized 9 blocks, Latin square designs and extensions.

Fractional factorial designs, two-level, three-level and mixed-level factorials and fractional factorials, applications to quality control problems., factor effects, factor interactions, Fractional factorial design,

Saturated design, Central composite designs, Illustration through numerical examples.

UNIT-III

Analysis and Interpretation of Experimental Data: Measures of variability, Ranking method, column effect method 9 and plotting method, Analysis of variance (ANOVA), parameter optimization. Mathematical models from experimental data, illustration through numerical examples.Repeated measures design, analysis of covariance and its applications in comparing alternatives.

UNIT-IV

Taguchi's Orthogonal Arrays: Types orthogonal arrays, Selection of standard orthogonal arrays, Linear graphs and
interaction assignment, dummy level technique, Compound factor method, modification of linear graphs, Strategies for
constructing orthogonal arrays.9

Signal to Noise ratio (S-N Ratios):Evaluation of sensitivity to noise, Signal to noise ratios for static problems, STB,NTB,LTB – type criteria.

Parameter Design and Tolerance Design: Parameter and tolerance design concepts, Taguchi's arrays, Parameter and tolerance design strategy, Illustrations through numerical examples.

Textbooks

1.	M. S. Phadake - Quality Engineering using Robust Design, Prentice Hall, Englewood Clifts, New Jersey, 1989.
2.	Douglas Montgomery, Design and analysis of experiments, Willey India Pvt. Ltd., 5th Edition, 2007.
3.	P. J. Ross, Taguchi, Techniques for Quality Engineering, 2nd Edition. McGraw Hill Int. Edition, 1996.

- 4. Sharma M K, Design and Analysis of Experiments, 2012, Prentice Hall India Learning Private Limited.
- Winer BJ, 1962, Statistical Principles in Experimental Design, 2nd Edition, McGraw-Hill

Reference books

itti	created books
1.	T. B. Barker, M. Dekker, Quality by Experimental Design, Inc ASQC Quality Press, 1985
2.	Quality Control and Applications - B.L. Hansen & P.M. Ghare (Prentice Hall of India)
3.	C. F. Jeff Wu, Michael Hamada, Experiments planning, analysis and parameter design optimization, John Willey
	Ed., 2002.
4.	W. L. Condra, Marcel Dekker, Reliability improvement by Experiments, Inc ASQC Quality Press, 1985.
5.	Hinkelmann K and Kempthorne, O, 1994, Design and Analysis of Experiments
	(Vol I), Wiley.

MME-155	MICRO-MACHINING AND PRECISION ENGINEERING		
Course Category		:	Program Electives (PE)
Pre-requisites	5	:	NIL
Contact Hours/Week		:	Lecture: 3, Tutorial: 1, Practical: 0
Number of Credits		:	4
Course Asses	sment	:	Continuous assessment through tutorials, attendance, home assignments,
Methods			quizzes, practical work, record, viva voce and one Minor test and One Major
			Theory examination.

Course Outcomes	:	The students are expected to be able to demonstrate the following knowledge, skills and attitudes after completing this course
-----------------	---	--

- 1. The importance of micromachining technologies by studied characterization of micro-machining, Tool making, Micro-machinability of materials, LIGA and Diamond micro-machining etc.
- 2. The Different machining principle of micro EDM, micro-WEDG, micro-ECM, hybrid micro-machining method, on-line measurement by machine vision and integrated probe.
- 3. Different Abrasive micromachining and micro grinding behavior of materials surface by Laser micromachining, laser micro-drilling, laser micro-adjustment, and laser surface structuring etc.
- 4. The different concepts regarding Micro-machining by finishing techniques by scanning tunneling microscopes, atomic force microscope, elastic transmission method, computer aided measurement testingetc.

UNIT-I

Introduction to micromachining technologies, bulk micromachining, LIGA, Surface Micromachining, Characterization 9 of micro-machining, Tool making, Micromachinability of materials, Diamond micro-machining:

machining principles, diamond turning, diamond grinding, accuracy and dimensional control, , future trends in ultrahigh speed machining

UNIT-II

Microelectro discharge Machining: Principles of micro-EDM, micro-EDM by Die-sinking and WEDG, micro-9 WEDM, micro-WEDG, micro-ECM, Principles of micro-turning, micro-drilling and micro-milling, hybrid micromachining method, on-line measurement by machine vision and integrated probe.

UNIT-III

Abrasive micromachining and micro grinding: Abrasive micromachining mechanisms, micro-grinding mechanism, micro-machining rate, micro-machining cooling media;Laser micromachining: Principles of laser material removal, laser micro-drilling, laser micro-adjustment, laser surface structuring, laser micro-cutting.

UNIT-IV

Micro-machining by finishing techniques: micro-lapping, microhoning, magneto-abrasive micromachining and 9 finishing (MAF), ELID Grinding, Measuring Techniques in micro-machining: stylus instruments, scanning tunneling microscopes, atomic force microscope, measurement of micromoles and slots using optical method, elastic transmission method, computer aided measurement testing, surface integrity and other related measurements

Tex	tbooks
1.	J. M. Geough, Micro-machining of Engineering Materials, Edited by Marcel Dekker, 2002
2.	R.W. Johnstone, M. Parameswaran, An introduction to surface-micromachining, Kluwer Academic Publishers, 2004
3.	N. P Mahalik. Micro-manufacturing and nano-technology, edited by, Springer Publication, 2006
4.	M. P. Groover, Automation, Production Systems and Computer-Integrated Manufacturing, 2003
Ref	erence books
1.	J. M. Geough, Micro-machining of Engineering Materials, Edited by Marcel Dekker, 2002
2.	N. P. Mahalik, Micro-manufacturing and nano-technology, edited by, Springer Publication, 2006

MME-156	PRODUCTION AND OPERATIONS MANAGEMENT		
CourseCategory		:	Program Elective (PE)
Pre-requisites		:	NIL
Contact Hours/Week		:	Lecture: 3, Tutorial: 1, Practical: 0
Number of Credits		•	4

Course Assessment	:	Continuous assessment through tutorials, attendance, home assignment	ts,
Methods		quizzes, One Minor test and One Major Theory examination.	-
Course Outcomes	1:	The students are expected to be able to demonstrate the following knowledge	e.
		skills and attitudes after completing this course	J- J
1. Ability to understar	$\frac{1}{1}$ d t	e Operations strategy, forecasting method, MRP type systems, Embedding J	IT
into MRP			
2 Ability to solve pr	rohl	ems of Scheduling & control functions. Simulation methodology and Ty	vo
2. Aronny to solve pr	n	enis of Scheduling & control functions, Simulation methodology and TV	vo
3 Ability to develop	u. var	ious Design of Facilities & Jobs IIT implementation Considerations in it	oh
design Work mass	vai	nous Design of Facilities & 3005, 311 implementation, considerations in ju	00
A hility to apply the		nents and standards.	
4. Adding to apply the		icept of Product Design & Process Selection.	
5. able to understand t	ine i	basics of material management and inventory.	
Topics Covered			
UNIT-I	<u> </u>		0
Introduction: Operations stra	ateg	y, Framework for operations strategy in manufacturing. Selection of forecasting	9
method, Focus forecasting, Ag	gre	gate planning techniques, Inventory systems for independent demand,	
Operations Scheduling: Sche	edul	ing & control functions, Priority rules and techniques, Single machine scheduling	
problems, Scheduling in jobs of)n 'i	n' machines, Personal scheduling.	
UNIT-II			_
Design of Facilities & Jobs	: Sti	ategic capacity planning concepts, determining capacity requirements, Planning	9
service capacity, JIT product	ion	systems, JIT implementation requirements, Facility and Plant location methods,	
Facility, Process and Product	layo	ut, GT layout, Retail service layout, Computer aided layout techniques, Job design	
and work measurement, Work measurements and standards.			
Product Design & Process Selection: Product design process, Designing for the customer QFD, Value analysis,			
designing products for manufa	ictui	er & assembly, Choosing from alternative processes & equipment, Virtual factory,	
Waiting line management & m	lode	IS.	
			0
Static Inventory Models: Sta	itic 1	nventory models under uncertainty, decision criteria for inventory problems MRP	9
type systems.	D		
Dynamic Inventory Models:	Dy	namic inventory problems under risk and under uncertainty; Multi-stage inventory	
problems; Materials Requirem	ent I	Planning (MRP), inputs, Outputs, MRP computation, EOQ-MRP comparisons; MRP	
types			
UNIT-IV	11	alexes and extremine Marte Cale simulations remote at incentants. Desirable	0
simulation: Simulation met	noa	biogy and categories; Monte-Carlo simulation; perpetual inventory; Periodic	9
Inventory Control systems	011 0 True	I joint probability distribution.	
Excess materials: Inventory ou	1 yp	es of control systems, selective inventory control, inventory system development,	
Excess materials, inventory sy	sten	i inprovement, Aggregate inventory measurement.	
Textbooks			
1. Production and Operation	ns n	anagement- Adam & Ebert (Prentice Hall India)	
2. Operations management-	- Bu	ffa (John Wiley)	
3. Operations management-	- Sta	rr (Prentice Hall)	
4. Inventory Management -	D.	Chandra Bose (Prentice Hall of India)	
Reference book	-	× /	
1. Materials Management:	An]	ntegrated Approach - P. Gopalakrishnan & M. Sundersan (Prentice Hall of India)	

1. Materials Management: An Integrated Approach - P. Gopalakrishnan & M. Sundersan (Prentice Hall of India)

MME-157	ADDITIVE	Μ	ANUFACTURING
Course Categ	ory	:	Program Elective (PE)
Pre-requisites	8	:	NIL
Contact Hour	s/Week	:	Lecture : 3, Tutorial : 1, Practical: 0
Number of Credits		:	4
Course	Assessment	:	Continuous assessment through tutorials, attendance, home assignments,
Methods			quizzes, one Minor test and One Major Theory examination.
Course Outcomes		:	The students are expected to be able to demonstrate the following knowledge
			and skills after completing this course

- 5. Ability to understand the fundamental of Additive manufacturing and its varieties like liquid based, solid based and powder-based AM technologies, their potential to support design and manufacturing.
- 6. Ability to understand the various types of Pre-processing, processing, post-processing errors in AM and to acknowledge the various types of data formats and software's used in AM.
- 7. Ability to demonstrate the applications of AM in design analysis, aerospace, automotive, biomedical and other fields and research challenges associated with AM.

UNIT-I

Introduction:Need for Additive Manufacturing, Development of AM systems, AM Process Chain, commonly used9Terms, Impact of AM on product development, Virtual prototyping, Rapid tooling, Rapid prototyping to AM,
Classification of AM process, Advantages and Limitations, Applications of AM-Material Relationship, Application in
Design, Application in Engineering, Analysis and Planning, Aerospace Industry, Automotive Industry, Medical and
Bioengineering, Web Based Rapid Prototyping Systems etc.9

UNIT-II

Liquid-based AM Systems: Stereo lithography Apparatus (SLA): Working principle, Pre-build process, part building and post building processes, photo polymerization SL resin, part quality and process planning, recoating issues, advantages, limitations and applications. Case studies.

Solid Ground Curing (SGC): Working principle, Process, Applications, Advantages and Disadvantages, Case studies. Polyjet: working principle, Process, Applications, Advantages and Disadvantages, Case studies.

Solid-based AM Systems: Laminated Object Manufacturing (LOM): Working Principles, details of processes, products, materials, advantages, limitations and applications - Case studies.

Fused Deposition Modeling (FDM): Principle, details of processes, process variables, types, products, materials and applications. Case studies. Multi-Jet Modelling (MJM): working principle, Process, Applications, Advantages and Disadvantages, Case studies.

UNIT-III

 Powder Based AM Systems: Selective laser sintering (SLS): Principle, process, Indirect and direct SLS- powder
 9

 structures, materials, post processing, surface deviation and accuracy, Applications. Case studies.
 9

Laser Engineered Net Shaping (LENS): Process, working principle, Applications, Advantages and Disadvantages, Case studies.

Other Additive Manufacturing Systems:

Three-dimensional Printing (3DP): Principle, basic process, Physics of 3DP, types of printing, process capabilities, material system. Solid based, Liquid based, and powder based 3DP systems, strength and weakness, Applications and case studies. Shape Deposition Manufacturing (SDM), Ballistic Particle Manufacturing (BPM), Selective Laser Melting, Electron Beam Melting.

UNIT-IV

AM Data Formats: Reengineering for Digital Representation, STL Format, STL File Problems, Consequence of 9 Building Valid and Invalid Tessellated Models, STL file Repairs: Generic Solution, Other Translators, Newly Proposed Formats. Mesh Refining by Sub division Techniques.

AM	Software's: Need for AM software, Features of various AM software's like MAGICS, Mimics, Solid View, View	
Exp	pert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor, 3-matic, MeshLab.	
Tex	tbooks	
1.	Gibson, I., Rosen, D.W. and Stucker, B., "Additive Manufacturing Methodologies: Rapid	
	Prototyping to Direct Digital Manufacturing", Springer, 2010.	
2.	Chua, C.K., Leong K.F. and Lim C.S., "Rapid prototyping: Principles and applications", second	
	edition, World Scientific Publishers, 2010.	
3.	Kamrani, A.K. and Nasr, E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.	
Ref	erence books	
1.	Hilton, P.D. and Jacobs, P.F., Rapid Tooling: Technologies and Industrial Applications, CRC	
	press, 2005.	

MME-161	FINITE EI	LEM	IENT METHOD		
Course cate	jory	:	Program Electives (PE)		
Pre-requisit	e Subject	:	NIL		
Contact hou	rs/week	:	Lecture : 3, Tutorial : 1, Practical: 0		
Number of C	credits	:	4		
Course Asse	ssment	:	Continuous assessment through tutorials, attendance, hom	ıe	
methods			assignments, quizzes, practical work, record, viva voce , one major te	st	
			and one major examination.		
Course Outo	omes	:	The students are expected to be able to demonstrate the following	ıg	
			knowledge, skills and attitudes after completing this course		
1. To de	velop the ab	oility	\prime to generate the governing finite element equations for systems governe	ed	
by pa	rtial differer	ntia	equations.		
2. To un	derstand the	e us	e of the basic finite elements for structural applications using truss, bean	n,	
frame	and plane	eler	nents;		
3. To un	derstand the	e ap	plication and use of the finite element method for heat transfer problem	s.	
4. To de	monstrate t	he :	ability to evaluate and interpret Finite Element Method analysis results fo	or	
desig	n and evalua	atio	n purposes.		
5. IO de	evelop a ba	asic	understanding of the limitations of the Finite Element Method an	Id	
under	stand the p	oss	ble error sources in its use.		
Topics Cover	ed				
UNIT-I					
Introduction	: Historical	ba	ckground basic concepts of FEM, Comparison with Finite Difference	9	
Method, Adva	antages and	d li	mitations. Different approaches in Finite Element Method-Discrete.	-	
Variational ap	Variational approach. Weighted Residual methods.				
UNIT-II	UNIT-II				
Direct Probl	ems- Sprind	a,⊦	ydraulic Network; Resistance Network and Truss Systems	9	
Finite eleme	nt analysis	s of	1-D problems: formulation by different approaches (direct, potential		
energy and (- Galerkin); [Deri	vation of elemental equations and their assembly, solution and its		
postprocessin	postprocessing. Applications in heat transfer, fluid mechanics and solid mechanics. Bending of				
beams, analy	beams, analysis of truss and frame.				
UNIT-III					
Finite eleme	ent analysis	s of	2-D problems: Finite Element modelling of single variable problems,	9	
triangular an	d rectangul	ar	elements; Applications in heat transfer, fluid mechanics and solid		
mechanics;					
UNIT-IV					
Numerical c	onsideratio	ons	: numerical integration, error analysis, mesh refinement. Plane stress	9	
and plane stra	ain problems	s; B	ending of plates; Eigen value and time dependent problems; Discussion		
about preproc	cessors, pos	tpro	cessors and finite element packages.		

l

Books & References

- 1. An Introduction to Finite Element Method J. N. Reddy (Tata McGraw Hill).
- 2. Finite Element Procedure in Engineering Analysis K.J. Bathe (Tata McGraw Hill). (New Central book Agency)
- 3. Concepts and Application of Finite Element Analysis- R.D. Cook, D.S. Malcus and M.E. Plesha (John Wiley)
- 4. Introduction to Finite Elements in Engineering- T.R Chandrupatla and A.D. Belegundu (Prentice Hall India)
- 5. Numerical Methods- E. Balagurswamy (Tata Mc Graw Hill)

MME-169	ADVANCE	M	ATERIAL & CHARACTERIZATION		
CourseCatego	ory	:	Program Electives(PE)		
Pre-requisites	5	:	NIL		
Contact Hour	·s/Week	:	Lecture: 3, Tutorial: 1, Practical: 0		
Number of C	redits	:	4		
Course	Assessment	:	Continuous assessment through tutorials, attendance, home assignment	ts,	
Methods			quizzes, practical work, record, viva voce and One Minor test and One Major		
Course Outer			Theory & Practical Examination	2.0	
Course Outco	omes	•	skills, and attitudes after completing this course	ge,	
1. Ability to	understand t	he	role of computer in the areas of automation, planning and manufacturing f	for	
improving	g their effectiv	ven	ess.		
2. Ability to	develop man	ual	part program and computer assisted part program to produce components.		
3. Ability to	o design and	de	velop various system such as feedback, interpolator, material handling an	nd	
implemer	ntation of adap	otiv	e control.		
4. Ability to	apply the cor	nce	pt of group technology and computer assisted process planning.		
Topics Covered					
UNIT-I	L				
Materials and	Classification :	Int	roduction. Demand of advanced materials Classification of different materials and	9	
alloys. Macro a	allovs. Macro and micro analysis of materials. Segregation and bonding. Strengthening mechanisms.			-	
UNIT-II	<i>.</i>				
Properties of N	Properties of Materials: Flexural Test, Toughness tests, Creep characteristics, Hardness tests, Fracture test, Griffith's 9			9	
crack theory, St	rain hardening,	Sir	gle crystal growth.		
Wear: Modes of	of adhesive, abr	asiv	e, erosive, fretting, sliding.		
UNIT-III					
Techniques of	Materials Cha	arac	terization: Definition; importance and application of X-ray diffraction technique	9	
for phase identi	fication,Scanni	ng	Electron Microscope; Principles of image formation in SEM, Energy dispersive X-		
ray analysis, Th	ermo-mechanic		behavior of composites materials, DSC, AFM.		
UNIT-IV Modown Motor	rials and Allar		Super allows refrectory metaricle. Share memory allows. Advanced Composites	0	
Particulate and	dispersion com	ys:	super anoys-remactory materials, shape memory anoys, Advanced Composites-	9	
polymerization	Engineering ar	nnli	cations of different materials		
Textbooks	u	-Pil			
1. Engineerir	ng Materials and	d A	pplications, P. Flinn and P.K. Trojan, MIR Publications		
2. Engineerir	ng Materials: Po	olyr	ners, Ceramics and Composites, A.K Bhargava, Prentice Hall of India		
3. Manufactu	ring processes	for	Engineering Materials, SeropeKalpakjian, Wesley Publishing Co.		

An introduction to Physical Metallurgy, S.H. Avner, McGraw Hill				
Advances in Materials and Their Applications, P. Rama Rao, Wiley Eastern				
Mechanical Metallurgy, Dieter, McGraw Hill				
Material Science & Engineering, W.D. Callister, Jr, Wesley Publishing Co.				
erence books				
Mechanical Metallurgy, Dieter, McGraw Hill				
Material Science & Engineering, W.D. Callister, Jr, Wesley Publishing Co.				

MME-163	INDUSTRI	AL	AUTOMATION		
Course Categ	ory	:	Program Electives (PE)		
Pre-requisites	5	:	NIL		
Contact Hour	rs/Week	:	Lecture : 3, Tutorial : 1, Practical: 0		
Number of C	redits	:	4		
Course Asses	sment	:	Continuous assessment through tutorials, attendance, home assignment	nents,	
Methods			quizzes, and Three Minor tests and One Major Theory.		
Course Outco	omes	:	The students are expected to be able to demonstrate the following knowl	ledge,	
			skills and attitudes after completing this course		
1. Ability to	identify and	exp	blain potential areas of automation in manufacturing.		
2. Ability to	differentiate t	he	various control aspects of automation.		
3. Ability to	design comp	one	ents and systems related to industrial automation considering the econ	omic,	
social, ma	nufacturabilit	y ai	nd sustainability aspects	~	
			-		
Topics Covered	1				
UNIT-I					
Introduction to	Automation			9	
Automation in p	production syste	em,	Mechanization and automation, Types of automation, Principles and strategies		
of Automation,	of Automation, Basic elements of an automated system, Levels of automations, Advanced Automation Function,				
Mechanical, ele	Mechanical, electrical, hydraulic and Pneumatic automation devices and controls, Economics of automation.				
Control Tech	Control Technologies in Automation:Industrial Control Systems, Process Industries Versus Discrete-				
Manufacturing	Industries, Con	tinu	ous Versus Discrete Control, Automatic Process Control, Building Blocks of		
Automation Sys	stems, Distribut	ed (Control System: Functional Requirements & Configurations.		
UNIT-II				-	
Automated Pro	oduction Lines	:		9	
Components of	a manufacturi	ng	system, Single station manufacturing cells, Manual Automated Flow lines,		
Methods of Wo	ork-part Transpo	ort,	Transfer Mechanism, Buffer Storage, Automation for Machining Operations,		
Design and Fa	Design and Fabrication Considerations, Analysis of Transfer Lines Without Storage, Partial Automation,				
Automated Flow	w Lines with St	orag	ge Buffers, Computer Simulation of Automated Flow Lines.		
UNIT-III	amply Systam	. P.	Line heleneing	0	
Eundomontols	The Assembly	Dre	, Line balancing:	9	
Lines The Line	Relencing Dro	11(hlei	n Methods of Line Balancing, Elevible Manual Assembly Lines		
Automated Ass	Lines, The Line Datanening Flobleni, Methods of Line Datanening, Flexible Manual Assembly Lines.				
Feeding Device	Feeding Devices Analysis of a Single Station Assembly Machina Analysis of Multi station Assembly Machinas				
UNIT-IV	5, 1 mary 515 01 a	. 51	Sie ownou risseniory machine, ring 55 or maniformation risseniory machines.		
Automated Ins	pection and T	esti	ng:	9	
Inspection and	testing Auton	nate	d Inspection Principles and Methods, Sensor Technologies for Automated		
Inspection, Coo	Inspection and testing, reaching Machines, Other Contact Inspection Methods, Machine Vision, Other optical				
		B		L	

Insp	bection Methods. The Future Automated Factory: Trends in Manufacturing, The Future Automated Factory,
Hun	nan Workers in the Future Automated Factory, The social impact.
Tex	tbooks
1.	Mikell P.Grover, Automation, Production Systems and Computer Integrated Manufacturing, Pearson Education
	Asia
2.	Malov and Ivanov, Principles of Automation & Automated Production Process, Mir Publication.
3.	Oates and Georgy Newness, Automation in Production Engineering.
Ref	erence books
1.	Buzacott& shanty Kumar, Stochastic Models of Manufacturing Systems, Prentice Hall India
2.	K.S. Fu, R.C. Gonzalez, C.S.G. Lee, Robotics, McGraw Hill.
3.	YoremKoren, "Computer control Manufacturing Systems", McGraw Hill, 1999.

MME-164	FLEXIBLE	Μ	ANUFACTURING SYSTEM
CourseCatego	ory	:	Program Electives (PE)
Pre-requisites		:	NIL
Contact Hours/Week		:	Lecture : 3, Tutorial : 1, Practical: 0
Number of Credits		:	4
Course Assessment		:	Continuous assessment through tutorials, attendance, home assignments,
Methods			quizzes, practical work, record, viva voce and One Minor test and One Major
			Theory examination.
Course Outco	omes	:	The students are expected to be able to demonstrate the following knowledge,
			skills and attitudes after completing this course

- 1. The understanding about factors responsible for the growth of FMS, FMS types and applications, Economic justification for FMS,Co-ordinate measuring machines, Cleaning and deburring machines, FMS system support equipment.
- 2. Ability to know about the concept of GT, Part family formation-coding and classification systems, mathematical programming and graph theoretic model approach for part grouping, Cellular vs. FMS production.
- 3. Ability to understand CAPP system: Importance, principle of Generative CAPP system.
- 4. Ability to understand the concept of Quantitative methods, Implementation techniques for CAPP, criteria for selecting a CAPP system and benefits of CAPP

UNIT-I

Basics of FMS: Introduction and classification of FMS, Automated production cycle, Need, concept and measurement of flexibility, Types of flexibilities and its measurement, Economic justification and Functional requirements of FMS, FMS processing and quality assurance equipment, e.g., turning and machining centers, Co-ordinate measuring machines, Cleaning and deburring machines, AMHS equipment, cutting tool and tool management, Future trends of Flexible Manufacturing System.

UNIT-II

Group Technology: Introduction of GT, Part family formation-coding and classification systems; Part-machine group 9 analysis, Methods for cell formation, Use of different algorithms, mathematical programming and graph theoretic model approach for part grouping.

Determination of machining parameters: effect of parameters on production rate, cost and surface quality, different approaches, advantages of mathematical approach over conventional approach, solving optimization models of machining processes.

UNIT-III

Brief of FMS software and FMS Simulations

Structure and function of FMS software, simulations process, model of a Flexible manufacturing system, simulation software, limitations of simulations

9

Data bases in Flexible Manufacturing systems and its implementation

Manufacturing data systems, manufacturing data flow, computer-aided design and manufacturing considerations when planning for FMS, Implementation objectives, acceptance testing, Performance goals and expectation, maintenance **UNIT-IV**

Introduction to CAPP: Role of process planning,advantages of conventional process planning over CAPP, 9 Generative CAPP system: Importance, principle of Generative CAPP system.

Determination of manufacturing tolerances: Methods of toleranceallocation, sequential approach, integration of design and manufacturing tolerances. Determination of optimal index positions for executing fixed sequence, Quantitative methods.

Textbooks

1.	Handbook of Flexible Manufacturing System – Editor:Nand K. Jha (Academic Press, San Diego, California)
2.	Automation, Production System & Computer Integrated Manufacturing-Groover (PHI)
3.	Flexible Manufacturing System – Wernecks (Spring- Verlag)
4.	FMS in Practice – Bonetto (Northox Ford)
5.	Flexible Manufacturing Cells and systems – W. W.Luggen (PHI)
6.	Performance Modelling of Automated Manufacturing Systems –Vishwanathan&Narahari (PHI)
7.	Computer Aided manufacturing- P. N. Rao, N. K. Tewari& T. K. Kundra (Tata McGraw Hill).
8.	CAD/CAM- P. N. Rao(Tata McGraw Hill)
9.	Mikell P. Groover, Automation, Production systems and Computer Integrated Manufacturing System, Prentice Hall,
	2007.
Ref	erence books
1.	Handbook of Flexible Manufacturing System – Editor:Nand K. Jha (Academic Press, San Diego, California)
2.	Automation, Production System & Computer Integrated Manufacturing-Groover (PHI)
3.	Performance Modelling of Automated Manufacturing Systems –Vishwanathan&Narahari (PHI)
4.	Mikell P. Groover, Automation, Production systems and Computer Integrated Manufacturing System, Prentice Hall,
	2007

MME-165	CONCURRENT ENGINEERING & PRODUCT LIFECYCLE MANAGEMENT		
Course Category		:	Program Elective (PE)
Pre-requisites		:	NIL
Contact Hours/Week		:	Lecture : 3, Tutorial : 1, Practical: 0
Number of C	redits	:	4
Course	Assessment	:	Continuous assessment through tutorials, attendance, home assignments,
Methods			quizzes, Three Minor tests and One Major Theory examination.

Co τ	irse Outcomes	:	The students are expected to be able to demonstrate the following knowledge	ge,
			skills and attitudes after completing this course	
1.	Ability to understand th	e fi	ndamentals of Concurrent Engineering, CE tool box and Collaborative produ	ıct
	development.			
2.	Ability to apply the c	con	cept of IT support, Solid modeling, Product data management, Artifici	ial
	Intelligence.			
3.	Ability to design and de	eve	lop various Design Stage such as Lifecycle design of products, CE in optim	nal
	structural design. Impor	tan	ce of PLM. Implementing PLM. Responsibility for PLM etc.	
4	Ability to understand	Cor	nponents of PLM Product organizational structure System components	in
	lifecycle slicing and did	rino	the systems Interfaces Information Standards	
	integete, sheing und un	, 111 ₂	, the systems, interfaces, information, standards.	
Top	ics Covered			
UNI	T-I			
Intr	oduction: Extensive defi	niti	on of Concurrent Engineering (CE). CE design methodologies. Review of CE	9
tech	niques like DFM (Design f	or 1	nanufacture), DFA (Design for assembly), QFD (Quality function deployment), RP	
(Rap	oid prototyping), TD (To	tal	design), for integrating these technologies, Organizing for CE, CE tool box,	
Coll	aborative product develop	mer	it.	
UNI	T-II			
Use	of Information Technol	ogy	: IT support, Solid modeling, Product data management, Collaborative product	9
com	merce, Artificial Intelligen	ice,	expert systems, Software hardware component design.	
UNI	T-III			
Desi	gn Stage: Lifecycle desig	gn (of products, Opportunities for manufacturing enterprises, Modality of concurrent	9
engi	neering design, Automated	l an	alysis Idealization control, CE in optimal structural design, Real time constraints.	
Nee	d for PLM: Importance o	f P	LM, Implementing PLM, Responsibility for PLM, Benefits to different managers,	
Con	ponents of PLM, Emerger	nce	of PLM, Lifecycle problems to resolve, Opportunities to seize.	
UNI	T-IV			
Con	ponents of PLM: Comp	one	nts of PLM, Product lifecycle activities, Product organizational structure, Human	9
reso	urces in product lifecycle	, N	ethods, techniques, Practices, Methodologies, Processes, System components in	
Terr	ycle, slicing and dicing the	e sy	stems, interfaces, information, Standards.	
1	Conquerrant Engineering i	n D	reduct Design and Development I Moustenha (New Age International)	
1.	Concurrent Engineering I	n r Tur	domentale: Integrated Product Development – Presed (Prontice hell India)	
2. 3	Product Lifecycle Manag	em	antentais. Integrated Froduct Development - Frasad (Frentice nan India)	
<u>э</u> . Д	Product Lifecycle Manag	em	ent- John Stark (Springer-Verlag, OK)	
T. Ref	Prence books	enn		
1	Concurrent Engineering.	Am	omation tools and Technology - Andrew Kusiak (Wiley Eastern)	
2	Design for Concurrent Fr	ngin	eering- J. Cleetus (CE Research Centre, Morgantown)	
3	Integrated Product Devel	0nn	ent- M M Anderson and L Hein (IFS Publications)	
2.	integrated i foudet Devel	-PH		

MME-166	ADVANCED STRENGTH OF MATERIALS		
Course Categ	gory	:	Program Electives(PE)
Pre-requisite	Subject	:	NIL
Contact Hours/Week		:	Lecture : 3, Tutorial : 1, Practical: 0
Number of C	redits	:	4
Course Asses	sment	:	Continuous assessment through tutorials, attendance, home assignments,
Methods			quizzes, practical work, record, viva voce and one Minor test and One
			Major Theory examination.

Course Outcomes	: The students are expected to be able to demonstrate the following			
	knowledge, skills and attitudes after completing this course			
1 To provide a thoroug	h understanding of advanced tonics concerning the response of materials and			
1. To provide a morough	annlied foreces of deformation			
structural elements to	applied forces of deformation.			
2. Students should obtain	n an understanding of advanced strength of materials principles and practices			
that should assist then	in making informed design decisions and solving complex problems.			
3. To acquaint with ener	gy methods to solve structural problems.			
Topics Covered				
UNIT-I				
Stress				
Definition of Stress, Bo	dy Force, Surface Force and Stress Vector, Normal and Shear Stress Components,			
Rectangular Stress Compone	ents. The Stress Tensor - 3-D. The Stress Tensor is a Linear Transformation - the			
Cauchy Tetrahedron Variati	on of the Stress Tensor from Point to Point in a Body in Equilibrium Equations of			
Equilibrium Coordinate Cha	inges and the Stress Tensor 6 Principal Stresses 7 Octahedral Stresses			
Strain	nges und the Siless Tensor 6. Trineipar Silesses 7. Octanediar Silesses			
Definition of Strain Defor	mation in the Neighbourhood of a Point Change in Length of a Linear Element			
Linear Components Rectan	mation in the Neighbourhood of a Fond, Change in Eengin of a Elicar Element			
Linear Components, Rectang	ardinate Systems and Equations of Compatibility Strain Deviator and its Invariants			
	Sumate Systems and Equations of Compatibility, Strain Deviator and its invariants			
UNIT-II Stugg Stugin Deletions				
Stress - Strain Relations	ad Statement of Healts's Law, Strass Strain Delations for			
Introduction, Generalis	ed Statement of Hooke's Law, Stress-Strain Relations for			
Belations hotware the Electi	of Rigidity, Bulk Modulus, Young's Modulus and Poisson's Ratio,			
Line on Electicity	Constants, Displacement Equations of Equilibrium.			
Linear Elasticity				
Boundary Conditions and 15	equations of elasticity, I wo-Dimensional Problems - plane stress and plane strain			
problems, Airy Stress Funct	ion, Techniques for Solving the Equations of Elasticity, Linear Thermoelasticity,			
Polar Coordinates - I nick-wa	lied Cylinders, The Airy Stress Function in Polar Coordinates			
UNIT-III				
Applications of Linear Elas	sticity and Its Approximations			
Torsion-Introduction Tor	sion of General Prismatic Bars–Solid Sections Alternative Approach			
Torsion of Circular and Ellin	tical Bars Torsion of Equilateral Triangular Bar Torsion of Rectangular Bars			
Membrane Analogy Torsion	n of Thin-Walled Tubes, Torsion of Thin-Walled Multiple-Cell Closed Sections			
Torsion of Bars with Thin B	actangular Sections, Torsion of Polled Sections, Multiple-Cent Closed Sections,			
Rending of Rooms	Aungular Sections, Forsion of Ronea Sections, Multiply Connected Sections			
Introduction Straight D	eams and Asymmetrical Banding Bagarding Eular Damoulli Usmothesis			
Shoar Contro or Contro of El	cans and Asymmetrical Denumg, regarding Euler-Demound Hypoliesis,			
Control for a Form Other St	ations Danding of Curved Dooms (Winkley Dook Economic) Deflections of Thirley			
Curved Perc	cuons, benuing of Curved Beams (winklet-Bach Formula), Deflections of Thick			
Axisymmetric Problem				
Introduction, Thick-Walled	Cylinder Subjected to Internal and ExternalPressures—Lame's Problem,			
Stresses in Composite Tubes—Shrink Fits, Sphere with Purely Radial Displacements, Stresses Due to				
Gravitation, Rotating Disks of Uniform Thickness, Disks of Variable Thickness, Rotating Shafts and Cylinders,				
Summary of Results for use	in Problems			
Energy Methods				
Work, Strain Energy and C	Complementary Energy, Castigliano's Theorems-Method of Fictitious Loads and			
Statically Indeterminate Prob	blems, Principle of Virtual Work, The Principle of Stationary Potential Energy			

Books & References

- 1. Advanced Mechanics of Materials-by P. Boresi and Richard J. Schmidt (Wiley)
- 2. Advanced Strength and Applied Stress Analysis by R. G. Budynas, 2nd Edition, McGraw Hill Publishing Co, 1999.
- 3. Theory of Elasticity, 3rd Edition by S. P. Timoshenko, J. N. Goodier, McGraw Hill Publishing Co. 1970.
- 4. Solid Mechanics for Engineering by P. Raymond, 1st Edition, John Willey & Sons, 2001.
- 5. Advanced Mechanics of Solids by L. S. Srinath ((Tata McGraw Hill).)